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Abstract

Learning regression models (for example for body pose estimation, or BPE)
currently requires large numbers of training examples—pairs of the form
(image, pose parameters). These examples are difficult to obtain for many
problems, demanding considerable effort in manual labelling. However it is
easy to obtain unlabelled examples—in BPE, simply by collecting many im-
ages, and by sampling many poses using motion capture. We show how the
use of unlabelled examples can improve the performance of such estimators,
making better use of the difficult-to-obtain training examples.

Because the distribution of parameters conditioned on a given image is
often multimodal, conventional regression models must be extended to allow
for multiple modes. Such extensions have to date had a pre-set number of
modes, independent of the contents of the input image, and amount to fitting
several regressors simultaneously. Our framework models instead the joint
distribution of images and poses, so the conditional estimates are inherently
multimodal, and the number of modes is a function of the joint-space com-
plexity, rather than of the maximum number of output modes.

We demonstrate the improvements obtainable by using unlabelled sam-
ples on synthetic examples and on a real pose estimation problem, and demon-
strate in both cases the additional accuracy provided by the use of unlabelled
data.

1 Introduction

We are interested in estimating the parameters of complex parametrized models from a
single image, for example the 3D position and joint angles of the human body. Given
an image1 x, and denoting byθ the vector of unknown parameters, we wish to compute
p(θ |x), the probability density over the parametersθ conditioned on the image. This
density will in general be multimodal, and we will learn the mapping fromx to p(θ |x)
from training examples. Traditionally this training data is a set of pairs{(xi ,θ i)}D

i=1
whereD is the number of training pairs. In many situations, however, training data is ex-
pensive to obtain, making it difficult to learn models of any complexity. The contribution
of this paper is to introduce a framework which allows additionalunlabelledexamples, of

1Throughout this document we shall denote images by real vectors. These vectors may be thought of as
vectors of raw image pixels, or—as is used in our experiments—the bins of a shape-context histogram [3, 5, 13].
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Figure 1:Generative, discriminative, and joint estimation. (a) Samples from the gen-
erative modelx = f (θ)+ ε where f (θ) = θ +0.3sin(2πθ) andε ∼N (0,0.05). Given
a value ofx, represented by the horizontal line, the corresponding parametersθ must be
discovered by search. (b) The inverse relationship is multivalued: for eachx there may
be more than a singleθ . (c) Modelling the joint densityp(x,θ) allows the conditional
p(θ |x = 0.45) to be obtained representing the multiple modes as shown in (d). In this
paper we address the problem of learning the joint density from impoverished training
sets.

the form{(∗,θ j)}Dθ
j=1 and{(xk,∗,)}Dx

k=1, to contribute to the estimate. This extends two
strands of recent computer vision and machine learning research: regression-based body
pose estimation and semi-supervised regression.

1.1 Regression-based body pose estimation

Recent approaches to the estimation of model parameters from images divide into two
schools:generativeanddiscriminative. Generative approaches make the assumption that
an observed image is drawn from density which is unimodal given the parametersθ . For
example an image may be generated by the functionf(θ) and observed with added noiseε
drawn from an isotropic Gaussian:

x = f(θ)+ ε, ε ∼N
(
0,σ2I

)
(1)

In order to obtain an estimate ofθ for a given imagex, generative approaches perform
a search inθ space, for example using Newton iterations (e.g. extended Kalman filter
tracking [8, 9]), or particle filtering [14]. Because of the need for initial estimates ofθ ,
generative techniques tend to imply a tracking framework, where the parameters com-
puted from the previous image serve as an initial estimate for that in the current.

Discriminative, or regression-based, techniques2, on the other hand, may be con-
sidered as trying to learn the distribution overθ directly from the imagex, via a func-
tion g(x). When dealing with simple models, this amounts to learning the inverse map-
ping θ = f−1(x), so that model parameters are computed from the input image without
recourse to search. Rosaleset al. [10] and Agarwal and Triggs [2] applied this technique
to body pose estimation, while Williamset al. [18] applied a similar strategy to face track-
ing.

In general, however, there will be ambiguities because a given image could have re-
sulted from any of several parameter values. For example, the same human silhouette can

2This is a slight variation on the use of “discriminative” in classification problems, but is current in the
computer vision literature.



Figure 2:Pose ambiguities:This illustrates ambiguities arising from silhouettes. The same human
silhouette can be generated from many body positions.

be generated from many body positions (see Fig 2). Thus the mapping must be multival-
ued, in general returning the parametersφ of a distribution inθ space, withφ a function
of the imagex. For example,φ may contain the parameters of aM-Gaussian mixture
model (GMM), so that

φ(x) = [α1..M(x),µ1..M(x),Σ1..M(x)]

and the distribution overθ is then

p(θ |x) =
M

∑
m=1

αm(x)N (θ ; µm(x),Σm(x))

where the dependence of the GMM parametersφ onx has been made explicit. Thayanan-
thanet al. [15] modelled this mapping using a multivariate extension of the relevance
vector machine framework [16], whereµm(x) is a radial basis function gated byαm(x)
andΣm is diagonal and independent ofx . In their case,αm(x) is obtained through likeli-
hood evaluation by doing model projections at eachµm(x).

Sminchisescuet al. [13] also propose a discriminative framework where multinomial
regressors are used to model the gating functions (αm(x)) whose parameters are obtained
from the training set. The problem is that this requires a lot of training data for each value
of x, or equivalently, that there is little generalization from one silhouette to another. Both
of the aforementioned methods however do not utilise the marginal data.

1.2 Joint density modelling

More recently, Agarwal [3] proposed learning thejoint densityp(x,θ), in order to allow
generalization across input examples. By fitting a GMM to the training pairs, we obtain
an expression for the joint density of the form

p(x,θ) =
M

∑
m=1

αmN

([
x
θ

]
;

[
µx

m
µθ

m

]
,

[
Σxx

m Σxθ
m

Σθx
m Σθθ

m

])
(2)

However, in their formulation, the covariance matrices are of a restricted form con-
structed from the regression error and the input-space distribution. Given an observed
imagex, the density overθ is given by the standard GMM conditional [4]:

p(θ |x) =
M

∑
m=1

αmN
(

θ ; µθ
m+Σθx

m (Σxx
m)−1(x−µx

m), Σθθ
m −Σθx

m (Σxx
m)−1Σxθ

m

)
(3)
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Figure 3: Learning is improved by the use of unlabelled data.(a) 35 samples from
the joint distribution. Contours (b) and height map (c) of the fitted 5-GMM. The contours
are superimposed on the true function (red curve). (d) 35 samples from the joint distrib-
ution, augmented with 165 samples from each of the marginals (in blue). (e,f) The fitted
GMM incorporating marginal data. Note that even this small amount of marginal data
considerably improves the representation of the underlying function.

Figure 1 illustrates this approach on a toy example, showing how the GMM yields a
multimodal distribution forp(θ |x). However fitting the joint-space density still requires
a large amount of labelled data. In the next sections we will show how this requirement
can be reduced by the use of unlabelled samples.

1.3 Semi-supervised learning

Semi-supervised learning began as a means of improving classifier systems. A classifier
is conventionally trained by supplying (image, label) pairs, denoted{(xi ,θi)}D

i=1 in our
notation, where the labelsθ come from a small discrete set. The task of classification is
to learn a functionf such thatf (xi) = θi for as many of the training examples as possible.
Semi-supervised classification adds additional examples of the form{(xi ,∗)}Dx

j=1, with-
out any labels. The additional examples help generalization because they describe the
space in which thex’s lie, allowing labels to propagate from labelled areas of the space
to unlabelled areas via the prior densityp(x). Without the additional examples, classifers
must make strong assumptions on the form ofp(x), for example approximating it by a
Euclidean-metric Parzen window estimate. Semi-supervised learning has been shown to
provide improvements in applications such as object recognition [17], digit classifica-
tion [20] as well as on the UCI classification database [12]. Semi-supervised regression
[19] extends the application domain to the case whereθ may be a real function, but does
not deal with multivalued outputs (indeed it does not return a distribution overθ ), and



does not make use of the output-space distributionp(θ), as we do in this paper. Rothet
al. [11] proposed a method to learnt the joint-space distribution from marginal data for
constructing better likelihood models from image feature measurements. However, they
used marginal samples only and did not use any joint-space data.

2 Semi-supervised joint density modelling

In this paper we show how re-casting the joint density modelling approach as a miss-
ing data problem allows the use of unlabelled data. At the same time we extend semi-
supervised regression to return a distribution over the output space.

We are given three types of training data: associated (image, pose) pairs{(xi ,θ i)}D
i=1;

images without poses{(xk,∗)}Dx
k=1; and poses without images{(∗,θ j)}Dθ

j=1. Our task is
to learn the parametersφ of a Gaussian mixture model which maximizes the likelihood
of the training data. We proceed by writing the complete data log likelihood including
the unknown variableszim that indicateith data point is generated bymth mixture compo-
nent. The likelihood is optimized using the method of Ghahramani and Jordan [7], and is
described below for completeness.

Let ui denote the data pair(xi ,θ i). Let the superscripts∗ ando indicate subvectors
and submatrices of the parametersφ matching the missing and observed components of
the data respectively.

ln(P(φ |u,z)) =
D+Dx+Dθ

∑
i=1

M

∑
m=1

zim
[d

2
ln2π +

1
2

ln |Σm|− 1
2
(uo

i −µo
m)T(Σoo

m )−1(uo
i −µo

m)

− (uo
i −µo

m)T(Σo∗
m )−1(u∗i −µ∗m)− 1

2
(u∗i −µ∗m)T(Σ∗∗m )−1(u∗i −µ∗m)

]
(4)

As in the standard EM algorithm [6] used to learn the parameters of a GMM, consider
the expectation of the equation 4. One would require the unknown termszim, zimu∗ and
zimu∗u∗T to obtain the sufficient statistics for the parametersφ . These can be defined as
follows.

E[zim|uo
i ,φm|t−1] =

N
(

uo
i : φo

m|t−1

)

∑M
m=1N

(
uo

i ;φo
m|t−1

) (5)

E[u∗i |m,uo
i ,φm|t−1] = µ∗m|t−1 +Σ∗om|t−1(Σ

oo
m|t−1)

−1(uo
i −µo

m|t−1) (6)

= u∗i|t (7)

E[u∗i u∗Ti |m,uo
i ,φm|t−1] = Σ∗∗m|t−1−Σ∗om|t−1(Σ

oo
m|t−1)

−1Σ∗oT
m|t−1 +u∗i|tu

∗T
i|t (8)

These are substituted appropriately in the standard EM update equations for learning
the parametersφ of a GMM. In the equation 8, the termsΣ∗∗m|t−1−Σ∗om|t−1(Σ

oo
m|t−1)

−1Σ∗oT
m|t−1

quantify the uncertainty associated with the estimated missing values. This is a key dif-
ference from a naive update that uses onlyu∗i|tu

∗T
i|t for the covariance update.
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Figure 4: Contribution of unlabelled data.This illustrates how marginal data are used to
enhance the estimate of a 2D Gaussian using only 5 joint-space data and 100 marginal sample in
each dimension. Figure 4(a) shows the true Gaussian from which the data is drawn. It also shows
the joint-space and marginal data. Figure 4(b) superimposes the Gaussian learnt using just the 5
joint-space points by explicitly computing the mean and covariance (black contours) on the true
distribution (red contours). Figure 4(c) shows the Gaussian computed using the marginal as well as
the joint-space data (blue contours) along with the true distribution (red contours).

2.1 Why and how can unlabelled data help?

The reader may wonder why the above algorithm yields a better fit to the underlying
distribution than simply using the labelled pairs. The results we show later, and the exam-
ples in figure 3 confirm that there is indeed a practical advantage, but it is instructive to
consider on an intuitive level what the marginal samples can contribute to the estimation
of the joint density. First, consider the estimation of a 2D Gaussian distribution using
“labelled” points(xi ,yi). We must determine five parameters: the mean(µx,µy) and the
upper triangle of the covariance matrix(σxx,σxy,σyy) [Fig. 4(b)]. Now assume we also
have “unlabelled” pointsx j andyk, and for convenience, assume we have so many un-
labelled points that we in fact know the marginal distributionsp(x) and p(y) perfectly
[Fig. 4(c)]. For a Gaussian, this already exactly constrains the mean, and two degrees of
freedom in the covariance matrix. Thus the number of parameters we need to estimate is
reduced from five to one. Intuitively, we now require five times fewer labelled examples
to have the same quality of estimate. Of course we do not have perfect knowledge of the
marginals when we have a finite number of unlabelled examples, but the data contribute
in the same way to estimation of the joint density.

3 Results

We performed a number of experiments to test the method. First was a simple quantitative
test on the toy data of Figure 1. Firstly a large number (500) of joints-space samples were
created and a 6 mixture GMM was learnt using these to represent the “ground-truth”
distribution.

Then 6-mixture GMMs were trained using varying number of joint-space and mar-
ginal samples. The fit to the ground-truth distribution was measured as the total negative
log likelihood of 500 test data points. We expect that for small numbers of joint-space
samples, this fit will be poor. The question then is to what extent adding marginal samples
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Figure 5: Contribution from marginal data. This illustrates how much the marginal data
are contributing towards obtaining a better estimate of the underlying distribution. For example, 20
joint samples plus 300 marginals gives as good a fit as using 60 joint samples only. The multi-modal
functionx = θ +0.3sin(θ)+N (0,0.05), was used to create the data.

will improve the estimate. Figure 5 shows the results for various numbers of samples. For
example, for 20 samples in the joint space, the initial fit is very poor, but adding 300 mar-
ginal samples brings it close to the ground truth value. Reading the graph another way, 20
joint samples plus 300 marginals gives as good a fit as using 60 joint samples only. Given
that marginal samples are essentially free to obtain, this is a cost reduction of a factor of
3 in obtaining training data.

We performed experiments on a body pose estimation problem demonstrating the
applicability of the method in a practical example. The input image descriptorx is con-
structed from shape contexts of silhouette points. To work in a common coordinate sys-
tem, these features are clustered into 40 groups (in our experiments) and each feature point
is projected onto the common basis by weighted voting into the cluster centres [13, 3].
All these feature vectors for a silhouette are added to create a feature histogram to repre-
sent the image descriptor (x) for that silhouette. The output vectorθ is the first 6 (in our
experiments) principal components of the 56-dimensional joint angle space. Though we
focused on walking motion in our experiments, no action specific constraints were used.

GMMs were trained with varying number of mixture components as well as joint-
space samples and marginal samples. For comparison, additional GMMs were learnt
using the joint samples alone to highlight the improvement gained by exploiting the mar-
ginal data. All samples were obtained using real motion captured data [1] and a custom
built graphical package that renders images from these motion data in order to allow ref-
erence against the ground truth. We tested the GMMs on 1000 synthetic images created



by the graphical package and 60 hand-labelled real images. The optimum number of mix-
ture components were identified through cross-validation. Results of these experiments
are provided in Table 1. Comparing the RMS errors either in column 3 or in column 4, the
results indicate that marginal data indeed contribute towards learning a better joint-space
distribution.

Joint-space data Marginal data RMS on artificial images RMS on real images
2 000 - 6.2 11.0
2 000 8 000 5.9 10.6
1 000 9 000 6.2 11.9

10 000 - 5.6 10.0

Table 1:Quantitative experiments:
Results of the quantitative experiments are tabulated above. In these experiments, 1000 artificial
images (created using a graphical package) and 60 hand-labelled images were used to compute
the average RMS error in the estimated pose. Comparing the RMS errors either in column 3 or
in column 4, the results indicate that marginal data indeed contribute towards learning a better
joint-space distribution.

Some estimated poses along with their likelihood and RMS error in the predicted joint
angle for a few of the real images were shown in figure 6. The prediction with the best
likelihood did not always produce the estimate with the least RMS error. However, the
important point to note is that all the predictions were possible hypothesis for the input
silhouette.

4 Discussion

Regression models for pose estimation based on variants of the mixture of experts para-
digm [3, 12, 14] have exploited labelled training examples only. In this paper, we show
that using cheaply available marginal, or unlabelled, data along with the labelled samples
enhances regression models. The additional improvement obtained by a GMM based re-
gressor has been demonstrated clearly in synthetic examples and a real world body pose
estimation problem. We emphasize in this paper that not only the joint-space distribu-
tion, but also the marginal distributions can be harnessed to improve regression models
by exploiting unlabelled data. Moreover, the number of multiple hypotheses predicted
by regressors based on mixture of experts models is less than or equal to the number of
mixtures. However, regressors based on joint-space distribution are not constrained as
such. The point to note is that the choice of the number of mixture components has little
effect on the number of hypothesis predicted for an ‘ambiguous’ input, i.e. the choice of
M is not the same as choice of arity.

As future work, we intend to investigate an interactive learning strategy based on the
fact that a small number of joint-space examples and a large amount of marginal data
are enough to capture the joint-space distribution reasonably well for regression. The
initial joint-space is obtained from marginals only. Afterwards, the user adds informative/
intelligent joint-space samples to guide the regressors to achieve better accuracy. Hence
the required accuracy can be achieved with the minimum number of joint-space samples,
thus reducing the time consuming task of labelling.
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Figure 6:Pose Detection:This illustrates results from applying the GMM learnt from 8k marginal
and 2k joint data points with 50 mixture components. First column shows the real images. The
second column shows the silhouette edge image. The final four columns show the best four modes
ordered based on the log likelihood, which are also shown below respective images. In the second
row, the first four estimates do not contain the correct pose as the human in the image.


