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Abstract

This paper presents novel methods for increasing the robustness of vi-
sual tracking systems by incorporating information from inertial sen-
sors. We show that more can be achieved than simply combining the
sensor data within a statistical filter. In particular we show how, in
addition to using inertial data to provide predictions for the visual sen-
sor, this data can also be used to provide an estimate of motion blur for
each feature and this can be used to dynamically tune the parameters
of each feature detector in the visual sensor. This allows the system to
obtain useful information from the visual sensor even in the presence
of substantial motion blur. Finally, the visual sensor can be used to
calibrate the parameters of the inertial sensor to eliminate drift.

1 Introduction

Visual tracking attempts to provide a real-time estimate of camera pose relative to
its environment or other solid objects. This is useful for a range of applications: In
manufacturing for example a camera may be mounted on a robot arm to accurately
position the arm relative to a work-piece. In augmented reality, a camera may be
mounted on a head-mounted-display to track the position of a user’s head in the
real world. In contrast to magnetic or acoustic tracking, visual tracking need not
require the placement of special beacons or sensors which may limit range and be
prone to interference. However, visual tracking is often not capable of tracking
rapid and unpredictable camera motion such as may be produced by a hand- or
head-mounted camera. This makes the addition of sensors such as inertial rate
gyroscopes which are robust to large transient motions an attractive proposition.

Visual tracking systems frequently make use of fiducial markers such as LEDs,
reflective markers, or distinctive colored shapes. These landmarks are placed at
known positions in an environment and are easily recognized by the visual system.
This approach is widely used in augmented reality systems ([7, 13, 11].) Model-
based visual tracking exploits salient features already present in the object or
environment to be tracked and does not require markers. Instead, a description of
the salient features of the environment is used: this is most often prepared off-line
and stored in a CAD model [4, 5, 8, 2] although some recent systems can generate
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Figure 1: Substantial motion blur due to 2.6 rad/s camera rotation, with 100x100
pixel enlargement

models on the fly[6, 3, 10]. To achieve real-time performance, feature searches in
the image are often limited to a small area around a predicted image position of
a feature. As a result of this, large unpredicted image motion (e.g., if the camera
is suddenly rotated) can move image features beyond range of local search. Such
motions are not uncommon for a head- or hand-mounted camera. If such a camera
has a focal length of 1000 pixels and is subject to a transient motion of 3 radians/s,
this corresponds to 60 pixels of motion between consecutive video fields at 50Hz.
Furthermore, rapid camera motion can degrade the video image due to tearing and
motion-blur: this is illustrated in Figure 1 which shows the motion blur caused
by a camera rotating at 2.6 radians/s. Consequently, rapid motion of the camera
frequently causes visual tracking systems to fail. Inertial sensors such as rate
gyroscopes and linear accelerometers provide measurements of rotational velocity
and linear acceleration. Compared to video input, inertial sensors can be sampled
at a high frequency and with low latency. While they are of limited suitability
for directly tracking pose due to the accumulation of error in integration, their
robustness to transient motion make them ideal for complementing a vision-based
tracking system.

The fusion of vision and inertial measurements has been the area of substan-
tial research, particularly in the field of augmented reality. In [13], an extended
Kalman Filter combines landmark tracking and inertial navigation. A similar sys-
tem is presented in [12]. A Kalman Filter represents all measurements and system
state as multivariate Gaussian distributions and allows the propagation of state
error estimates and optimal weighting of noisy measurements. A prerequisite for
good EKF performance is the availability of good measurement and process noise
models; [1] develops a system which selects one of multiple uncertainty models
based on how rapidly a synthetic camera is moving. Approaching fusion from a
different perspective, [9] tackles the fusion of inertial data and visual measure-
ments of line correspondences from a control-theoretic viewpoint to produce a
theoretically sound algorithm.

This paper presents a novel method of fusing rate gyroscope information with
model-based tracking. We show that more can be achieved when using these kind
of sensors than simply combining the data in a statistical (e.g. Kalman) filter. Fig-
ure 2 illustrates the fusion strategy employed: Rotational measurements from rate
gyroscopes are used both to initialise and modify the operation of an edge-based
visual sensor, while data from this sensor is used to update the inertial sensor’s
calibration parameters. The bold lines represent simplest possible implementation
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Figure 2: Sensor fusion strategy

of sensor fusion, whereby sensor measurements are only used to update the system
state. In the system presented here, the dashed line is replaced by initialisation
of the visual system with inertial measurements and a prior covariance matrix.
Sections 2 and 3 describe the operation of the visual and inertial sensors respec-
tively. The fusion of these two sensors is detailed in Section 4 and Sections 5 and
6 present results and conclusions.

2 Visual Sensor

2.1 Representation of Camera Pose

The visual tracking system employed is capable of tracking slow motion of a camera
relative to an object. It is capable of real-time operation at 50Hz on a standard
workstation. An estimate of camera pose relative to known world geometry is
continually updated and described by the matrix £ which transforms points in
world coordinates to camera coordinates:
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where R is a rotation matrix (|R| = 1, RTR = I) and t is a translation vector.
The matrix E is periodically updated by means of left-multiplication by a motion
matrix:

Eyy1 = MLE; (3)

where M takes a form similar to E. The set of all such matrices form a representa-
tion of the 6-dimensional Lie Group SE(3), the group of rigid body transformations
in R3. The transformations possible under this group can be parametrised with a
six-vector via the exponential map

M = exp (Z Mz’Gi) (4)



Figure 3: Tracking system loop

where G; are the usual group generator matrices, p1, uo and us represent trans-
lation along the x, y and z axes and p4, us and ug describe rotation around these
axes.

2.2 Visual Tracking System Loop

The visual tracking system updates the matrix E once every PAL video field
(50Hz.) The steps taken each field are illustrated in figure 3, and are as follows:

Step 1: A video image is acquired from the video capture hardware,
Step 2: The model is rendered using a prediction of the camera pose,
Step 3: A local search for image edges is performed around the rendered edges,

Step 4: A motion matrix M describing the error between prediction and obser-
vation is calculated and used to update FE.

Video images are captured field-by-field to avoid interlacing artefacts (tearing) and
increase the tracking system’s temporal resolution. Captured images are greyscale
and have a resolution of 768x288. A standard CCD camera with square pixels is
used. This is fitted with a wide-angle (4.2mm, =530 pixels) lens so as to provide
a large number of simultaneously visible trackable features.

The edges of the 3D model are rendered according to the current camera pose
estimate. This estimate can be the previous observed pose, or it may be generated
from a velocity estimate or from inertial sensors as in Section 4.1. Hidden edge
removal is accomplished by OpenGL stencil buffering and BSP traversal. Since
the wide-angle lens used exhibits substantial radial distortion, a standard pin-hole
camera model cannot be used directly. Radial distortion is approximated by a
mapping of radii in normalised camera coordinates:

r=r4+ Oé’f'3 + ,87'5 (5)

where 7 = \/( e )2 +( & )2. Pixel coordinates (u v )T are then given by
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Where f., fo, uo, Vo, @ and S are camera parameters which can be calibrated
on-line, with & = —0.29 and 8 = 0.06 for the lens used.

Once visible model edges have been rendered, a local search for edges in the
video feed is performed. For this purpose, sample points are initialised at regular
intervals along model edges. One-dimensional edge detection is performed at each
of these points: at the {th sample point, edge detection in the direction of the edge
normal #¢ is performed and the distance d* to the nearest detected edge (should
one be found) is determined. The edge detection process is further described in
Section 4.2. Typically, several hundred sample points are initialised per video
frame.

Once all edge distances have been found, the motion vector ¢ which minimises
the pose error is found. Equations 1 and 6 can be differentiated to find the motion
in the image of each sample point with respect to the six parameters of camera
motion to obtain, for the £th sample point, the partial differentials g%j (1<i<6).
The motion vector g which minimises the residual error is found by a robust
re-weighted least squares method. The tracking system then updates its pose
estimate F with a motion matrix corresponding to the optimal motion vector, and
the tracking loop recommences.

3 Inertial Sensors

Three rate gyroscopes were affixed to the camera as shown in Figure 4. These
gyroscopes produce an output voltage which varies linearly with rotational velocity.
The voltage is sampled using a 10-bit ADC and transmitted to the workstation
via a serial link. The sampling frequency used is 171 Hz.

The nth gyro produces an output voltage V,,:

where (2, is rotational velocity about the nth gyroscope’s axis, B,, a bias voltage
and a, the gyroscope sensitivity. At rest when 2, = 0, B, can be measured
directly. For a single axis, angular displacement, ®,, is found by integration:
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The parameter o, can be determined by performing the above integration while
rotating the gyroscope about a known angle. The form of equation 8 means that

: N

0 10 Time [Hours] 20

Figure 4: Rate gyroscopes affixed to camera and long-term bias drift, which can
be significant with temperature change



estimates of angular position are very sensitive to errors in bias: small steady-state
errors in B, produce unbounded errors in ®,,. Since the bias parameter for the
gyros used was found to vary with time (as shown in Figure 4), the value of B,
must be continually updated to ensure long-term robustness. The mechanism used
for this is described in Section 4.3.

4 Sensor Fusion

The fusion of visual and inertial sensors in our system has three key components:
An initialisation of the tracking system’s pose estimate before video frame pro-
cessing, a modification of the edge detection process to account for motion blur,
and an update of the gyroscope’s bias estimate.

4.1 Visual Tracking System Initialisation

The visual tracking system described in Section 2 uses a local edge search around a
predicted model position in the video feed. Furthermore, it linearises pose changes
around the current pose. As a result, the visual tracking system is best suited
for correcting small pose errors. If image motion beyond the range of the local
edge search occurs (for example, due to sudden rapid camera rotation), the visual
tracking system fails entirely.

The time needed to capture a video frame from the camera and transfer this
frame from video hardware to tracking system is large compared to the time needed
to sample information from the gyroscopes. Hence, a record of gyroscope informa-
tion corresponding to camera motion between the previous and the current video
frames is always available to the tracking system before image processing com-
mences. This information can be used to predict camera orientation for the new
video frame.

Linear accelerometers are not currently used. Instead, an estimate of linear
velocity filtered from previous position measurements is stored in the system’s
state estimate. This velocity estimate is combined with gyroscope measurements
to form the vector p,, representing predicted change in camera pose:

upz(.’vl o I3 ‘b1 ‘bz ‘b3 )T (9)

with &, evaluated as in 8 and z,, being the predicted linear displacement along
the nth axis. A prediction E; for the camera pose at time ¢ is computed by

6
By = exp (— Z/J'piGi> E; 4 (10)
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This operation provides the estimate needed for step 2 in Section 2.2.

4.2 Parametric Edge detector

If the camera could be assumed to capture images using an ideal sampling function
f(t) = 6(t) then edge detection could be performed by constructing a vector z of



Figure 5: Image motion vectors of motion blur predicted from inertial sensors

pixel intensities around a sampling point in the direction of the edge normal and
convolving with the kernel k; = ( -1 1 ) to give a vector of edge intensities.
The values of local maxima in these intensities could be compared to a threshold
value, and a suitably strong local maximum closest to the sample point is selected
as the detected edge.

The assumption of a very short exposure time is however not valid for the
camera used. Although cameras with very rapid exposure times exist, these usually
require a high light intensity for operation and may not be suitable for operation
in a standard environment, e.g. inside a normal building. Under these conditions,
cameras often exhibit substantial motion blur, as illustrated in Figure 1. A better
approximation of the sampling function of these cameras is a rectangular pulse:

A <<t
-J T 2 =t>7 11
1® { 0 otherwise (11)

where T, is the camera’s exposure time. An image edge (step function) moving
across the image at a rate of v pixels/second will thus appear as an intensity ramp
of length vT, pixels in the sampled field. The edge detection in step 3 of the
tracking system loop can be modified to detect blurred edges by using inertial
sensor information to produce an estimate of camera motion during the sampling
period:

pe=T.(0 0 0 Q Q Q)7 (12)
For each sample point, an estimate of the length of an edge’s motion blur in the
direction of the edge normal can be found by evaluating
6
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Figure 5 shows system’s estimate of motion blur in an image superimposed over a
blurred video frame. Edge detection is performed by convolution with a matched
filter. The ramp kernel k, is used, where

1
'r:ﬁ(

b= (13)

k —b —b+2 .. b—2 b) (14)

When this kernel is convolved with the pixel intensities, the maxima indicate the
sensed locations of blurred edges. The edge detection process is illustrated in
Figure 6. The first plot shows image pixel intensity measured along the horizontal
black line in the enlargement of Figure 7. These pixel intensities are convolved
both with the ideal kernel k; (second plot) and a ramp kernel k, of length 36
(third plot.)
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Figure 6: Plots of edge normal pixel intensity and detected edge strengths

4.3 Gyroscope Re-calibration

As shown in Figure 4, the bias parameters B,, are not constant. For long-term
robustness, it is necessary to update the system’s bias estimate. This is done by
comparing inertial predictions of rotational motion with measurements made by
the visual system. If the rotational displacement around the nth axis between two
subsequent visual measurements time AT apart is ©,, and the bias value used is
assumed to take the form B,, = Bﬁf”e + e, where e, is bias error, it follows from
equation 8 that (assuming perfect measurements)

On (en - Qn)

AT (15)

en =
In practice, measurements are noisy, and bias values are corrected by a small

(typically 155th) fraction of the calculated error.

5 Results

The tracking system presented was tested on three test scenes. The ‘world’ scene
places the camera in a simple immersive table-top environment. The ‘ship’ scene
points the camera at a model of a ship part such as could be found in a visual servo-
ing application. The ‘cubicle’ scene contains a portion of a computer lab. In each
scene, the camera undergoes increasingly rapid motion relative to its target while
the tracking system was run in three modes: without any inertial information,
using inertial information to predict camera pose, and using inertial information
both for pose and blur prediction. Table 1 shows the maximum rotational veloci-
ties at which tracking was sustainable. The tracking system’s performance differs
greatly from scene to scene: While the ‘ship’ and ‘world’ scenes contain many
edges of modest contrast, the ‘cubicle’ scene contains high-contrast feature such
as windows and light fittings and is trackable even at high rotational velocities.

Sequence: World Ship Cubicle
Visual Sensor Only [rad/s] (pixels) 03 (3 03 (3 1.0 (11)
Pose Initialisation Only 0.8 (8) 12 (13) 3.6 (38)
Motion Blur Correction 3.1 (33) 20 (21 4.7 (50)

Table 1: Tracking system performance for three scenes: Maximum trackable rota-
tional velocities in rad/s (and corresponding motion blur in pixels)
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Figure 7: World sequence (with enlargement) successfully tracked at 3.1rad/s
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Figure 8: Motion blur at various rotational velocities: 0.0, 0.8, 1.8, 3.1, 4.9 rad/s

Figure 7 shows the tracking system correctly tracking a sequence in the ‘world’
scene while the camera is rotating about its vertical axis with 3.1rad/s. This was
the highest rotational velocity at which correct tracking was maintained. Video
image quality at different rotational speeds is compared in Figure 8, which shows
enlargements corresponding to the central white outline in Figure 7. The first four
enlargements show trackable rotational velocities, the last was untrackable.

Fitting error was measured for the 'world’ test scene. The mean redisual error
for sample points with no motion blur was found to be 1.1 pixels. The error
increased to 4.2 pixels for sample points with a motion blur of 7 pixels and reached
a maximum of approximately 5.5 pixels for motion blurs of 20-33 pixels.

6 Conclusions and Further Work

This paper has presented a tightly integrated strategy for the fusion of visual and
inertial sensors. The addition of an inertial pose prediction to the tracking system
greatly increases the system’s robustness. Pose prediction by itself is however not
sufficient when camera motion is such that motion blur corrupts image measure-
ments. In this case, the estimation of motion blur and use of a parametric edge
detection algorithm further increase the robustness of the system.

While the inertial sensors used can measure rotational velocity, linear velocity
is still estimated from visual measurements. Linear accelerometers will be added to
the system to measure linear acceleration directly. This will increase the tracking
system’s robustness when the camera is undergoing translation. However, neither
the rate gyroscopes nor the linear accelerometers provide any information about
possible motion of the objects tracked, and so the tracking of rapidly moving
objects is not supported.

Finally, the motion blur correction used is not suitable for parallel edges whose
separation is comparable to the size of local motion blur. The use of more advanced
rendering techniques than employed here (such as the use of multiple levels of
detail) may help address this issue. This would however require suitably marked-
up models, further increasing the system’s already considerable dependency on
data prepared off-line.
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