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Abstract

Ultrasonic strain imaging promises to be a valuable tool in medical diagnostics. Reliability
and ease-of-use have become important considerations. These depend on selection of appro-
priate imaging parameters. Two tasks are undertaken here. The tradeoff between resolution
and estimation precision is examined closely to establish models for the relationships with
imaging parameters and data properties. These models are then applied in a system that
automatically sets the imaging parameters responsive to the data quality and the required
estimation precision, so as to produce more meaningful images under varying scan conditions.
The new system is applied to simulation, in vitro and in vivo data for validation. It reduces
the complexity of the sonographer’s role in strain imaging, and produces images of reliable
quality even when the level of signal decorrelation varies throughout the ultrasound data.

1 Introduction

There is considerable and growing interest in the measurement and imaging of tissue mechanical
properties (primarily strain) by processing RF ultrasound signals [2]. Valuable applications seem
likely in numerous areas of medical diagnostics, among them improved screening for soft tissue
tumours including breast [1, 11] and prostate [9] cancer. With clinical adoption emerging as a
realistic goal, practical requirements such as a high frame rate [10, 13], robustness [6, 14] and
ease-of-use are becoming increasingly important considerations.

Strain imaging will be the first form of elasticity imaging in regular use. Not all ultrasound data
can be used for this purpose, because data must to some degree be correlated between consecutive
frames [5, 6]. In those frame pairs where strain imaging is possible, good performance depends
on the selection of suitable processing parameter values. The optimal parameter set depends on
numerous variables. Some of these are fixed for particular applications. Properties of the imaging
hardware are usually well defined (transducer quality, focal depth, centre frequency, bandwidth,
level of electrical noise). For image interpretation, clinical experience is likely to indicate the
relative importance of clear shape definition versus accurate, quantitative measurement of strain
contrast in different tasks. Some variables are less predictable, however, such as properties of
the scanning target (echogenicity, scatterer density, mechanical feature scale) and motion of the
ultrasound probe (size and direction of deformation, degree of lateral and elevational movement).
In general, strain estimation precision can be improved by analysing at coarser resolution: mean
strains can be estimated easily over large distances, but fine-scale displacement gradients are more
problematic. An image with greater detail is more informative only if the detail is obtained at an
acceptable estimation signal-to-noise ratio (SNRe).

The construction of a strain image usually requires recording at least two RF ultrasound frames,
with some intervening tissue deformation. There are two stages to the subsequent signal processing.
(A) Displacement in the underlying tissue is estimated by finding the shifts between corresponding
data windows in the pre- and post-deformation ultrasound frames. (B) The displacement field is
spatially differentiated to estimate strain. Stage A typically involves shifting a candidate window
over the post-deformation data until it maximises a similarity measure with the pre-deformation
window. This is affected by parameter choices including window length, width and the spacing
between successive windows. The gradient estimator in Stage B introduces further parameters,
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such as the length and width of a least squares kernel. It follows that experienced researchers have
numerous settings at their disposal to optimise the quality of each strain image.

The initial aim of this investigation is to examine the effects of strain imaging parameter
selection on resolution and SNRe. That information is applied in the form of a system for Dynamic
Resolution Selection (DRS), whereby the parameters are steered automatically towards appropriate
settings. This is motivated by two desirable outcomes. DRS will reduce the complexity presented
to the sonographer, so the control options can be reduced to a single noise-rejection setting, which
deals appropriately with inter-image variability. Additionally, the parameters may vary within
each image, so as to produce reliable data despite intra-image variability in strain and decorrelation
levels [4, 12].

This principle is pursued at a conceptual level, and is also implemented in the particular case
of Weighted Phase Separation [8] with Amplitude Modulation Correction [7] and least squares
strain estimation. Theory and empirical evidence from analysis of simulation and phantom data
are examined to develop and validate DRS, which is also demonstrated under in vivo conditions.

2 Development

In this section we outline the development of DRS, employing a combination of theoretical and
heuristic methods. In this investigation we are concerned only with axial strain estimation, al-
though the concepts should be transferable to analysis of multidimensional estimation. Most
approaches to strain image signal processing involve at least two stages, corresponding to dis-
placement estimation followed by strain estimation. Both stages incur some reduction in resolving
power, because deformation fields cannot be sampled with reasonable accuracy at the level of
individual samples in the RF ultrasound signals. The dimensions of the analysis units for each
processing stage are important parameters. We refer to the analysis units as “windows” in the
case of displacement and “kernels” in the case of strain estimation. Parameter selection fixes the
tradeoff between resolution and estimation precision. In order to assess the accuracy of strain
imaging quantitatively, we invoke the concept of estimation signal-to-noise ratio (SNRe). This is
defined as the mean (or actual) strain, s, divided by the root mean squared estimation error, σŝ.

SNRe =
s

σŝ

(1)

SNRe can always be improved by sacrificing resolving power in the strain images. We first consider
the effect of parameter selection on resolution. We also consider how strain estimation parameter
values affect the translation from displacement estimation errors into strain estimation error. Then
we examine the noise source in displacement estimation, and we investigate the role of displacement
estimation parameters in noise reduction. These concepts are combined practically in Section 2.5,
forming the basis for the DRS procedure.

2.1 Resolution

The most obvious restriction on strain image resolution comes from the spacing between neigh-
bouring estimation locations, but it is less important than the filtering effects of displacement
estimation windows and strain estimation kernels. The only disadvantage of dense estimation
spacing is increased computation time, while it improves both resolution and SNRe. We use small
spacing of estimation locations here, in order to investigate the significance of the other parameter
choices.

The effects on strain estimates of changes to window and kernel size are similar (though not
identical) to denoising by applying a moving average (MA) filter1. The overall error decreases as
an MA filter gets larger, because uncorrelated error components of measurements spanned by the
filter average to zero. However, the output from large MA filters has coarse resolution.

1The analogy becomes inaccurate for window size if within-window displacements are large enough to cause

phase-wrapping, but this is not usually the case. This issue receives further attention in Section 2.4.
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Figure 1: Effect of a MA filter on the contrast between low and high strain bands. (a) Our interest
is the axial resolving limit. We determine the axial length scale at which features are just resolved,
with a strain field that is uniform in the lateral direction. (b) Displacement and strain fields against
distance. (c) A MA filter (length=Lr) easily resolves the different strain regions.(d) Resolution is
still achieved with length=1.5Lr. (e) The contrast is zero when the filter length is 2Lr. (f) Filter
lengths > 2Lr register negative contrast.

There is no universal definition of resolution that can be applied sensibly to all imaging tasks.
We define the resolving limit as the feature scale, Lr, at which there is no longer any positive
contrast between two or more low strain bands and regions of background material sandwiched
between them (see Figure 1). The resolving limit is reached when strain estimates after the filter
exhibit zero contrast between the low and high strain bands. For example, the resolving limit of a
MA filter is half the filter length.

We will assume that the resolving limit is proportional similarly to window and kernel di-
mensions, although the constant of proportionality may not be the same in both cases. This is
investigated empirically in Section 3.3. The greatest estimation accuracy at a given resolution will
usually be achieved by windows and kernels of the maximum allowable size.

2.2 Strain estimation error

Strain estimation entails taking the derivative of displacement estimates. This amplifies any dis-
placement estimation noise, particularly if the displacement estimates are closely spaced. Figure
2 illustrates this point for strain estimation in 1D. To be able to predict strain estimation error,
we need to understand how displacement estimation error filters through.

There are various techniques available for gradient estimation to obtain strains from the dis-
placement estimates. These include low-pass filtering and wavelet denoising. We will consider least
squares strain estimation, which is more commonly applied. Analysis of the alternative approaches
would involve similar considerations.

The simplest form of unweighted least squares gradient estimator is expressed in Equation 2. We
follow a convention denoting lateral distance by x and axial distance by y. The strain estimate,
ŝm, is produced using data from a set of displacement estimation windows, {Ωn}, comprising

displacement estimates {d̂n} at locations {x̌n, y̌n} (measured relative to the centre of kernel Km).
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Figure 2: 1D illustration of strain estimation. Errors in strain estimates depend on the resolution of
the gradient estimator, but the original source of error is in the location and value of displacement
estimates.

Note that although {y̌n} are axial location estimates, we mostly use 2D kernels, where displacement
estimates are taken from multiple neighbouring columns. In order to ensure that the strain estimate
has greatest validity at the centre of the kernel, the set of displacement estimate locations must
be symmetric about the kernel centre.

ŝm =

∑

Ωn∈Km
y̌nd̂n

∑

Ωn∈Km
y̌2

n

(2)

The scale of strain estimation errors is predicted by evaluating the variance of this estimator.
In general there are errors in both displacement and location, all of which must be considered
in the strain estimation variance. We will assume that errors in {y̌n} are negligible, however,
because they are reduced substantially by our Amplitude Modulation Correction technique [7].

This leaves errors only in {d̂n}, resulting in the following strain estimation variance if covariances
are negligible.

σ2
ŝm

=

∑

Ωi∈Km
y̌2

i σ2
d̂i

(
∑

Ωi∈Km
y̌2

i

)2 (3)

It is also possible that the displacement estimator introduces significant covariances between nearby
estimates, in which case a more complicated expression must be evaluated.

σ2
ŝm

=

∑

Ωi∈Km

∑

Ωj∈Km
y̌iy̌jσd̂id̂j

(
∑

Ωi∈Km
y̌2

i

)2 (4)

Both approaches are tested in Section 3.4.

2.3 Displacement estimation error

2.3.1 Signal model

In order to estimate the errors and covariances for Equations 3 and 4, we need a suitable signal
model with which to analyse the displacement estimator. It is helpful to separate signal components
into two categories, which we call the common signal and the noise signal. This was introduced
in our recent work [8]. (A) The common signal comprises those components that are transformed
by an axial displacement field identical to the axial component of mechanical displacement in the
underlying tissue. (B) The noise signal consists of components that are uncorrelated with the
common signal; it arises because of changes to speckle interference patterns brought about by
changed scatterer spacing, decorrelation due to off-axis motion and electrical noise.
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Our signal model is expressed in Equation 5. Subscripts 1 and 2 denote pre- and post-
deformation signals. We use a complex signal representation because we later employ a phase-
based displacement estimator. a1 and a2 are the pre- and post-deformation analytic signals, which
have envelopes s1 and s2 and phases φs1 and φs2 respectively. The axial displacement field in
the tissue is d(x, y). Common signal f(x, y)ejφ(x,y) is warped precisely in accordance with the
displacement field, so it is reproduced identically in Equations 5b and 5d, whereas the respective
noise components, n1(x, y)ejφn1(x,y) and n2(x, y)ejφn2(x,y), are uncorrelated.

a1(x, y) = s1(x, y)ejφs1(x,y) (5a)

= common signal + noise signal

= f(x, y)ejφ(x,y) + n1(x, y)ejφn1(x,y) (5b)

a2

(

x, y + d(x, y)
)

= s2

(

x, y + d(x, y)
)

ejφs2

(

x,y+d(x,y)
)

(5c)

= f(x, y)ejφ(x,y) + n2(x, y)ejφn2(x,y) (5d)

2.3.2 Displacement estimator

It is common in the literature to evaluate lower bounds, often Cramer-Rao lower bounds, on the
displacement estimation error that could be achieved by maximum likelihood estimators. Instead
in this work we look at the mechanism of a particular displacement estimator, to form an expression
that can be used for predicting the actual error depending on properties of the recorded signals.
The estimator that we analyse is Weighted Phase Separation [8]. This is a form of iterative
displacement estimation where a scaled weighted sum of phase differences is taken to be the next
displacement estimate. The formula for the kth iteration at the nth window, Ωn, is as follows,
where ω0 is the probe centre frequency, or an estimate thereof.

d̃k+1 = d̃k +

∑

{x,y}∈Ωn
W (x, y, d̃k)

(

φs1(x, y) − φs2(x, y + d̃k)
)

ω0

∑

{x,y}∈Ωn
W (x, y, d̃k)

(6a)

where W (x, y, d̃k) = WA(x, y, d̃k)WB(x, y, d̃k) (6b)

WA(x, y, d̃k) = s1(x, y)s2(x, y + d̃k) (6c)

WB(x, y, d̃k) =
π − |φs1(x, y) − φs2(x, y + d̃k)|

π
(6d)

The example weighting strategy of Equations 6c and 6d is employed throughout the investigation
at hand. Iterations converge on displacement estimate d̂n. Additionally, Amplitude Modulation
Correction [7] is applied in order to minimise location errors, as already discussed. This entails
recording the centroid of the weightings from Equation 6, which corresponds to the location2 at
which the displacement estimate is most valid in the presence of intra-window strain. Both lateral
and axial co-ordinates must be estimated when the windows are 2D (i.e., for windows that span
multiple A-lines).

x̂n =

∑

{x,y}∈Ωn
W (x, y, d̂n)x

∑

{x,y}∈Ωn
W (x, y, d̂n)

(7a)

ŷn =

∑

{x,y}∈Ωn
W (x, y, d̂n)y

∑

{x,y}∈Ωn
W (x, y, d̂n)

(7b)

It was previously observed that regular window positions result in an irregular distribution of
estimation locations [7], which is inconvenient for subsequent processing and can introduce textural
variation that correlates with amplitude features in B-mode images [7]. However, in the present

2These location estimates are recorded in image co-ordinates. For use of the least squares strain estimation

formula as in Equation 2 the kernel centroid must be subtracted to obtain {x̌n, y̌n} in kernel co-ordinates.
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implementation this is avoided by an algorithm modification that positions windows irregularly in
such a way as to return the estimation locations to a regular grid. With 1D windows, for example,
this entails accumulating the location error while samples are added to the window, and taking
each next sample from the end that opposes the current location error. The algorithm modification
for 2D windows of a fixed aspect ratio is less simple, but it can be achieved at little computational
cost by extending the same principle.

2.3.3 Error prediction

To predict the size of displacement estimation errors, we begin by considering point-wise dis-
placement estimates (PWDEs). These are displacement estimates produced at a single sample of
approximately aligned data by differencing pre- and post-deformation phase and scaling by the
centre frequency. It was shown theoretically in [8] that PWDE variance is proportional to the
square of the envelope of the noise signal divided by the square of the envelope of the common
signal, provided that this value is large, or approximately proportional provided that the value is
greater than unity. For this reason we introduce a modified signal-to-noise ratio, SNRs.

SNRs(x, y) =
f(x, y)2

1
2

(

n1(x, y)2 + n2(x, y)2
) (8)

Furthermore, if a set of uncorrelated PWDEs is averaged, constituting a window, the displacement
estimation variance scales inversely with the number of samples.

In practice, PWDEs are not all independent, so displacement estimation variance is greater by a
factor proportional to the autocorrelation length of the errors. The average degree of correlatedness
between PWDEs depends on window length. However, once windows are longer than the error
autocorrelation distance, the addition of each new sample adds an almost equal amount to the
total information. This means that displacement estimation precision usually becomes a near-
linear function of window length, as for example in Figure 3a. PWDEs in neighbouring A-lines
are only weakly correlated, so estimation precision versus window width is usually more linear (see
Figure 3b). It is therefore reasonable to predict displacement estimation precision with the product
of SNRs, window size and a constant of proportionality, K. Window dimensions are denoted by
Lx and Ly respectively in the lateral and axial directions.

σ2
d̂
' (KLxLySNRs)

−1
(9)

This requires an estimate of SNRs. If the underlying tissue deformation, d(x, y), were known
exactly, then SNRs could be estimated with high accuracy as a function of the real part of the arith-
metic correlation coefficient of correctly warped pre- and post-deformation analytic signals. The
real part of the arithmetic correlation coefficient of windows aligned using displacement estimates
is expressed in Equation 10.

ρ(Ωn, d̂n) =

∑

{x,y}∈Ωn
<{a∗

1(x, y)a2(x, y + d̂n)}
1
2

∑

{x,y}∈Ωn
|a1(x, y)|2 + |a2(x, y + d̂n)|2

(10)

For perfectly aligned data, the terms of the product of pre- and post-deformation samples are listed
in Equation 11.

a∗
1(x, y)a2

(

x, y + d(x, y)
)

= f(x, y)2

+f(x, y)
(

n1(x, y)ej(φ(x,y)−φn1(x,y)) + n2(x, y)ej((φn2(x,y)−φ(x,y))
)

+n1(x, y)n2(x, y)ej((φn2(x,y)−φn1(x,y)) (11)

All of the product terms are mutually uncorrelated, except for the square of the common envelope.
Similarly, if the denominator of Equation 10 is expanded for perfectly aligned data, the only
correlated terms are the sum of the squared common envelope and half the sum of squared noise
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Figure 3: Displacement estimation precision versus window dimensions for simulation data with
a mean SNR of 20 dB subject to a uniform compression of 0.01%. The horizontal scale is in RF
samples of data with a 6.0 MHz centre frequency sampled at 66.7 MHz, so 500 samples correspond
to 5.75 mm. 12 A-lines correspond to 3.75 mm. (a) 1D windows of lengths in the range 10–
500 RF samples. The dotted line is included so that the curved section can be identified easily.
(b) Analysis with windows of length 120 samples and widths in the range 1–12 A-lines.

envelopes. If they are integrated over a reasonable number of samples, the uncorrelated terms tend
to zero, and a perfect estimate of SNRs is produced by applying the following transformation.

ˆSNRs(Ωn, d̂n) =
ρ(Ωn, d̂n)

1 − ρ(Ωn, d̂n)
(12)

The problem in practice is that d(x, y) is unknown, although SNRs can be estimated roughly

by assuming that displacement estimate d̂n is correct at all points in window Ωn. Equation 12 still
produces a useful estimate in this case.

Two types of alignment error limit the accuracy of ˆSNRs. (A) Displacement estimation error

(error in d̂n) leads to misalignment throughout the window, which can generally result in either
over- or under-estimation of SNRs. (B) Intra-window misalignment caused by intra-window strain
is more problematic. It introduces severe bias into ˆSNRs, because it always produces under-
estimates. Figure 4 shows examples at different strain levels. Displacement estimation error is the
main source of error at 0.01% strain, so values of ˆSNRs from longer windows are slightly more
accurate. The situation is reversed at higher strain, because intra-window misalignment becomes
the main source of error. Figure 4b shows the effect this has on ˆSNRs at different window lengths.
The disadvantage of long windows is that the range of ˆSNRs values is much narrower than the true
range. Estimates from shorter windows are more consistent across different strains. The estimates
from longer windows could be improved by signal warping, but shorter windows are preferable if
this is not pursued.

This is still not sufficient to predict the strain estimation error if the formula in Equation 4 is
required. However, if the above analysis is used to estimate the size of mean squared displacement
errors, the normalised covariance (covariance divided by mean squared error) can also be estimated
reasonably, so all of the necessary information is available. Normalised covariance is estimated
where necessary as the area overlap fraction between the windows. This is scaled to the full
covariance by multiplying with the expected mean squared error. Examples in Figure 5 motivate
this strategy.

7



0 100 200 300 400 500 600 700 800 900 1000
10

15

20

25

30

35

40
0.01% strain

window length (samples)

ˆ
S

N
R
s

(d
B

)

SNR = 40 dB
30 dB
20 dB
15 dB

(a)

0 100 200 300 400 500 600 700 800 900 1000
4

6

8

10

12

14

16

18

20

22

window length (samples)

ˆ
S

N
R
s

(d
B

)

0.5% strain

SNR = 40 dB
30 dB
20 dB
15 dB

(b)

Figure 4: SNRs estimates at different 1D window lengths for simulation data similar to that used
in the previous figure, with various levels of electrical noise. The vertical axis is image-wide ˆSNRs,
which has been evaluated by averaging the arithmetic correlation coefficients across all windows
and substituting the result into Equation 12. Data are plotted for two levels of uniform strain.
(a) 0.01%. (b) 0.5%.

2.4 Importance of the strain level

Displacement estimation error is sometimes also caused by phase-wrapping at the edges of long
windows. This is mainly an issue at high strains. As window length increases, SNRe performance
flattens off when point-wise phase-wrapping errors become more common. Beyond a certain win-
dow length phase-wrapping errors occur with every new sample, so a severe performance reduction
is observed. The length at which phase-wrapping occurs is inversely proportional to the strain.
This effect is illustrated by the SNRe contour plots in Figure 6. At low strains phase-wrapping
errors never occur, so SNRe goes up with every increase in both window length and kernel length.
At higher strains, as in Figure 6b, SNRe no longer rises so quickly beyond a certain window length,
and it eventually drops. This is why the second contour plot has a different shape. The relationship
between window length and estimation precision is also less linear when there is phase-wrapping,
so error prediction as outlined so far would be inaccurate. As a rule-of-thumb, the window length
should not be selected greater than [5.0/strain magnitude] samples to stay in the linear region,
considering a 66.7 MHz sampling rate with a 6.0 MHz centre frequency. For example, if there
is a minimum window length, say 50 samples, then the maximum strain that can reasonably be
measured is 10%.

The strain level is also important because it determines the scale of significance of strain esti-
mation errors. The analysis so far has considered predicting the absolute size of strain estimation
errors, but performance in terms of SNRe also depends on the size of the strain signal (see Equation
1). In a homogeneous image the noise level is obviously measured against the mean strain, but the
appropriate benchmark for an inhomogeneous image is less obvious. Large regions of mostly low
strain may be swamped by noise if the significance of errors is held to depend on the image-wide
mean strain. However, if local strain sets the appropriate scale, then zero strain regions (which do
arise in practice) always register zero SNRe. We can alternatively pursue a compromise, mainly us-
ing local strains, but saturating if they deviate wildly from the mean. We adopt this final approach
for DRS, but all three options are compared qualitatively in Section 3.6.
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Figure 5: Examples of normalised covariance of displacement estimation between nearby windows
from analysis of simulation data at 20 dB with a uniform compression of 0.01%. (a) Normalised
covariance against axial separation. Displacement estimates separated in the axial direction become
uncorrelated less quickly if they are from long windows. (b) Reciprocal of axial decorrelation rate
against window length. The dotted line aids visual assessment of the divergence from linearity.
(c) Normalised covariance against lateral separation. Displacement estimates separated in the
lateral direction remain correlated longer when the windows are wide. (d) Reciprocal of lateral
decorrelation rate against window width. Both axially and laterally, the separation of windows at
which the covariance tends to zero is approximately equal to the window dimension.
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Figure 6: Effect of phase wrapping on displacement and strain estimation performance with sim-
ulation data at an SNR of 20 dB in the presence of electrical noise, with further decorrelation
caused by a 0.0625mm elevational translation of the scatterer field. For the horizontal axis, kernel
length in samples comes from the length in windows multiplied by the spacing between windows.
(a) SNRe contours against 1D parameter settings at 0.5% strain. (b) SNRe contours at 2.0% strain.

2.5 Dynamic Resolution Selection procedure

DRS brings together the strands of analysis above, and applies them so as to improve the value of
real strain images. The tasks in DRS strain imaging divide essentially into three stages. These are
illustrated with a flow chart in Figure 7. The aim is to set the imaging parameters automatically
so that a threshold performance, min ˆSNRe (set by the user), is always exceeded.

Survey. An initial survey produces displacement and correlation data using Weighted Phase
Separation with short windows throughout the image. The search algorithm is the standard
combination of cross-seeding, multi-pass analysis and continuity checking, described in [8].
Short windows are used for two reasons. Firstly, the windows must be sufficiently short to
operate without severe phase-wrapping throughout the stated dynamic range, so we use a
length of 50, implying that strains should not exceed 10%. Short windows are also preferred
because the resulting ˆSNRs values show relatively little variation in bias across different
strains. 1D survey windows could be used for fast processing, but wide 2D windows (say 10 A-
lines) may offer greater robustness. Both widths are tested in Section 3.4. The displacements
are converted to strain estimates, ŝ, using a very large least squares kernel of 51 windows
(510 samples) by 17 A-lines. Additionally, the arithmetic correlation coefficients are smoothed
with a spatial Gaussian filter, and the smoothed values are transformed into signal-to-noise
estimates, ˆSNRs. The subsequent Analysis requires ˆSNRs and ŝ values throughout the image,
so Survey data are extended to the edges by nearest-neighbour extrapolation.

Analysis. At each estimation location a search is undertaken to find the window and kernel
dimensions of finest resolution that will produce performance exceeding min ˆSNRe. Trial
values for the window and kernel dimensions can be combined with ˆSNRs and ŝ values from
the survey to obtain performance estimates, ˆSNRe. Steps required include the prediction of
displacement estimation error using ˆSNRs and window size (Equation 9), the estimation of
normalised covariance between windows in a least squares kernel by evaluating their overlap
fractions, and the substitution of both these sets of data into the formula for strain estimation
error. This can be evaluated with Equation 3 if covariances have little impact, or (more
rigorously) with Equation 4 when covariances are significant. This is converted to a prediction
for SNRe by substituting the strain estimation error along with an appropriate indicator of
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Figure 7: Flow chart showing the stages in DRS strain imaging.
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(a) (b) (c)

Figure 8: Artefact caused by large window and kernel changes over a short distance. (a) Region
from DRS strain image at boundary between soft background and stiff inclusion phantom. Bound-
ary appears twice because of excessive window and kernel overlap. (b) Window lengths (white=500
samples). (c) Window lengths have been clipped, thus eliminating the double-boundary artefact.

strain level into Equation 1. The strain level is usually taken to be the local estimate, ŝ, but
extreme values saturate at half and twice the mean strain.

Each time that ˆSNRe is calculated, the search terminates if it exceeds min ˆSNRe. Otherwise,
the window and kernel dimensions are increased for a new set of trial parameters. The kernel
length is increased in increments of two windows to maintain symmetry about a particular
estimation location. The kernel width also increases according to the aspect value. Window
length and width are increased as well, in an appropriate ratio which is determined in Section
3.3. However, the window length is also subject to a limit of [5.0/local strain] in order to
avoid phase-wrapping, while window width continues to grow after the length has saturated.

Eventually adequate window and kernel dimensions are found to exceed min ˆSNRe at every
estimation location. One final analysis step is required before proceeding with Refinement.
The parameter selections are parsed once to eliminate an artefact that arises if parameter
values change wildly over a small distance. If any window or kernel extends further in any
direction than its neighbour on that side, this may result in the appearance of a higher level of
information than is actually present. For example, a monotonic strain gradient could appear
non-monotonic. This is eliminated trivially by clipping window and kernel lengths, so they
never extend beyond 100% overlap with a neighbour. Figure 8 shows an example.

Refinement. Displacement and strain estimation is repeated using the DRS parameter values.
Rather than the iteration seeding algorithm of [8], in this instance a single iterative search is
employed at each window. Each initial displacement for a first Weighted Phase Separation
iteration is taken from the Survey window with the highest arithmetic correlation coefficient
in the same row, within five columns of the active estimation location.

3 Experimental validation

Experiments were undertaken to determine values for unknown constants required in DRS, and to
assess the behaviour of the resulting system. All results were produced with estimation locations
on a regular grid, with lateral spacing equal to the spacing between A-lines, and axial spacing equal
to 10 samples (slightly less than one cycle at the centre frequency). The windows and kernels were
2D, with a fixed aspect ratio such that the length in samples was 30 times greater than the width
in A-lines.

3.1 Image formats

Various types of images are presented: displacement estimates, strain estimates, DRS window
lengths and local SNRe. The images are presented in a consistent format. Data are obtained at
every estimation location before being displayed, and the spacing is sufficiently dense that linear
interpolation produces an acceptably smooth display.

12



A main motivation for this investigation is to examine performance variation at different resolu-
tions, so a block pattern covers data at image edges, where estimates could not be evaluated using
the stated parameter settings — i.e., where the data were invalid at the stated resolution. Dis-
placement and window length images are blocked-out at estimation locations where the windows
did not fit inside the recorded data frame. Blocked-out borders on the strain images are roughly
twice as thick, since strain data is displayed only from kernels that were filled entirely with valid
windows. SNRe images have the same borders as the corresponding strain images. For practical
scanning the borders would be unnecessary, although it must be accepted that SNRe/resolution
cannot be controlled arbitrarily at edges.

The images we present are normalised consistently. Values that determine the image scales are
indicated in the figure captions. All valid displacement data are first processed in a single least
squares filter to estimate the mean strain. This sets the mid-grey level in the strain images, with
saturation at zero (black) and twice the mean strain (white). Similarly, displacement images have
a mid-grey level at the mean strain multiplied by half the image height, with saturation at zero
(black) and twice this value (white). SNRe images have mid-grey set to the image-wide SNRe,
with saturation again at zero and twice this value. Finally, window length images are scaled such
that the maximum window length is displayed white, mid-grey is half that value and black would
be a window of zero length.

3.2 Simulations

Simulations were performed using Field II [3] to model the Dynamic Imaging Diasus ultrasound
machine3 (cf., Section 3.6). Frames were simulated before and after a compression of the scattering
field in the axial direction. Each simulation had 128 A-lines spanning 40 mm, scanning to a depth
of 40 mm with a single focus at 20 mm. (In fact, Field II is inaccurate in the near-field, so for
reasonable accuracy data were recorded at 5–45 mm depth with a 25 mm focus.) Data were
converted to the 16-bit Stradwin ultrasound format4 with the addition of uniform white noise,
reducing the mean SNR to 20 dB where not otherwise stated. The centre frequency was 6.0 MHz,
with a sampling rate of 66.7 MHz. Further details are in Table 1.

3.3 Resolution

We tested the effects of window and kernel size on resolution. Strain images were produced
using a range of 1D windows (30–1000 samples) and 1D kernels (10–1000 samples), recording the
contrast (difference of mean strains) between the low and high strain bands at the vertical centre
of Simulation A. The thresholds at which the contrast goes from positive to negative indicate filter
combinations that are at the resolving limit. Thresholds from four different feature scales are
combined in Figure 9f, to form a contour map of resolving limit.

The contours are mostly rectangular, indicating that the resolution is limited essentially by
either window or kernel length, whichever has the greater smoothing effect. It follows that window
and kernel lengths should be set in a fixed ratio to achieve optimal estimation performance for any
particular resolving limit, since increasing the window size or kernel size almost invariably reduces
estimation noise (cf., Figure 6). The extremes on the resolution contours are plotted in Figure 9f.
These data are close to relationships of direct proportion between filter length and resolving limit.
Least squares estimates of the constants of proportionality indicates that the kernel length should
be 1.20 times greater than the window length for any particular resolution. This ratio is used for
parameter selection in the Analysis stage of DRS, as described in Section 2.5.

3.4 Calibration

An implementation of DRS requires a scale factor,
√

K, which appeared in the formula for pre-
dicting displacement error (Equation 9). This section presents calibration results. Simulation data

3http://www.dynamicimaging.co.uk
4http://mi.eng.cam.ac.uk/~rwp/stradwin/
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Figure 9: Strain estimation resolution assessed by analysis of Simulation A. (a–e) Example strain
images (image mean strain 0.85%) of a 2.5 mm feature scale viewed with various parameter settings.
Contrast is indicated as a fraction of the ideal contrast, ranging from high contrast in the first image
to failure to resolve in the final image. The window/kernel lengths were 75/90, 175/210, 275/330,
375/450 and 525/630 respectively, using 2D windows and kernels. 500 samples corresponds to a
physical length of 5.75 mm. (f–g) Quantitative results with 1D windows and kernels. (f) Contour
plot of resolving limit over parameter setting space. (g) Maximum parameter values from the
contours against resolving limit feature scale.
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Purpose Reference(s) Scattering field Other details
resolution Simulation A 2.0 × 105 scatterers, background strain 1.0%,

experiment equal scattering strengths, zero strain bands

50×50×6 mm volume either side of focus,

(lateral×axial×elevational), various feature scales,

uniform spatial distribution (cf., Figure 1)

effect of electrical Simulation B-20dB as per Simulation A range of levels of

and uncoloured noise Simulation B-15dB white noise,

etc. mean SNR is appended

to simulation reference

effect of lateral Simulation C-0.0625mm 3.0 × 105 scatterers range of lateral

motion decorrelation Simulation C-0.125mm uniform dist. scat. strengths, motions,

etc. 51x50x8 mm volume, motion size appended

uniform spatial distribution to simulation reference

effect of elevational Simulation D-0.0625mm as per Simulation C elev. motion appended

motion decorrelation Simulation D-0.125mm to simulation reference

performance with Simulation E 1.0 × 106 scatterers mean SNR 20dB,

non-uniform noise equal scattering strengths, but SNR varies

50×50×6 mm volume throughout the image,

spatial distribution is non- uniform strain 1.0%

uniform, gets more dense

left-to-right

Table 1: Details of simulations.

were processed with a range of uniform window and kernel settings (2D kernels in the range 70–610
samples; 2D windows 1.20 times shorter). These were performed instead of the Refinement stage in
DRS, preceded by the Survey (windows of length 50 samples, either 1 or 10 A-lines wide). Rather
than adjusting the window and kernel settings, Analysis produced a squared error prediction for
each strain estimate. Strain divided by the root mean squared error prediction is image-wide

ˆSNRe (before scaling by
√

K), which can be compared to the measured value, SNRe. A suitable
value for

√
K was found by comparing the predictions and measurements across a range of different

strains, window/kernel dimensions and noise conditions.
By way of example, Figure 10a shows SNRe against ˆSNRe for Simulation B-20dB at 0.5%

strain. This is far from the expected straight line, because a baseline error is present in the strain
estimates. This arises because the apparent depth in ultrasound images (time of receiving echo)
does not vary perfectly linearly with scatterer depth (see Figure 10b). This occurs in real scans too,
which are subject to further baseline error caused by fluctuations in the speed of sound. Baseline
error sets a ceiling of SNRe' 50 in the simulation results. So as to avoid degrading the estimate
of

√
K, we calibrate based on measured SNRe values not greater than 30, from which the baseline

error is removed following Equation 13, assuming a baseline SNRe of 50.

corrected SNRe =
(

measured SNR−2
e − baseline SNR−2

e

)− 1

2 (13)

In Figure 10c, corrected SNRe measurements are plotted against SNRe predictions for a partic-
ular scatterer field, subject to various strains. Covariances are ignored, so the calculation follows
Equation 3. This is shown to be inapplicable, since the relation between predicted and measured
SNRe is neither linear within any single curve, nor do the curves at different strains come from a
single function. Covariance estimates based on overlap have been used with Equation 4 to compute
better SNRe predictions plotted in Figure 10d. This shows a much higher degree of linearity, with
very similar curves at the different strain levels. The least squares gradient (estimate of

√
K) is

0.186, with a correlation coefficient of 0.999 between the predictions and the measurements.
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The type of noise may affect the value of
√

K, so calibration data from different types of sim-
ulations are shown in Figure 10e–f. All of these combine results across strains of 0.01%, 0.5%,
1.0% and 5.0%. The white noise in Simulation B can be thought of as the extreme opposite noise
category compared to motion decorrelation in Simulations C and D. In the motion simulations
SNRs drops primarily because of the introduction of a noise ultrasound signal of similar statis-
tical properties to the original signal. Despite this difference, within each simulation the linear
relationship between predicted and measured SNRe is good, as evidenced by the high correlation
coefficients. The difference between the

√
K values of the different noise categories is discussed

in Section 4. The variation means SNRe cannot be controlled precisely by the DRS procedure
outlined here, but since

√
K varies by much less than an order of magnitude, this approach may

nonetheless be useful. The mean calibration value is
√

K = 0.146 for the 50×1 Survey or 0.131 for
the 50×10 Survey. (The remainder of the experimental results are based on 50×10 Surveys.)

3.5 Variable noise experiment

Simulation E provides data with a variable noise level. Lateral variation in SNR is indicated by
the mean SNR throughout different A-lines, shown in Figure 11a. Within each A-line, the SNR
is highest at the focus, so the Survey produces a range of correlation coefficients as illustrated in
Figure 11b. A normal strain image is noisier in the low correlation regions (Figure 11c), but the
variation is reduced by applying DRS (Figure 11d).

DRS should maintain fixed SNRe throughout the image, so for uniform strain fields we introduce
a performance measure, denoted V, recording spatial variation in SNRe. This is evaluated by
Gaussian filtering5 of strain squared errors to obtain local estimates of SNRe. These are displayed
in image form in Figure 11e–f. V is calculated by dividing the overall SNRe by the standard
deviation of local SNRe estimates. V is improved substantially by applying DRS instead of fixed
parameters.

3.6 In vitro and in vivo scanning

Data were recorded during scans using the Dynamic Imaging Diasus ultrasound machine with a 5–
10 MHz probe (centre frequency of 6.0 MHz) from which RF data were sampled at 66.7 MHz using
a Gage6 CompuScope 14200 analogue-to-digital converter attached to a PC running the Stradwin
freehand 3D ultrasound software. Strain images were produced by analysis of consecutive frames
of acquired data, and DRS was applied in off-line processing.

One subject is a homogeneous phantom. This is an agar cylinder (height 50mm, diameter
69mm) with 0.6wt% Al2O3 powder providing suitable scattering. A footprint extender was at-
tached to the probe to apply a uniform compression. This is an interesting application for DRS,
especially at high strains with a 1D estimator, since some regions decorrelate because of lateral
expansion. A compression of 3.6% has been applied in Figure 12. Strain images in Figures 12c1–c2
demonstate more uniform performance when DRS is applied. Figure 12b shows that larger win-
dows and kernels are required at the sides, where lateral Poisson displacement is greatest. The
V values vary by only a small amount, which is perhaps because the baseline error in assuming
uniform strain is quite high in this case.

To apply DRS to in vitro frames with varied SNRs, the data in Figure 13 is from an elevational
sweep performed for freehand 3D strain imaging, taken from [6]. The elevational movement is
necessary to sweep a volume, but it also introduces noise, whilst the freehand scanning protocol
means that the strain signal is sometimes very small. Figure 13 compares DRS (with suitable
min ˆSNRe) against two fixed-parameter settings (one coarser than the other). DRS is shown to
combine the advantages of both fixed settings, not smoothing unnecessarily when the data quality
is good, but going to a coarse resolution in regions of low SNRs to avoid presenting meaningless
data.

5The Gaussian filter has the same dimensions as the filter for correlation that was mentioned in Section 2.5.
6http://www.gage-applied.com
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Figure 10: DRS calibration. (a) Measured SNRe against SNRe predictions across a wide range
of parameter settings, with no correction for baseline error. (b) Temporal shift rate of the PSF
centroid against scatterer depth. This nonlinearity is a source of baseline error. (c–f) The effect of
baseline error has been removed prior to evaluating the remaining results. (c) Calibration curves for
Simulation B-20dB, if overlap covariances are ignored (Equation 3). The fit to any linear relation
is poor. (d) Calibration curves for Simulation B-20dB with covariances considered (Equation 4).
The correlation coefficient between predictions and measurements is 0.999, with a scale factor,√

K = 0.186. (e) Calibration results with variances considered from various simulations for a 50×1
survey. (f) Calibration results for a 50×10 survey.
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Figure 11: Variable noise simulation (1.0% strain). (a) Mean SNR values by A-line. (b) Smoothed
arithmetic correlation coefficients from the Survey (black=0.7, white=1.0). (c) Strain image with
fixed parameters, image-wide SNRe=7.70 and V=2.08. (d) Strain image with DRS, SNRe=7.51
and V=4.63. (e) Window length (max=91), strain and SNRe images for fixed parameter strain
imaging, image-wide SNRe=11.2 and V=2.15. (f) Window length (max=175), strain and SNRe for
DRS, SNRe=12.87 and V=5.24. (g) V against SNRe both for DRS and for fixed parameter values.
Higher V indicates that DRS reduces the variability of SNRe.
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(a) (c1) SNRe=5.3 (d1) V=2.0

(b) (c2) SNRe=5.9 (d2) V=2.9

Figure 12: Homogeneous phantom subject to 3.6% compression. (a) Survey strains. (b) DRS
window lengths. (c–d) Strain and local SNRe for 1: fixed parameters and 2: DRS parameters.

Further frames are presented from a freehand scan of human biceps. The images in Figure
14 illustrate the strain benchmark issue, which was introduced in Section 2.4. The extrapolated
Survey strains are shown in Figure 14a. Figure 14b shows the DRS strain images when the

ˆSNRe calculation is based on the mean strain. Basing ˆSNRe on the local strain, as in Figure 14c,
gives a smoother image in the low strain region, but the window settings cover a very wide range.
Figure 14d shows the image using the normal compromise strategy (local strains with saturation).

Finally, an in vivo image is presented in Figure 15, processed at a range of different min ˆSNRe lev-
els. Qualitative changes in smoothness and variability are obvious, although clinical experience
may be required to determine appropriate settings for specific tasks.

4 Discussion

The calculation of ˆSNRe, developed in Section 2, included numerous approximations, particularly
the assumption of overlap fraction corresponding to the normalised covariance between neighbour-
ing windows. However, the high degree of linearity in Figure 10d and the close fit to the linear
model indicated by correlation values in Figure 10e–f serves as a partial validation of this approach.

The results also highlight a limitation: the calibration factors vary by as much as a factor of
two, and they separate into two groups, based on whether the decorrelation was primarily due
to white noise or to scatterer motion. In fact, this is to be expected. Equation 9 relies on the
error autocorrelation distance having a constant value (cf., justification of Equation 9 in Section
2.3.3), which is incorporated in

√
K. Errors with long-distance correlations cause greater loss of

performance than short-distance errors with the same SNRs. A more accurate prediction could be
made if the error autocorrelation distance could be estimated. Otherwise, the approach followed
here was to choose a suitable, typical value for

√
K, which offers useful if not precise control over

SNRe.
The variable noise experiment showed that, in addition to choosing sensible parameters for
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window/kernel length=142/170 min ˆSNRe=5.0 208/250

-0.21%

-0.79%

-0.29%

(a) (b) (c)

0.24%

Figure 13: Illustration of different strategies for consecutive frames from freehand 3D scanning
of an olive-gelatin phantom. Image mean strains are noted on the right, where negative values
indicate relaxation. (a) Fixed parameter settings for relatively fine resolution. (b) DRS with
min ˆSNRe=5.0. (c) Fixed parameter settings for coarser resolution.
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(a) survey strain

(b) use: mean strain ⇒ window lengths of 75–158 samples

(c) use: local strain ⇒ 75–500 samples

(d) use: local strain with saturation ⇒ 75–208 samples

Figure 14: Demonstration of strain selection for the ˆSNRe calculation, using scan of human biceps
in vivo (image mean strain of -0.65%, min ˆSNRe=6.0). (a) Survey strains. (b) Window length and
strain images when ˆSNRe is based on the mean strain across the image. Low strain regions may
be swamped by noise. (c) Images basing ˆSNRe on the local survey strain. Low strain regions are
analysed at extremely low resolution. (d) Compromise where ˆSNRe is based on local strain with
saturation.
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min ˆSNRe=2.0 4.0 8.0 16.0

Figure 15: Range of choices for min ˆSNRe in another frame from the scan of human biceps (image
mean strain of -0.64%).

any image, DRS is sensitive to within-image variation. This is evident from comparison of the
SNRe images in Figure 11e-f. It is also supported by the uniformity data in Figure 11g. At
low SNRe DRS is similar to fixed-parameter analysis, because it simply opts for the minimum
window and kernel dimensions if min ˆSNRe is already exceeded throughout the image. At moderate
SNRe levels, however, window and kernel dimensions are closely controlled so that SNRe is roughly
uniform. This pattern is illustrated in the plot of V against SNRe. V becomes a less reliable measure
at high SNRe, however, since baseline errors eventually distort the results. Overall, this is strong
evidence that DRS can lead to greater uniformity in SNRe by means of varying the resolution.

However, it may not be intuitively obvious that uniform SNRe is a sensible goal. As compared to
the DRS image (Figure 11f), while the fixed parameter image (Figure 11e) is noisier in the corners,
it clearly has higher SNRe at the focal depth and on the right of the image. The important property
of DRS is that min ˆSNRe sets the degree of significance of contrast differences, so the information
that is presented can be interpreted meaningfully. Sometimes this may blur over subtle features
below the resolution setting, but the resolution level is at least discernable to the user, since
a ripple of magnitude proportional to SNRe is present with a wavelength that depends on the
imaging parameters. By contrast, an image with variable noise at fixed resolution presents data
where the significance of image features is less well defined, and interpretation is highly dependent
on a process of cognitive filtering, where users must discriminate for themselves between those
features that are meaningful, and others that are assumed to be noise.

The homogeneous phantom results in Figure 12 are further evidence that DRS can simplify
image interpretation. The variable noise due to off-axis motion is a typical strain imaging phe-
nomenon associated with high strains. No claim is made here that 1D tracking is optimal for
high-strain work, where the addition of lateral tracking becomes advantageous. Against that, the
outcome in Figure 12c2–d2 is encouraging, because it shows that DRS can adjust for the decor-
relation caused by off-axis motion, so as to maintain the reliability of the image data. Indeed,
this result is generally useful because lateral motion brings increased signal decorrelation, even if
lateral tracking is employed.

Figure 14 illustrates a complication to this issue, in that the SNRe is less well defined in the
context of inhomogeneous scan subjects. Should noise be measured against the local strain, the
local level of strain variation (perhaps a strain envelope) or simply compared to the same mean
strain throughout the image? The mean strain option is unsatisfactory, because if a substantial
region has relatively low strain, the local information can be completely lost under a noise level
that is acceptable elsewhere in the image. On the other hand, it is obvious that the local strain
cannot be used for ˆSNRe, because strain zero crossings result in points where min ˆSNRe can never
be exceeded, even at the coarsest resolution — the long windows used in Figure 14c exemplify this
scenario. Our compromise (saturated local strain) may be sensible, but there is undoubtedly scope
for assessing more rigorously the effect on information content of estimation noise in different parts
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of the image.
Nevertheless, in the present form DRS already behaves preferably compared to fixed-parameter

settings when applied to real data. The sequence of images from a freehand 3D sweep in Figure 13
show that DRS moves between resolution settings in a manner that appears intuitively reasonable,
so images are neither overly smoothed where the signal is strong, nor are misleading estimates
displayed at inappropriately high resolution in regions of poor data. The question of exactly what
level is suitable for the min ˆSNRe setting remains open, although various settings are illustrated
in Figure 15. The optimal setting may depend on the degree to which users can discriminate
for themselves between noise and signal features in poor image regions. For example, new users
might benefit from a high min ˆSNRe to obtain reliable data (sometimes at low resolution). On
the other hand, experienced users may be able to extract meaning from noisier images at finer
resolution by comparing the presented data with their expectations. The significance of noise is
probably application-dependent. This is equally likely to be the case regarding automated analysis
procedures. Generally, clinical experience will be required to assess the most appropriate form and
setting for future techniques similar to DRS.

5 Conclusions

We have examined resolution and estimation error in detail for a particular strain estimation
algorithm. It was demonstrated that the best noise performance at any resolution is achieved if
the window and kernel lengths are set to a particular ratio. A viable technique was outlined for
predicting displacement estimation error, and translating this into strain estimation error.

These observations have been applied in the DRS system, whereby data are automatically
processed with suitable parameters, so as to achieve a desired SNRe whilst allowing the resolution
to vary. This produces strain images in which the significance of image features can be interpreted
with greater confidence.

Numerous tasks present themselves for ongoing development. The possibility of developing
a superior DRS strategy based on a more rigorous analysis of image information content has
already been discussed. There are also some performance improvements that could be achieved
with relatively minor modifications to the current system. For example, estimation precision could
perhaps be improved with negligible computational penalty by introducing covariance-weighted
least squares strain estimation.

Ultimately, the key task that we have not addressed is adjusting DRS to reduce the compu-
tational load. The present system is time-consuming. For DRS (precisely as described here, with
no particular attempt at optimisation) each strain image takes at least 30 seconds on a current
standard PC with a 3 GHz processor, and extremely poor data takes up to five minutes if DRS
opts for long, wide windows. The slow processing is despite an underlying strain estimation al-
gorithm which is essentially fast (strain images from high quality data with reasonable SNRe and
acceptable resolution can be produced faster than 20 Hz). The algorithm is suited to a high level
of parallel processing, operating simultaneously on each A-line, so real-time DRS processing could
perhaps be achieved even with DRS in its current form. However, the algorithm will need sub-
stantial modification to achieve real-time imaging using standard, single-processor equipment. The
Analysis is not the issue. Displacement estimation at both the Survey and Refinement stages can
vary hugely in cost depending on numerous factors. Major costs are incurred by the unusually
large number of estimation locations employed in the present version, and the occasional use of
very large 2D windows. Several thousand samples are often covered by a single window. However,
the same approach can perhaps be combined with intelligent downsampling at various stages, to
reduce the computational load whilst avoiding excessive performance penalties. This demands
further investigation.
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