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ABSTRACT

This paper describes our recent work on improving broadcast news
transcription and presents details of the CU-HTK Broadcast News
English (BN-E) transcription system for the DARPA/NIST Rich
Transcription 2004 Speech-to-Text (RT04) evaluation. A key fo-
cus has been building a system using an order of magnitude more
acoustic training data than we have previously attempted. We have
also investigated a range of techniques to improve both Minimum
Phone Error (MPE) training and the efficient creation of MPE-
based narrow-band models. The paper describes two alternative
system structures that run in under 10×RT and a further system
that runs in less than 1×RT. This final system gives lower word
error rates than our 2003 system that ran in 10×RT.

1. INTRODUCTION

The accurate automatic transcription of broadcast material remains
a challenging problem. One approach to improving accuracy is to
greatly increase the amount of training data. The use of lightly su-
pervised training [5, 1, 6] can yield a large increase in training data
volume at low cost by using audio sources for which only closed
captions exist. This has led to an order of magnitude increase in
training data for the US English broadcast news (BN-E) task.

In this paper, we discuss how we have used up to 1350 hours of
acoustic training data. The effect of increases in training data size
is analysed in terms of word error rate (WER) reduction as more
data is included in training. We have continued to use the discrim-
inative lightly supervised training approach presented in [1]. We
have also investigated a number of changes to the overall training
procedure and evaluated these both individually and in the context
of complete systems.

The paper is arranged as follows. First, an overview our 2003
BN-E system is given and then recent improvements in training
acoustic models is presented. This includes the use of a dynamic
maximum mutual information (MMI) prior in minimum phone er-
ror (MPE) training; an efficient method for building discrimina-
tive narrow-band models, and performance improvements using
increased training data. We then give a description of two less
than 10×RT systems and a 1×RT system which were developed
for the RT04 evaluation.

2. CUED RT03 BN-E SYSTEM

The system, developed for the March 2003 Rich Transcription
(RT03) evaluation, runs in a little under 10×RT. It operates in
multiple passes and includes multiple branches that use different
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acoustic models. In the final stage, system combination is used to
combine the outputs from the separate branches. Full details of the
system structure and the models involved are given in [4].

Each frame of speech is represented by 13 PLP coefficients
with first, second and third derivatives appended and then pro-
jected down to 39 dimensions using HLDA. The cross-word tri-
phone HMMs, which use 7000 clustered states each with a 16
component Gaussian mixture distribution, were estimated using
the BN-E data released by the LDC in 1997 and 1998 (bnac ).
Since some BN data, for example telephone interviews, are trans-
mitted over bandwidth-limited channels, both wide-band and narrow-
band spectral analysis variants of each model set were trained. All
model sets were trained using MPE [7] and gender-dependent ver-
sions were derived using MPE-MAP [8]. A number of broadcast
and newswire text corpora were used to train a word 4-gram lan-
guage model (LM).The overall system decoding structure is as fol-
lows:
P1 initial transcription : The P1 pass (gender independent mod-
els) provides an initial word-level transcription which is used for
both gender determination and as the adaptation supervision for
the P2 models.
P2 lattice generation: The adaptation uses global least squares
regression mean transforms and MLLR variance transforms. Word
lattices are generated using the adapted acoustic models and a 4-
gram word LM.
P3 lattice rescoring: Two separate model sets are used to rescore
the P2 lattices. The P3.1 system was built using speaker adaptive
training (SAT) employing global constrained MLLR transforms.
The P3.2 system was trained in the normal speaker-independent
fashion but employed a special single pronunciation (SPRON) dic-
tionary. Both P3 model sets were adapted using lattice MLLR
adaptation and a global full-variance transform.

Each of the stages P2, P3.1 and P3.2 produce word lattices
and these are converted to confusion networks and then combined
with confusion network combination (CNC) [2]. Finally, a forced
alignment of the final word-level output was used to obtain accu-
rate word times before scoring. The full system ran in 9.1×RT1 on
the 2003 evaluation set (eval03 ).

3. TRAINING AND TEST DATA SETS

In addition to thebnac set used in the RT03 system, three more
training data sets were used for acoustic model training. Thetdt4
corpus was originally developed for the topic detection and track-
ing task and closed caption text is available. Recently, the LDC
provided more broadcast news data, which we denotetdt4a and
bn03 , so that the total amount of training data has been greatly
increased. A brief summary of these data sets is given in Table 1.

1On a single Intel Xeon 2.8GHz/512kB L2 cache processor.

In Proc. ICASSP 2005, Volume I, pp. 861–864. c© IEEE 2005



data description size (hours)
original usable

bnac RT03 training data – 143
tdt4 TV+radio / 6 src / Oct00-Jan01 300 231
tdt4a TV / 4 src / Mar01-Jul01 530 377
bn03 TV / 19 src / Mar03-Nov03 6375 –

Table 1. Available BN-E training data and size.

As no detailed transcriptions (only closed captions) are avail-
able fortdt4 andtdt4a data, we used lightly supervised train-
ing [1]. This technique performs a recognition pass on the training
data with a data set specific biased LM which is trained in part on
the closed caption data. The recognised output is then used as the
transcription for training. The biased LM is constructed by build-
ing an LM on just the closed caption text and then interpolating
this with a more general LM (RT03 LM) which includes detailed
broadcast news transcriptions. The recognition system is a sim-
plified version of the RT03 BN-E system which includes only the
P1 and P2 stages and the final output is formed by confusion net-
work decoding of the 4-gram lattice output from the P2 stage. This
system normally runs within 5×RT and we call it the P1-P2 sys-
tem. As we normally automatically remove advertisements and
then remove additional audio during the segmentation process, the
amount of usable data is reduced from the length of the original
audio files. Furthermore, we excludedtdt4 data after 15 Jan-
uary 2001 so not to have temporal overlap of acoustic or language
model data with the development test sets.

Transcriptions and segmentations of thebn03 data was pro-
vided by BBN using a recognition/filtering approach and the de-
tailed method was presented in [6]. We selected two subsets from
BBN’s transcription forbn03 , each of about 300 hours. The first
set was sampled from six major sources included in the data from
ABC, CNBC, CNN, CNNHL, CSPAN and PBS. The second set
comes from CNN and the other six sources (CBS, FOX, MSN,
MSNBC, NBC, NWI) which were not included in the first set. We
included no data in these sets that was later than 14th November
2003, so that temporal overlap with development data was avoided.

training set description size(hours)

bntr04-base bnac+tdt4 375
bntr04-750h +tdt4a 752
bntr04-1050h +1st selection ofbn03 1050
bntr04-1350h +2nd selection ofbn03 1350

Table 2. Selected BN-E training data sets and sizes.

By adding the additional training data incrementally, we have
4 different training sets as given in Table 2. The acoustic models
were initially built using either thebntr04-base or thebntr04-
750h data. Later more parameters were added to the models and
trained with thebntr04-1050h andbntr04-1350h data sets.
These final model sets were actually used in our RT04 evaluation
systems.

3.1. Test Data

For development we used two data sets from the TDT4 sources
broadcast in late January 2001 (dev03 and dev04 ) as well as
the RT03 evaluation set from February 2001eval03 . We also
used the LDC-released set of development data set, denoted here

(dev04f ) which was broadcast in late November 20032. The
dev04f data is from different sources to the earlier data and con-
tains a larger amount of more difficult data (such as high levels of
background noise/music and non-native speakers) than other test
sets.

4. REVISED ACOUSTIC MODELLING

4.1. MPE Training with Dynamic MMI prior

Use of the I-smoothing technique is necessary to allow good gen-
eralisation performance in MPE training [7]. I-smoothing uses a
more robust estimate of model parameters as a prior distribution
in MPE training. Hence the prior parameters of the I-smoothing
distribution act as back-off value to the MPE estimate. In standard
MPE training, maximum likelihood (ML) estimates of mean and
variance are used as the priors. As the priors are generated for each
iteration based on the current model parameters, they are referred
to as adynamicprior.

As much more data per parameter becomes available for MPE
training, it is possible to robustly estimate a more appropriate prior
distribution such as one based on an MMI estimate [9] and this can
be used in place of (or in addition to) the normal ML prior estimate.
To implement this change, since ML statistics (equivalent to MMI
numerator statistics) are already being used in MPE training, only
MMI denominator statistics are additionally required to use a dy-
namic MMI prior. Also there is no extra computation in accumu-
lating statistics compared to MPE training using ML prior, since
the MMI denominator uses the same component posterior occu-
pancy generated by lattice forward-backward algorithm in stan-
dard MPE training.

A comparison between a dynamic MMI prior and a dynamic
ML prior is given in Table 3. It can be seen that a reduction in
WER of 0.3% and 0.1% abs fordev03 andeval03 respectively
is obtained by using the dynamic MMI prior. For this size of
training set we didn’t find it to be necessary to include an ML
I-smoothing term in the MMI prior estimate.

Training %WER
dev03 eval03

MPE (ML prior) 13.9 12.6
+GD MPE-MAP 13.7 12.4

MPE (MMI prior) 13.6 12.5
+GD GI-MPE prior 13.5 12.3

Table 3. %WER for (GI) MPE model with dynamic MMI prior
and GD MPE models usingbntr04-base . 16 comp/state. Sin-
gle pass decoding with the RT03 trigram LM. NB segments de-
coded using theRT03 MPE NB models.

4.2. Gender Dependent (GD) MPE training

Normally we build GD models using a few additional iterations
starting from a GI model set. Of course care must be taken to avoid
over-training and typically we only update the Gaussian means and
mixture weight parameters. Furthermore it is useful to use more
conservative prior parameter settings. Therefore for GD MPE train-
ing we have used the parameters of the GI MPE model as the
I-smoothing priors throughout the training of the GD model set.

2One show was broadcast on 1st December 2003.
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This is referred to as astaticprior in contrast to thedynamicprior
in GI MPE training. As the static prior is not updated during GD
MPE training, it is more robust than the dynamic prior. The GD
MPE models showed consistent gain over GI models as shown in
Table 3.

4.3. Narrow-band Models

In the CUED RT03 BN-E system, HMM sets for narrow-band
(NB) data were built during the ML training stage then the MPE
training was performed independently on NB filtered data. How-
ever as the amount of training data increases, the cost of another
full set of MPE training iterations to build NB models is too high.
To alleviate this problem, the single pass retraining method was
extended to work with the MPE criteria and then directly applied
to build NB model using the WB MPE model.

Training
Iter

%WER
Method dev03 eval03 dev04

NB MPE 8 14.9 13.6 16.5
MPE-SPR (ML prior) — 15.0 13.8 16.6

+MPE 1 14.7 13.7 16.4

Table 4. % WER of variousbnac NB acoustic models. WB
segments hypothesis using theRT03 WB MPE model.

Table 4 presents the performance of NB models trained using
various methods. The MPE-SPR with ML priors showed slightly
poorer performance than the full MPE trained NB models, but an-
other iteration of MPE training (with ML prior) gave 0.2% and
0.1% absolute gain ondev03 anddev04 respectively, and was
only 0.1% worse oneval03 than the RT03 NB model.3

4.4. Increased Training Data/Model Complexity

As the quantity of available training data has increased by a large
amount, we investigated also increasing the number of parameters
in the HMMs by both increasing the number of Gaussians per state
and the number of clustered states. The model structure for the
basic HMMs used in our RT03 BN-E system included an average
of 16 Gaussian mixture components per clustered state and 112k
Gaussians in total (7k states).

We first doubled the average number of Gaussians per state to
32. With thebntr04-750h training set, there were reductions in
WER of 0.6% and 0.3% fordev03 andeval03 as shown in Ta-
ble 5. This is in contrast to our previous observations on increasing
model complexity, for MPE models withbnac 143 hours training
set, where we found little advantage to doing so.

We then increased the number of clustered states from 7k to
9k and also switched training set tobntr04-1050h . The results
still showed consistent gains over various test sets. Finally we used
the bntr04-1350h set for MPE training. There were further
0.1-0.2% gains fordev03 andeval03 and another larger change
of 0.7% abs for thedev04f set. Note that this relatively big gain
in dev04f is partly due to similarity betweendev04f andbn03
training set.

3This NB model building method was evaluated later using P1-P2 sys-
tem with the RT04 LM, and found that the new NB model with additional
training data consistently outperformed the RT03 NB models.

Training Data %WER
dev03 eval03 dev04f

bntr04-750h 16/7k 13.4 12.1 –
bntr04-750h 32/7k 12.8 11.8 21.6
bntr04-1050h 32/9k 12.2 11.4 20.3
bntr04-1350h 32/9k 12.1 11.2 19.6

Table 5. %WER with GI MPE models with different training sets.
Single pass decoding of WB segments with the RT03 trigram LM.
NB segments decoded using theRT03 NB MPE model.

4.5. SPRON

All the acoustic models discussed so far have been based on a mul-
tiple pronunciation per word (MPRON) dictionary. As in our RT03
system, we also built model sets based on a single pronunciation
(SPRON) dictionary. The SPRON dictionary was generated based
on pronunciation statistics frombntr04-1050h training set.The
same training procedure including the dynamic MMI prior and GD
MPE training was performed to build SPRON acoustic models.
The performance ofbntr04-1350h SPRON GD MPE models
was 10.8% and 12.6% WER foreval03 anddev04 , which is
0.2-0.3% abs better than the MPRON counterparts with the same
experimental setup given in Table 5.

5. RT04 EVALUATION SYSTEM

5.1. Language Model

The LM for RT04 was built in a similar way as RT03 BN-E LM
in which five 4-gram models were linearly interpolated together.
Small to mid-size models were smoothed using modified Kneser-
Ney discounting and components trained on large data sets used
Good-Turing discounting. After the interpolation, the component
models were merged and the final model was pruned with entropy-
based pruning.

The main difference in the R04 LM was the addition of the
new training texts. The closed caption text fromtdt4a andbn03
were added to the text corpus. Also more transcriptions from
CNN’s website and various newswire texts were newly added. As
a result, the number of words for LM building was increased by
40% compared to RT03 LM, i.e. 1.4 billion word tokens were used
in total. The interpolation weights were optimised on a text com-
prised ofeval03 , dev04 , anddev04f . The perplexity values
with the RT04 4-gram LM were 120, 118, and 132 foreval03 ,
dev04 anddev04f .

5.2. Rover Using Dual Segmentations

Although the performance of automatic audio segmentation sys-
tems is generally good, there are still places where a particular
segmenter makes errors. Therefore a strategy was investigated
in which two independent segmentations were used and separate
recognition systems run on each and the final word-level outputs
combined. This method is more robust in the sense that when one
segmenter fails in a particular acoustic environment, the other may
work well or vice versa.

To implement this approach we ran the P1-P2 system with
both the CUED RT03 and LIMSI’s segmentation [3] independently,
then performed ROVER using the two decoding results. As shown
in Table 6, the performance after ROVER is consistently better
than best single system on three different test sets, and the gain
was 0.3%-0.4% abs.
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Segment %WER
eval03 dev04 dev04f

CUED 9.2 11.9 16.6
LIMSI 8.8 11.4 16.2

ROVER 8.5 11.0 15.8

Table 6. %WER of P1-P2 system and ROVER using CUED and
LIMSI segmentations.bntr04-1050h WB models, theRT03
NB models. RT04 LM.

5.3. 10×RT System

First an RT03 style system was built with the new acoustic/language
models and using the LIMSI segmenter. The SAT model was
trained onbntr04-1050h in the same way as RT03 system,
apart from using automatically generated speaker clustering for
the new training data (tdt4 , tdt4a andbn03 ). The GD SPRON
models were trained usingbntr04-1350h . The system ran in
8.4×RT4 on the RT04 evaluation data set and on average resulted
in a 22% relative reduction in WER.

We built an alternative 10×RT system (RT04 10×RT(2)) us-
ing the dual segmentation approach with a simplified system to
reduce the run-time of each system to under 5×RT. These changes
included (1) using a faster decoding configuration in P1 with no 4-
gram expansion (0.3-0.4×RT); (2) slightly narrower beamwidth in
P2 (< 3×RT); (3) single P3 branch using SPRON model (1.5×RT);
(4) CNC using P2 and P3. The SPRON model was chosen as a sin-
gle P3 branch since it showed better performance than the SAT in
the RT03 style system. The performance of this system is given in
Table 7. The final ROVER combined numbers show 0.2-0.4% abs
lower WER than the RT03 structure.

System %WER
eval03 dev04 dev04f

RT03 10× 10.6 13.2 18.6

RT04 10×(1) RT03 style 8.0 10.4 14.9
RT04 10×(2) CUED-seg 8.4 10.8 15.5

LIMSI-seg 8.1 10.3 14.9
ROVER 7.8 10.0 14.7

Table 7. %WER of the RT04 10×RT systems

5.4. 1×RT System

A 1×RT system was built that has a very similar structure to the
P1-P2 system described above. All the decoding configurations
were carefully tuned to make the system faster while minimising
the performance degradation relative to the 10×RT system. In par-
ticular the performance of the the P2 stage was relatively insensi-
tive to the WER of the first stage.

The 1×RT system consists of (1) LIMSI segmentation (0.15×RT)
(2) a very fast P1 using the MPE WB model with 16 Gaussian mix-
ture components and a small sized trigram LM (0.15×RT), and no
4-gram expansion; (3) unsupervised adaptation and a fast P2 de-
coding with trigram (0.6×RT) with 4-gram expansion; (4) confu-
sion network decoding and forced alignment.

In the final stage, word tokens with low confidence scores were
removed from the recognised results. As shown in Table 8, the

4All times for RT04 systems were run on an Intel Xeon 3.2GHz/2MB
L3 cache processor with hyperthreading enabled.

Pass %WER
eval03 dev04 dev04f

P1 17.2 21.7 27.8
P2 9.9 12.7 17.4
final 9.8 12.5 17.3

Table 8. %WER of the RT04 1×RT system for development sets.
final is after removing low confidence words.

very fast P1 stage still produces reasonable error rates and the final
output gives lower WERs than the RT03 10×RT system for all
data sets.

6. CONCLUSIONS

We presented the CU-HTK 2004 BN-E systems for the DARPA/NIST
RT04 evaluation. Using improved acoustic/language models and
by combining systems with different segmentations, the 10×RT
system gave on average a 24% relative reduction in WER over the
RT03 system. We also presented a 1×RT system which outper-
forms the RT03 10×RT system.
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