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Abstract

This paper addresses the problem of estimating the
epipolar geometry from apparent contours in two special
cases: under weak perspective and for circular motion. An
appropriate parametrization of the fundamental matrix is
introduced for both cases, as well as suitable cost functions
for the estimation of the epipoles. The algorithm used in
the affine approximation proved to be robust and accurate
under several conditions. The circular motion case turned
out to be much more difficult, but for a wide baseline the
method introduced here is successful. For small viewing
angles the technique is too sensitive to noise to be used in
practice. Nevertheless, circular motion with small baseline
can be well modeled by an affine camera system, and this
approximation should be used in this circumstance.

1. Introduction

The recovering of the epipolar geometry of image se-
quences is the first step towards reconstruction of a 3D
model. In the case of point features, correspondences are
relatively easy to establish, and the fundamental matrix can
be computed by several techniques [11]. When the scene
being viewed consists of smooth surfaces, there is no obvi-
ous matching of points. In this case the the main feature is
theapparent contour, which is the contour of the projected
image of the surfaces.

2. Theoretical Background

This section summarizes results presented in [5] which
are relevant to this work.

Under knownviewer motion the epipolar parametriza-
tion [7, 14, 3], shown in fig. 1, can be used to determine the
geometry of the surface in the vicinity of the contour gener-
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Figure 1. Epipolar parametrisation. The sur-
face is parametrised locally by the contour
generators from successive viewpoints and
epipolar curves defined by the intersection of
the pencil of epipolar planes and the surface.

ation, which is the curve on the surface that projects at the
apparent contour.

2.1. Degeneracy of The Epipolar Parametrization

In points where the epipolar plane is tangent to the sur-
face, calledfrontier points, the epipolar parametrization is
degenerate[10]: the contour generator is locally stationary
(ct:n = 0). The frontier points correspond to the intersec-
tion of two successive contour generators, and thus are vis-
ible in successive images, as depicted in fig. 2. If the corre-
spondence between frontier points could be established, the
problem of estimation of the epipolar geometry would turn
to be same situation as the one for points. Unfortunately,
the determination of the frontier points already depends on
the knowledge of the epipolar geometry, and so numerical
techniques must be employed.

Consider the following minimal parametrization of the

1063-6919/99 $10.00 (c) 1999 IEEE



apparent contour

contour generator

epipolar plane

epipolar
tangency

(t2)

(t1)

epipole

Γ

Γ

c(t2)
c(t1)

m m’

e’e

frontier point

Figure 2. A frontier point appears in the inter-
section of two consecutive contour genera-
tors and is visible in both views. The frontier
point projects to a point on the apparent con-
tour which is an epipolar tangency point.

fundamental matrix:
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with u andu0 being the coordinates of the epipoles. Given
an initial guess for the epipoles, the matrixH can be es-
timated from the pencils of epipolar tangencies in both
images [6]. This fixes the fundamental matrix under the
parametrization above. The distances between the apparent
contours and the transfered epipolar lines coming from the
corresponding contours in the other image provide a geo-
metric distance criteria [11], as shown in fig. 3, given by
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to be minimized by searching for the epipoles. Details of
the procedure and a similar idea can be found in [2, 5]. The
point to be stressed is that the algorithm is quite prone to
converge to local minima, and needs at least 8 tangencies in
each image, a requirement not satisfied by most images of
real scenes.

3. The Affine Case

When the field of view is narrow or the depth varia-
tion is small compared with the distance from the camera
to the scene, the epipoles will be far from the image cen-
tre, and the epipolar lines will be approximately parallel.

d’

d

Figure 3. Illustration of the cost function to
be minimised in the motion estimation algo-
rithm. From the initial guess of the epipoles
the homography is determined, and epipo-
lar tangencies are transfered from one im-
age to the other. The length d is the distance
from a tangency point in the first image and
an epipolar line obtained by the transfer of
an epipolar tangency from the second image.
The distance d0 is found in the same way, in-
terchanging the roles of the images. The cost
function is then the sum

P
i(d

2
i + d

0

i
2) for each

matching pair i of putative epipolar tangen-
cies.

This kind of situation suggests the use of anaffine camera
model[12] andaffine epipolar geometry[13], that assumes
that the epipoles will be at infinity, and reduces the degrees
of freedom of the fundamental matrix, which will display
the format shown:

F =

2
4 0 0 c

0 0 d
a b e

3
5 : (4)

There are two circumstances when theaffine fundamental
matrix may be used. The first is when the affine model can
be used to describe the cameras. If the principal point of
a camera is(u0; v0), the variation of depth in the scene is
�Z and the mean distance of the features of the scene to
the camera isZmean, the difference of the image of a point
taken from a projective camera(u; v) and its image at the
affine camera,(ua; va) is given by

(u� ua; v � va) = (u� u0; v � v0)�Z=Z; (5)

When the field of view is narrow, the termsu�u0 andv�v0
will be small. In this case, or when the depth variation of the
scene is much smaller than its mean depth, e. g.�Z=Z <
0:1, the error due to the affine approximation is negligible.

Other favorable situation for the use of the affine funda-
mental matrix is when the motion is restricted to translation
orthogonal to the optical ray and cyclorotation. In this case
the affine fundamental matrix can be used even if the affine
camera model is inadequate. It is important to notice that
a rotation by a small angle around a distant axis is a good
approximation for such motion.
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Figure 4. Geometric interpretation of the
parametrisation of the affine fundamental ma-
trix presented in (6). The directions of the
epipoles on each image are given by the an-
gles � and �0, and the parameters � and �0 are
proportional to the differences of distances
d02 � d01 and d2 � d1, respectively (see (7)).

As scale factors are not important, the affine fundamental
matrix has only four degrees of freedom, and can be linearly
computed from 4 point correspondences. Each epipole, as
being at infinity, is described by a single parameter, corre-
sponding to the a direction in the image plane. This obser-
vation suggests another parametrisation for the fundamental
matrix, where the directions of the epipoles are made ex-
plicit. If � and�0 are the directions of the epipoles in the
first and second images, the affine fundamental matrix can
be expressed as

F =

2
4 0 0 �0 sin�0

0 0 ��0 cos�0

�� sin� � cos�
p
1� �2 � �02

3
5 ; (6)

where the parameters� and�0 are related to the distances
between epipolar lines on each image. The geometric inter-
pretation of the parameters� and�0 can be seen in fig. 4.
It is easy to show that they are proportional to the distance
between epipolar lines, or, in the notation of fig. 4,

�
�

�0

�
=

�
d0

1
� d0

2

d2 � d1

�
p
(d2d0

1
+ d1d

0

2
)2 + (d0

1
� d0

2
)2 + (d1 � d2)2
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In the affine case the epipolar tangencies will be parallel
lines, with directions given by the corresponding epipole,
and, as in the projective case, the epipolar tangencies will
touch the apparent contours at corresponding points. Since
the number of degrees of freedom of the affine fundamental
matrix is 4, this will also be the number of epipolar tangen-
cies necessary for its computation. Thus, the algorithm for
computation of the epipolar geometry from apparent con-
tours in the affine case is described as follows:

1. Initialise estimative for the directions of both epipoles.

2. Determine correspondencesmi andm0

i from epipo-
lar tangencies consistent with the directions of the
epipoles.

3. Compute the affine fundamental matrix from the
epipoles and the correspondences. This must be done
by using the parametrisation given in (6), so the direc-
tions of the epipoles will be kept.

4. Minimise the the sum of geometric distances from the
tangent points on the contours to the corresponding
epipolar lines. The search is restricted to the direc-
tions of the epipoles, and the cost function is the same
as given by (3).

3.1. Experimental Results.

Figure 5. Estimation of the epipolar geometry
from the apparent contours. The top pair of
images shows epipolar tangencies estimated
using the algorithm described in [5]. The bot-
tom pair shows the results of the algorithm
presented here.

The algorithm was tested in the images shown in fig. 5,
with the directions of the epipoles initialised at0�. The
contours were extracted by fitting B-splines to image edge
data [4]. There is clear discrepancy between the results
found by the general algorithm and the ones found by the
algorithm for the affine case. Since there is no ground truth,
the doubt will remain. However, the epipolar lines found by
the algorithm using affine approximation are consistent with
a planar motion parallel to the ground, since the epipolar
lines are parallel to the image of the physical horizon line.
This is a very reasonable guess for the actual motion used
in the acquisition of the images. Also, the bottom epipolar
line may give a clue that the affine approximation is indeed
a good estimative. If the angles of the epipolar lines had op-
posite signals in respect the horizontal axis, the points put
under correspondence by the epipolar geometry would be at
opposite places in the bottom of the sculpture, which is, ob-
viously, an incorrect solution. So the angles must have the
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same signal. Moreover, the actual values found were such
that correspondent tangent points are located at the very bot-
tom of the sculpture, which is also consistent with a rotation
motion around the sculpture.

Consider now images taken from a triplet of cameras
where the relative position of subsequent cameras is fixed.
In this case, the epipolar geometry of adjacent cameras will
also be fixed, and if two epipolar tangencies are available,
a pair of estimative for the directions of the epipoles will
produce, for images showing two frontier points, 4 corre-
spondences, or 2 correspondences for each pair of images.
A typical example of such configuration is when the cam-
era undergoes a rotation at fixed angles around an arbitrary
axis. This idea was explored in the experiments that fol-
low. The algorithm previously described was implemented

a) b) c)

Figure 6. Images and contours used in the
computation of the affine fundamental matrix.
The rotation angle between successive snap-
shots is 5�. The continuous lines and �marks
are corresponding epipolar lines and epipo-
lar tangencies from images a) and b), and the
dashed lines a and circles are corresponding
epipolar lines and epipolar tangencies from
images b) and c), after convergence of the
algorithm.

for the images shown in fig. 6. Convergence was achieved
after 4 to 5 iterations of both Davidon-Fletcher-Powell or
Levenberg-Marquadtoptimisation methods. To evaluate the
results, a calibration grid substituted the dummy and the
same rotation was applied (see fig. 7). The epipolar lines
on the right image correctly match the points correspondent
to the ones marked on left, showing the quality of the esti-
mated epipolar geometry.

4. Circular Motion

A very common situation for model acquisition is plac-
ing an object over a turn-table and taking snapshots at suc-
cessive angles. There are successful methods for model re-
construction under this particular situation [8] when point
features are available. However, for a smooth object, with-
out landmarks on its surface, point correspondences are dif-
ficult to obtain. This is obviously a case for techniques
based on apparent contours.

Figure 7. Evaluation of the estimated affine
epipolar geometry. The fundamental matrix
estimated from the apparent contours of the
rotating dummy was tested in a calibration
grid under the same motion. The epipolar
lines corresponding to the matches of the
marked points are shown, and the distance
between the lines and points is always less
than one pixel, showing the accuracy of the
estimation.

There are two main image features in a stereo pair of im-
ages obtained under camera rotation: the rotation axis and
the horizon line [1, 9]. If the camera intrinsic parameters are
kept fixed during the rotation, the projection of the rotation
axis will be a line fixed pointwise in the pair of images. The
horizon line is the projection of the plane where the rotation
plane, i. e., the plane orthogonal to the rotation axis that
contains the camera centres. Since the rotation plane con-
tains the camera centres, it also contains the line that passes
through the camera centres. Thus, the epipoles must lie on
the horizon line.

4.1. Determination of the Epipolar Geometry

The determination of the epipoles and the image of the
rotation axis, henceforth calledrotation line, is enough to
fix the epipolar geometry. Since the rotation line is fixed
pointwise, the epipoles and three points in the rotation line
determine an homography of the epipolar lines from one
image to the other. This homography, together with the
epipoles, fixes the fundamental matrix and thus the epipolar
geometry of the system. So, in the circular motion case the
fundamental matrix has 6 degrees of freedom: 4 for the co-
ordinates of the two epipoles plus 2 for the equation of the
rotation line.

The relation between the epipoles, the rotation line and
the homography is represented in fig. 8. If the images are
rotated in such way that the horizon line is horizontal, the
homography has a simpler expression, given by

� 0 =
�

k � �(1 + k) cot �
; (8)
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wherek = a=b, � is the angle between the rotation line and
the horizon line and� 0 and� are the tangents of the angles
 0 and as shown in fig. 8. The parametersa andb are the
distance frome ande0 to the intersection of the rotation and
horizon lines, as shown in fig. 8. Hence, it is possible to

a

e’

b

θ
ψ

ψ’

e

Figure 8. The homography shown in (8) re-
lates the tangents � and � 0 of the angles  
and  0.

parametrise the fundamental matrix in the case of rotation
motion with only 6 parameters: 4 for the coordinates of the
epipoles, that fix the horizon line, 1 for the intersection of
the rotation line with the horizon line and 1 for the angle
between the rotation line and the horizon line.

The planes intersecting the camera centres and tangent
to the surface being viewed by the cameras define epipolar
lines in both images. If these epipolar lines are superim-
posed in a single image, they must intersect in a point at the
rotation line. So, assuming that the epipoles are known, two
of such tangent planes would fix the rotation line and thus
the homography (see fig. 9). The position of the epipoles
is controlled by four degrees of freedom (the coordinates of
the epipoles), and four more tangent planes would provide
enough information to determine the epipolar geometry of
the pair of cameras, in the case of rotation. If more tangent
planes cannot be determined but another image from a third
camera, whose position relative to the second camera is the
same as the relative position of the second camera to the
first one, the new tangency points and the second and third
camera centres will determine another pair of tangent planes
and correspondent epipolar lines between images two and
three. Proceeding with this, at the fourth image one would
have came up with the six necessary tangent planes, and
the epipolar geometry would be fixed. It is necessary that
adjacent cameras be related by the same rotation and the
intrinsic parameters are kept constant so the epipoles will
not move. Intermediate solutions would also be possible,
e. g., three tangencies and three images with adjacent cam-
eras related by the same rotation. In general we must have
n(i� 1) � 6, wheren is the number of tangencies in each
image andi is the number of images in order to find the
epipolar geometry from apparent contours in the case of ro-
tation. We can now summarise the algorithm for estimation

e’
e

C C’ h

r

Figure 9. Relation between the epipoles ( e

and e
0), apparent contours ( C and C 0), hori-

zon line ( h) and rotation line ( r). Superim-
posing two adjacent images of a rotating sur-
face, the horizon line can be determined as
the line joining the epipoles. The intersection
of correspondent epipolar tangencies must
lie on the image of the rotation axis, which
is thus fixed by two pairs of epipolar tangen-
cies. This is enough to fix the homography
relating pencils of epipolar lines between the
images, according to (8).

of the epipolar geometry in the circular motion case:

1. Initialise the epipoles at random positions.
2. Superimpose adjacent images and determine epipolar

tangencies.
3. Fit by least-squares a line to the set of points generated

by the intersection of each pair of correspondent epipo-
lar lines. The sum of the square distance of each point
to the fitted line is the cost function which will be then
minimised through a search for the correct position for
the epipoles.

Preliminary Experiments. In this first experiment with
synthetic data, 4 images of an ellipsoid were taken at suc-
cessive positions related by a rotation of2�=5rad around
a fixed axis. The epipoles were initialised at coordinates
e0 = (4000; 200) and e00 = (�3000; 400), far from the
true valuese = (2752:8; 0) ande0 = (�2752:8; 0). The
epipolar tangencies passing through the epipoles were com-
puted, and for each pair of adjacent cameras, their inter-
section was computed. A line was fitted to the 6 points so
produced, and the sum of the square distance in pixels of
each point to the fitted line is the cost function to be min-
imised. The gradient of this function with respect to the
coordinates of the epipoles was estimated numerically, and
the Davidon-Fletcher-Powell or Levenberg-Marquadtmeth-
ods were used to optimise the position of the epipoles. In
fig. 10 the initial and final set of intersection points is pre-
sented, together with the correspondent estimative for the
rotation line.

In fig. 11 the initial and final epipolar configuration are
shown. Each picture presents the superposition of two adja-
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cent images of the ellipsoid and the correspondent tangent
lines for each epipole and contour. The final values found
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Figure 10. Intersection of epipolar lines at first
and last iteration of the algorithm. The fitted
line is the estimative of the rotation line.
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Figure 11. Initial (above) and final (below)
epipolar configurations for four images of an
ellipsoid. Each figure shows the superposi-
tion of adjacent images.

for the coordinates of the epipoles weree = (2752:9; 0:0)
ande0 = (2752:8; 0:0), very close, by any criteria, of the
true values. The experiment was reproduced with noise lev-
els up to one pixel, and the measureEm[11] for the relative
error in the position of the epipoles, given by

Em =
1

2

� ke� e0k
min(kek; ke0k) +

ke0 � e00k
min(ke0k; ke00k)

�
; (9)

was always under 0.2.
Other experiments, with different values of the baseline

angle,�, were also done, and,for large baseline angle, e. g.
� > �=10, the results were similar. For smaller values of
�, though, the sensitivity to noise of the algorithm increased
unacceptably. However, this is a favourable situation for the
use of the affine approximation, as pointed in sec. 3, that
thus should be used instead.

5. Conclusions and Future Goals

This article presents some techniques for estimation of
the epipolar geometry of image sequences from apparent
contours under affine approximation and circular motion,
situations that often arise in applications. The affine ap-
proximation showed robustness and accuracy even in cases
where the eccentricity of the apparent contours is small, as

in fig 6, which is a very challenging problem. When com-
pared to the algorithm presented in [5], the affine approxi-
mation is also simpler and demands less tangent points for
its computation, exactly as it happens in the case of point
features.

The circular motion case is still under development. The
cost function based in the fitting of a putative rotation axis to
the intersection of epipolar tangencies is very insensitive to
variations in the position of the epipoles except when the ec-
centricity of the contours is large. However, when the base-
line is small the affine approximation can be safely used. A
topic proposal for further investigation is the evaluation of
the estimation of the epipolar geometry by reconstructing of
the surfaces.
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