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Abstract

We solve the equation that governs acoustic wave propagation in an inhomogeneous
medium to show that the radio frequency ultrasound signal can be expressed as the result of
filtering the tissue reflectivity by a point-spread function. We extend the analysis to make
the link between the radio frequency ultrasound signal and the representation of ultrasound
scatterers as small vectors with random phase in the complex plane. Others have previously
performed parts of this analysis. The contribution of the present paper it to provide a single
coherent treatment emphasizing the assumptions that have to be made and the physical con-
sequences of the models derived. This leads to insights into the interaction of monopole and
dipole scattering, useful techniques for simulating and analysing speckle statistics in the com-
plex plane and a new expression for the normalised covariance of the analytic radio frequency

ultrasound signal in terms of the complex envelope of the point-spread function.

1 Introduction

In this report, we demonstrate how a linear, shift-variant description of ultrasound imaging can
be obtained by solving, under certain assumptions, the equation that governs wave propagation in
an inhomogeneous medium. The theory of linear systems is well developed and well established in
signal processing; a linear description is thus useful for casting ultrasound imaging into a framework

that is well understood and for which mathematical tools already exist.

We then convert our linear model to complex analytic representation and derive the standard
result whereby speckle is viewed as the result of constructive and destructive interference while
forming the sum of a large number of small vectors in the complex plane. From this, the first and

second order statistics of fully developed speckle can be derived.

A number of other authors have published work in this area. The paper by Gore and Leeman [7]
is one of the first publications to have developed a realistic model for ultrasonic backscattering
in human tissue by assuming weak scattering and a windowed monochromatic separable incident

pulse. A more thorough analysis was carried out by Jensen [9] who derived the wave equation from



first principles and solved it to obtain an analytic expression for the backscattered radio-frequency
(RF) trace in the time domain. Zemp et al. [21] provided an overview of the solution of the wave

equation and extended the linear model further to the computation of signal statistics.

Our analysis here is similar to the treatments by Gore and Leeman [7] and by Jensen [9]. Like
Jensen, our aim is to express the backscattered RF trace as the result of linearly filtering a map
of the acoustic inhomogeneities in the imaged region by a transfer function determined by the
geometry and mechanics of the ultrasonic transceiving probe. However, we have taken the extra
step of proving, for the special case of a rectangular imaging setup, that the point-spread function
(PSF) of the imaging system is shift-variant only in the axial direction. For the sake of clarity, all
mathematical working has been deliberately presented in some detail. We have also ensured that
all assumptions made are explicitly stated so that the limits on the model’s validity are clearly
identified.

Many authors use a complex model for the analysis of speckle [3, 17, 19, 20], relying on an analogy
with the theory of laser speckle for justification [6]. We are not aware of an explicit presentation
of the link between the RF ultrasound signal and its representation in the complex plane. This is
therefore covered in some detail in the present paper to show the assumptions on which it is based

and the relationships between the complex quantities and their analogues in the real world.

2 Background

Conventional ultrasound imaging interrogates a medium with high frequency band-limited acoustic
waves and detects echoes scattered by inhomogeneities (also referred to as scatterers) within the
medium. A single probe placed in contact with the subject is used for both the generation of these
waves and the reception of their echoes. On the contact surface of a typical probe is found an array
of piezoelectric crystals (referred to as the aperture), each of which behaves as an electromechanical
transducer. At transmission, a subset of adjacent crystals, referred to as the active aperture, are
excited coherently to produce a focussed beam. At reception, these same crystals detect the
scattered echoes which are summed up coherently to yield a single RF voltage trace. Multiple
RF traces are acquired by moving the centre of the active aperture and repeating this process; by

lining up these individual traces next to each other in image space, an RF image is formed.

At each transmission, the emitted wave propagating through the medium gives rise to an incident
pressure field, and the scattered waves give rise to a scattered pressure field. It can be shown that,
at any moment in time, the total pressure field is the sum of these two fields (see section 3.1). At
reception, each piezoelectric crystal in the active aperture detects the scattered pressure field and
the resulting RF voltage trace is effectively obtained by summing the scattered pressure field over
the surface of the active aperture and filtering this sum by the electromechanical impulse response
of the crystals [2, 9, 21].



3 The Wave Equation

With the physical description of the previous section in mind, we shall proceed in this section
to develop mathematical expressions for the incident pressure field and the scattered pressure
field. Our analysis necessarily begins by considering the partial differential equation (PDE) that
describes the propagation of acoustic waves in a non-uniform medium. We shall use the wave
equation that is found in [7] and [12, chapter 8], in which the acoustic properties of the medium
are specified in terms of its density and adiabatic compressibility. We shall complete our analysis

by expressing the RF image as a function of time and the location of the active aperture’s centre.

Our analysis assumes that there is one fixed focal point, identical for both transmission and
reception. We shall also restrict ourselves to the case of weak scattering, where the energy of the
scattered waves is much less than the energy of the incident waves.

To simplify the mathematics, the wave equation and its solution will be expressed in terms of
angular frequency w instead of time ¢; although less intuitive, this representation has the advantage
of improving notational clarity by reducing convolutions in the time domain to multiplications in
the frequency domain. The vector x will be used to represent the coordinates (z,y, z) of three-

dimensional space. (A complete list of symbols is given at the end of the paper).

3.1 The Total Pressure Field

In the absence of any scatterers, we consider our medium to be uniform with density p, and
adiabatic compressibility k. The speed ¢g at which acoustic waves travel in this uniform medium

is given by [12, p. 233]
1

v/ Poko

The presence of scatterers in the medium may be modelled by adding spatially dependent terms

(1)

Co =

Ap (x) and Ak (x) to the density and the compressibility respectively. Without proof, we state
that the total pressure field P’ (x,w) that develops as a result of acoustic wave propagation obeys
the linear PDE [7, 12]

V2P (x,w) + (Zd—0> P' (x,w) = = (SP') (x,w) (2)

where S is the scattering operator defined as

$=760(£) -V ut0y ®
and the scattering terms v (x) and p (x) are defined as
_As(x) _ b
v(x) = ro ,M(X)Im (4)



In keeping with the definitions introduced by Andersen and Trahey [2], the term v (x) contributes

monopole radiation and p (x) contributes dipole radiation.

Although equation 2 is, strictly speaking, homogeneous (there are no terms independent of P’ (x,w)),
we shall nevertheless treat it as an inhomogeneous PDE and treat the non-zero right-hand-side
(RHS) as a source term. This is acceptable since, in a sense, the RHS represents the source of
scattered sound [12].

Since equation 2 is linear, we can write its general solution as the sum of the solution to the
corresponding ‘homogeneous’ equation (i.e. with the RHS set to zero) and any particular solution
[4, p- 2]. Denoting the solution to the ‘homogeneous’ equation as P; (x,w) and the particular
solution as P; (x,w), we can therefore write the total field as

P (x,w) = P; (x,w) + P (x,w) (5)

To assign a physical interpretation to P; (x,w), we observe that by setting the RHS of equation 2
to zero, we have effectively set Ap (x) = Ak (x) = 0. We see then that P; (x,w) is the pressure field
that develops in the absence of any scatterers which, by definition, is the incident pressure field.
We also know that the scattered pressure field must obey equation 2, and so we can assign our
particular solution P; (x,w) to be the scattered pressure field. With these physical interpretations
for P; (x,w) and P; (x,w) , we see that equation 5 confirms the statement in section 2 that the
total pressure field is the sum of the incident pressure field and the scattered pressure field.

3.2 The Incident Pressure Field

Calculating the incident pressure field requires knowledge of the mechanics and geometry of the
probe. We adopt the generalised three-dimensional coordinate system shown in Figure 1, where:

e A represents the surface of the active aperture.

Xg is the location of the centre of A.

X, iS an arbitrary point on A.

V is a volume within which the scatterers being considered are contained.

x' is an arbitrary point in V.

The surface A may be considered to consist of infinitesimally small area elements d?x,, each of
which behaves as a simple point source mounted on a rigid baffle. The Huygen-Fresnel principle
states that each area element contributes a spherically expanding wave to the incident pressure
field [2]. The incident pressure field may therefore be obtained by summing the spherical wave

contribution from each area element.



Scattering region

Active aperture

Figure 1: Coordinate system for describing scattering in an inhomogeneous medium.

If we assume that the radius of curvature of A is large enough that A may be considered to be

effectively flat, then we can express the incident pressure field as the Rayleigh integral [8, 9, 12, 13|,

Po _ e Jeg [x—X0—xal )
P; (x,x0,w) = 3 /AJwV (Xa,w) grp— d°x, (6)
where V' (xa,w) is the temporal Fourier transform of the normal velocity on the active aperture’s
surface; this normal velocity is not uniform but varies from point to point on .A. We note that the
term jwV (xa,w) corresponds to the normal acceleration in the time domain, since the factor jw
corresponds to time differentiation. We have written in the argument xq¢ on the left-hand side of
equation 6 to indicate explicitly the dependence of the incident pressure field on the location of

the active aperture’s centre.

Although we have stated equation 6 without proof, we can intuitively see that it is indeed the
Huygen-Fresnel principle expressed mathematically: the integral on the RHS describes the sum-
mation of complex-valued spherically expanding waves, each weighted by the normal acceleration

at its source and decaying in amplitude with increasing distance from its source.

For a typical probe, we can represent the active aperture as having a nominal normal velocity
Vi (w) weighted by a spatially varying term a, (xa) to account for apodisation. We can also model
focussing by considering the normal velocity at each x, to be delayed by 74 (xa); in the temporal
frequency domain, this corresponds to multiplying the normal velocity by e~«74(Xa)  Substituting
V (Xa,w) = ap (Xa) Vy (w) e 774(xa) into equation 6, we obtain [21]

J o5 lx—x0—xa|

JwpoVn () / —jwTa(Xa) —6_ 2
P; (x,xq, = a JwTd(Xa a
(x,x0,w) 5 ap (Xa) e | p—— d’x (7)

For convenience, we define a new quantity H; (x,w), which we refer to as the spatial transfer

function,
—j:’—0|x—xa|

1 .
H, (x,w) = Py /Aa,J (xq) e~ 7w7a(xa) S d*x, (8)

T |x — Xa|



Equation 7 can then be expressed more compactly as
Pi (X,XQ,W) :provn (w) HS (X—Xo,(x)) (9)

This compact expression allows us to view the incident pressure field as the result of temporally
filtering the nominal normal velocity V;, (w) by the spatial transfer function H, (x — xg,w). We see
that the spatial transfer function Hy (x — Xg,w), in which is incorporated the effects of apodisation

and focussing, accounts entirely for the spatial distribution of the incident pressure field.

3.3 The Scattered Pressure Field

To calculate the scattered pressure field, we solve equation 2 by using the Green’s function method.
We consider the waves scattered from the volume V to be propagating into an effectively un-
Trfe] €XP (_J'f—o Ix — X'|)

[22, pp. 121-138]. The particular solution to equation 2 is then the product of the RHS and the
Green’s function integrated over the volume V [7, 12, 22]. Furthermore, if we define Ap (x) and

bounded medium, in which case the Green’s function takes the form

Ak (x) to be zero outside V, then we can perform the integration over all of three-dimensional
space and the scattered pressure field can be expressed as the convolution integral,

e desx—x
P, (x,%0,w) = SP") (x' O 10
(o) = [ (SP) (¢ xo,0) T P (10)
Since we are only dealing with the case of weak scattering, we assume that |P; (x,Xo,w)| <
|P; (x,%0,w)|- Ps(x,Xg,w) in equation 5 then becomes negligible and P’ (x,xo,w) = P; (x,Xq,w).
Rewriting equation 10 with P’ (x,xg,w) substituted by P; (x, xg,w),

—j & |x—x'|
e 7o
P; (x,%0,w) ~ SP) (x',%x0,w) ——— d°%’ 11
o) ~ [ (8P (. x0.0) T (1)
This approximation is referred to as the (first) Born approzimation [7, 8, 9, 12, 13], and equation
11 states that the scattered pressure field is, to a first approximation, the spherically expanding
wave #‘x‘ exp (— iz |x|) convolved onto the scattering term (SP;) (x,xg,w). If we regard the
scatterers to be idealised points in V), then this is equivalent to saying that these point scatterers
each contribute a spherically expanding wave independently of each other. Thus, in making
the Born approximation, we have implicitly assumed that multiply scattered waves (i.e. waves
scattered off a particle that are then scattered off other particles) are negligible and that multiple

scattering can be ignored [7, 9, 13].

By substituting the expression for P;(x,Xg,w) in equation 9 into equation 11, the scattered field
can be expressed entirely in terms of the probe’s characteristics and the scattering operator,

oIS Ixx]

PS (X, XO,L‘J) ~ ]prVn (CU) /]R3 (SHS) (XI - X(),(.d) md3xl (12)



3.4 The Force on the Active Aperture

We recall from the physical description in section 2 that the received RF voltage trace is obtained
by summing the scattered pressure field over the active aperture and filtering this sum by the
electromechanical response of the piezoelectric crystals. In this subsection, we compute the sum-
mation of the scattered pressure field over the active aperture. Strictly speaking, this quantity,
which will be denoted by F' (x¢,w), is the force exerted on the active aperture [21].

Before we develop an expression for F' (xg,w), we introduce two lemmas that will be used in this
subsection. The proofs for these lemmas are given in appendices A and B.

Lemma 1: For any vector-valued function A (x) and scalar function b (x), if A (x) is

zero outside some volume V', then

b(x)V-A(x)dx=— [ A(x)-Vb(x)d’x (13)
% %

Lemma 2: At locations that are far away from the active aperture,

(VH, - VH,) (x,w) ~ (ﬁ) H? (x,w) (14)

Returning now to F (xg,w), if we assume the same apodisation and focussing at reception as at

transmission, then
F (x0,w) = / ap (Xa) e 9974Xa) P (%0 + Xa, X0, w) d*Xa (15)
A

Substituting in the integral expression for Pj (Xg + Xa,Xo,w) from equation 12 yields

- —JjwTq(Xa (SHS) (Xl —XQ,LU) e_j%|xo+xa_x,| 3 2
F (x0,0) % Vi ) [ o (xa) e 7 >[/R e x| dx,
—jwTa(Xa) e*j%|xo+x57x’|
~ % ', ap (Xa)e S
JwpoVn (w) /R3 (SH,) (x' — xg,w) l/fl P Fon——] d’x, | d°x
(16)

We recognise from equation 8 that the integral in square brackets on the second line is equal to
+H, (x' — x9,w), and so
~ JwpoVn (w)

F (xq,w) ~ — /Rs (SH,) (x' — xq,w) H, (x' — Xo,w) d°x’ (17)



At this point, we substitute in the definition of the scattering operator S from equation 3,

F (x0,w) = M { (%) /Ray(x’)Hs2 (x' — xo,w) d®x’
=[5 ) (VHL) 0], = x0,) (18)

To simplify the second integral on the RHS, we first note that u (x) has finite support which allows
us to apply equation 13 (lemma 1) to the second integral on the RHS,

P (xg,) v 22000 () [(‘;’—0)2/Rg<x') H2 (x' — xo,0) '
+/Rau(x') (VH, - VH,) (x' —Xo,w) d3x’] (19)

At sufficiently large distances away from the active aperture, we can use the approximation in equa-

2
tion 14 (lemma 2) to replace (VH, - VHy) with — (C“—O) H?2. This allows us to rewrite F (xo,w)
as

~ jw’poVn (w)

F (xo,0) m P8 | HE (= x0,0) [ () — ()] 4% (20)

What exactly is meant by ‘sufficiently large distances away from the active aperture’ is discussed
in detail in appendix B. In short, equation 14 appears to be well satisfied at axial depths greater
than the diameter of the active aperture [8]; for non-circular surfaces, this is the diameter of the
smallest circle within which the active aperture can be inscribed.

It may be instructive to also consider equations 19 and 20 from the point-of-view of linear systems.
We refer to figure 2(a), which illustrates graphically how the signal F (xo,w) is composed of
monopole and dipole components (recall from subsection 3.1 that vy (x) and u(x) are monopole
and dipole terms respectively). From a systems’ point-of-view, v (x) and u (x) are two distinct
input signals, each convolved with a different spatiotemporal filter before being summed up and
temporally filtered to produce F (xg,w). It is only at axial distances greater than the dimensions
of the active aperture that the responses of the monopole and dipole spatiotemporal filters become
sufficiently similar in magnitude for these input signals to be combined into a single input as shown
in figure 2(b). In the special case that either of monopole or dipole scattering is dominant, one of
the branches in the block diagram of figure 2(a) is effectively rendered negligible, and the linear

system depicted in this block diagram is reduced to having just one input signal.

3.5 The RF Voltage Trace

We now model the electromechanical conversion of the force on the active aperture into a voltage
trace. If we define the electromechanical transfer function that models this conversion to be E,, (w)
and the voltage trace to be R (xg,w), we have R (xg,w) = Ep, (w) F (X0,w) [9, 21]; substituting



Monopole component

6>—> %jw/)OVn (W) > F(x,w)

Dipole component

GD—’ (2) 2 (x0) 3jwpoVa ()

F(x,w)

(b)
Figure 2: Block diagram representations of (a) equation 19 and (b) equation 20.
in the expression for F (xg,w) from equation 20,

w2 po Vi (W) By (w
R (x0) 1270V ) B ()
CO R3

HE (x' = x0,w) [y (x') — pu (x")] d°%’ (21)

For convenience, we group the properties of the medium together and the electromechanical char-
acteristics of the probe together. We adopt definitions similar to those given in [9] and write the

voltage trace as

R (x0,w) = Vpe (w) Hs2 (—x,w) (% fm (%) B (22)

V:De (w) = jw3Vn (w) E, (w) (23)
ke [AR(x)  Ap(x)

gm0 = [ - ] 9

In keeping with the terminology introduced in [9], we refer to the quantities Ve (w) and fp, (x)
respectively as the pulse-echo wavelet and the tissue reflectivity or scatterer field. Note that to
obtain the expression for f,, (x) in equation 24, we have substituted in the definitions of ¢g, v (x)

and p (x) from equations 1 and 4.



We can also express the voltage trace in the time domain as

r (xo0,t) & vpe (t) (? hpe (—x%,1) QE fm (x) (25)
31}

0pe ()= F 7 (Ve (@)} = = S22 ()9 e (1) (26)

hpe (x,t) = F~' {H? (x,w)} (27)

v (1) = F7H{V, (w)} (28)

em () = F {Bp () (29)

If we regard the quantity f,, (x) as the input signal and r (x¢,t) as the output signal, equations
22 and 25 show very clearly that the imaging system is linear with a spatiotemporal transfer
function V., (w) H2 (—x,w) or impulse response vy (t) (? hpe (—%,t) . Our definition of the transfer
function of the imaging system in this way neatly distinguishes between the electromechanical
characteristics of the probe (represented by the pulse-echo wavelet Ve (w)) and the geometry of
the probe (represented by the pulse-echo transfer function H? (x,w)).

4 Shift-Variance in the Axial Direction

To view ultrasound imaging from a purely signal processing point-of-view, we can combine the
electromechanical response vy (t) and the pulse-echo impulse response hyp (x,t) into a single
impulse response or PSF. If we formally define h (x,t) = vpe () ® hpe (%, 1), then

i

r (Xo,t) & h(—x,t) (%fm (x) B (30)

We can gain a little more insight into the behaviour of the PSF by adopting the coordinate system
shown in Figure 3, where the z, y and 2z axes are aligned with the lateral, elevational and axial
directions respectively.

In a rectangular imaging system, a two-dimensional RF image is acquired by capturing RF traces
at different lateral positions. A three-dimensional RF image is acquired by translating the probe
in the elevational direction. Therefore, the vector xg only changes laterally and elevationally, i.e.
in the z and y directions only; its z coordinate never changes. Hence, without loss of generality,
we can restrict the surface of the active aperture to lie on the zy plane. We can then write

Xo = [ z y 0 ] and x = [ T Yy z ], and equation 30 can be written out in full as

+o0
r (@,9,1) / / / (@ =2,y =y, 2s8) f (9, ) da’ dy' d2' (31)

We see from equation 31 that the PSF is shift-variant along the axial direction but shift-invariant

along the lateral and elevational directions.
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Figure 3: Coordinate system for demonstrating the shift-variance of the PSF in the axial direction.

An example of how a typical PSF varies with axial depth is given in Figure 4. This PSF was
produced by simulating the response of a 6.5 MHz probe to ideal point scatterers at different axial
depths. The probe contains 128 piezoelectric elements and the active aperture used to capture a
single RF trace has 32 elements. Each element is 0.3 mm (lateral) by 6 mm (elevational) with a
lateral gap of 0.1 mm between adjacent elements. The apodisation applied was a Hanning window.
Both the lateral and elevational focal lengths were set to 20 mm. The simulation package used to
carry out the simulation was Field II [10], which uses a discrete approximation to the Rayleigh
integral to compute the spatial impulse response of the probe. The axial depths were calculated
according to the approximation z = %cot, where the value of ¢y was taken to be 1540 m/s (the
factor of % is needed because a pulse travels twice the axial depth in time ¢, from the probe to the
scatterer and then back to the probe).

5 Complex Representation and Signal Statistics

Having derived an expression for 7(z,y,t) in terms of the point spread function and the scatterer
field, most authors leave it there and cite one of the classic texts on speckle [6] when they wish to
talk about the echo envelope amplitude of diffuse scattering as analogous to the distance travelled
by a random walk in the complex plane. In this section we go through the algebra that links the
real RF signal with the corresponding analytic representation in the complex plane. This enables
us to make clear the assumptions that are involved, and also provides an explicit relationship
between the envelope of the point spread function h(x,y, z,t), and the statistics of fully developed
speckle.

11
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Figure 4: A typical system PSF at different axial depths from an apodised aperture after demod-
ulation and logarithmic compression.

5.1 A Complex Baseband Model for RF Ultrasound

From equation (31) we have

“+oo
r(z,y,t) ~ ///h(af' —z,y —y, 2 t) f (2,4, 2") da’ dy' d2'

We now form an analytic signal from the RF signal, using the Hilbert transform, H;{e} in the

time dimension.
T(.CL', Y, t) - th{T(ZIJ, Y, t)} ~

+o0
/ / / h(a — 2,y —y,2,1) — FHAR (& — 2,y — 9, 2O} fon (@', 2) do! dyf d=' (32)

If we assume that the centre frequency of the RF ultrasound signal and the speed of sound in
tissue are both reasonably constant we can define a representation for the complex analytic pulse

in terms of its complex envelope, h(z,y, z,t), the centre frequency wy and centre wave number ko.
h(@,y,2,t) = jHi{h (2,9, 2,0)} = h(z, y, 2,1)el ot 2ko?) (33)

12



See appendix C for a brief explanation of the factor of 2 in the exponent. Typically the centre
frequency of an RF scan line varies by less than 5% in the z direction, and this variation can be
accommodated by the complex envelope ﬁ, which we have assumed to be spatially varying in this

direction.

We can therefore rewrite equation 32
r(xaya t) - th{’f'(IIf yat)}

///h ' —mzy —y, 2 t) ed(wot=2koz )fm (2',y',2") dz' dy' d2'

Ne]“’ot/// o —z,y —y, 2 t) fm (20,2 e —2iko?" qo! qy' dz'
Hence

[r (@, ,1) — 7 H{r (2, y, £)}] eIt / / R =y =y, 201) fn (&4 2) €200 da! ' de’
(34)

The left hand side of equation 34 is the analytic RF signal with the high frequency component at
wo removed. Let #(z,y,t) = [r(z,y,t) — jHi{r(z,y,t)}] e Iwot.

The term f,, (z,y, ) €27%0% is made up of f,,(x,y, z) which is a real function of position, and e2/ko=
which determines the angle of the resulting complex number as a function of the remainder when
the z position of the scatterer is divided by the wavelength, 7/kq, of the dominant frequency. For
a 5 MHz probe this wavelength is roughly 0.3 mm, so we can assume that for diffuse scattererers
the scatterer position is random within the wavelength. This means that the phase of the scatterer
is effectively uniformly distributed in the range 0 to 2m. Let fu(2,y,2) = fim (2,y,2) e 27k0% 4
vector with magnitude determined by f,.(z,y,2) and random phase.

Thus we now have an analogous complex equation to the real equation (31) in which (a) the high
frequency components have been removed by demodulating with the pulse centre frequency, (b)
the pulse is now represented by a complex envelope analogous to the resolution cell of the imaging

system and (c) the scatterers are represented by complex vectors of random phase.

F(2,y,t) // h(z' — 2,y —y,2' 1) fm (2',y', %) da’ dy' d2' (35)

13



where
F(z,y,t) = [r(z,y,t) — jH{r(z,y,t)}] e 990, the analytic RF signal with the e/«o?

component removed

71(3:, y,2,t) = the complex envelope of the point spread function of the imaging sys-
tem, i.e. the sensitivity to scatterers at the point (x,y, z) when forming
the sum in 7 for time ¢. Thus, this can also be viewed as the com-
plex resolution cell or the complex pulse envelope relevant to the depth
corresponding to time t.

fm(z,y,2) = the magnitude is from f,,(x,y,2) and the phase from e~27%0% g0 the

phase is effectively random.
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Figure 5: An analytic RF pulse de-rotated by its mode frequency of 5.79 MHz. (a) Real RF
pulse and corresponding imaginary signal, computed using a Hilbert transform. (b) Amplitude
spectrum of the pulse. (c) Pulse after multiplication by a sinusoid at 5.79 MHz. (d) Amplitude
spectrum of (c). The vertical axes on all the graphs are in arbitrary units.

Note that we can calculate 7#(z,y,t) from the measured RF signal, using an estimate of the pulse
centre frequency. If we get the centre frequency slightly wrong this will have the effect of reducing
the smoothness of A(z,y, z,t). This is illustrated, using a simple example of an ultrasound pulse
waveform, in figures 5 and 6. The analytic representation of the same pulse is shown in figures
5(a) and 6(a). In figure 5 the pulse is de-rotated by its mode frequency of 5.79 MHz, achieving
a smooth envelope, which is shown in 5(c). Figure 6 shows that the asymmetry of the pulse’s
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Figure 6: An analytic RF pulse de-rotated by its mean frequency of 8.17 MHz. (a) Real RF
pulse and corresponding imaginary signal, computed using a Hilbert transform. (b) Amplitude
spectrum of the pulse. (c¢) Pulse after multiplication by a sinusoid at 8.17 MHz. (d) Amplitude
spectrum of (c). The vertical axes on all the graphs are in arbitrary units.

frequency histogram makes the mean frequency of 8.17 MHz less convenient to use for de-rotation
in this case. Figure 6(c) shows a pulse envelope that is not as smooth as 5(c). Notice that in spite
of the fact that there is a significant difference between 5.79 MHz and 8.17 MHz, the signal in 6(c)

is still sufficiently smooth to be used as a plausible pulse envelope.

5.2 Statistics of Speckle

In all our discussion of speckle statistics we assume, without loss of generality, that we are working

at a particular depth corresponding to the time ¢ in the RF signal 7.

From equation (35) we can see that each value in 7 is formed from the sum of all the scatterers
within the pulse envelope. Because of the fm term these scatterers have effectively random phase.
If there are a large number of scatterers within the pulse envelope then, by the central limit theo-
rem, the vector sum of these complex numbers will be distributed as a two-dimensional Gaussian
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in the Argand diagram.

where

Pr(7) = the probability density function of 7.
R(7) = the real part of 7.

$(F) = the imaginary part of 7.
+o00
. 2
9252 = <f;i>/// [h(w,y,z,t)] dr dy dz

(o) denotes the expect value of a quantity. Note that the resolution cell h varies with depth. We
are taking the energy under the curve relevant to a depth given by time ¢ in the RF signal. To

find the amplitude distribution |7 |, we express 7 in polar coordinates and integrate over all angles.

7= R(F) + jI(F) = | |e?®

2 202
i 2lf| (=P
N N\ 2m|F —|7
= Pr(|7|) = /Pr(r) do = 507 exp( 552 )

0
1] g (2P
o2 202

This gives us a Rayleigh distribution, as expected.

Now introduce variables to represent the amplitude and intensity of the backscattered signal.

|7 | (the amplitude)
I = A2 (the intensity)

As already mentioned, the amplitude is Rayleigh distributed. The intensity follows an exponential

A —A?
Pr(A) = o2 &P (W)

1 —-I
PI‘(I) = ﬁexp (W)

Also (A) = 0/Z, (A?) = (I) = 20% and (I*) = 80*.

distribution.

5.3 Second Order Statistics of Speckle

Consider two points in space, labelled 1 and 2. They are located inside an ultrasound phantom
that generates a fully developed speckle backscatter signal. Point 1 is at position (x1,y1,21) and
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point 2 is at position (z1+0d,,y1,21). Quantities at points 1 and 2 will be denoted using subscripts,

for example A; is the amplitude at point 1.

Following equation 35 of [18], define A as the magnitude of the normalised covariance of 7

|{7175)]

A= 202

We assume that the resolution cell (point spread function) of the ultrasound scanner is an even
function in the z direction: h(z,y,z,t). Drawing on results from [14], as detailed in appendix D,
we can directly obtain a convenient expression for A in terms of the overlap of the resolution cells
at points 1 and 2.

}Tf [E($+6w7y7z7t)_E(mayaz;t)]2 dx dy dz
A=1-—= Foo 5 (36)
2[J] [M@,y,2,0)] dw dy dz

The resolution cell / varies slowly with depth determined by ¢. As h does not generally extend
over a wide range of z values for any particular value of ¢, this expression is valid at any depth
provided h is evaluated with the appropriate value of t.

If h is a three dimensional Gaussian with standard deviation width in the z direction equal to wy,

2
. 1 x> y? (z—2h)
h(z,y,z,t) x ————exp | ——5 — — — 2k
( ) Wewyw, (2m)2 l 2w 2w} 2uw?
then equation 36 evaluates to
—52
2= L 37
e (5 ) (37)

Note that the parameters of iL(.’I?, Y, 2,t), l.e. wy, wy, k, w and w, will all vary slowly as a function
of t.

From [11, 14, 17] the expected value of the products I; I, and A; A, are

(L) = 40" (1 4+ A%)

2
(A1 4y) = %zFl (—%, L 1;)\2)

—3;

=0" [2E(X*) — (1 - X*) K(\?)]

where 2 F (o) is the Gaussian hypergeometric function [1, 11] and K (e) and E(e) are the complete
elliptic integrals of the first and second kinds respectively. Following [1], we have adopted the
convention that the arguments of K (e) and E(e) are given as the parameter (conventionally K (m)
and E(m)) rather than the modulus (conventionally K (k) and E(k) where k2 = m). Other authors
[11, 17], have chosen the alternate definition for these functions. Algorithms for evaluating the
elliptic integrals are available in [1], and packages like Matlab (Mathworks Inc.) provide functions

to compute them.
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The Pearson correlation coefficient is defined

{pq) — (p) {2)
p(p,q) = -
V) — 0% /(@) - (@)

Using equation (36) or (37) to determine A, we can thus calculate the Pearson correlation coeffi-

(38)

cients of amplitude and intensity values separated by a distance §, in the z direction.

p(Il,IQ) = /\2 (39)
4E(A?) —2(1=X)K(\?) -7

A, Ay) =
p(A1, As) gy

(40)

If we assume that the complex resolution cell varies only slowly with depth, these formulae are

valid for displacements in any direction, and not just in the x direction as described above.

Most of the results in subsections 5.2 and 5.3 are drawn from previous papers (eg. [3, 17]), but we
believe equation 36, that relates A to the overlap of the complex resolution cells, has not previously
been published in this form.

6 Discussion and Conclusions

The major assumption underpinning this model is that of weak scattering; in our analysis, we
showed that this means requiring the scattering to be weak enough that multiple scattering can
be ignored. Most authors acknowledge that weak scattering occurs when the scatterers’ acoustic
properties differ from the medium’s by small amounts [7, 9, 12], but overlook the fact that weak
scattering also occurs when the size of the scatterers is very small compared to the wavelength
of the incident wave, irrespective of the acoustic properties of the scatterers. At such small
dimensions, the shape of the scatterers may be assumed to be spherical [16] and for a rigid sphere,
the total power scattered is very small when the radius of the sphere is much less than % [12,
pp. 419-420].

In human tissue, the assumption of weak scattering does not hold at strongly reflecting interfaces
such as organ boundaries. Cho et al. [5, p. 536], however, have suggested that it is possible to
extend the linear model’s validity beyond the Born approximation regime by modifying the PSF

to account for some degree of multiple scattering.

The other significant limitation on our linear model is the approximation inherent in Equation
20. From a systems’ point-of-view, the monopole and dipole terms v (x) and y (x) are in fact two
separate input signals contributing to the force on the active aperture (and therefore to the RF
trace). The spatiotemporal filters applied by the physics of the system to each of these input signals
are different; it is only at distances larger than the diameter of the transducer that the responses
of these spatiotemporal filters become sufficiently similar (in magnitude) to allow v (x) and p (x)
to be combined into the single quantity f,, (x). Of course, when one of the inputs is significantly
larger than the other (i.e. when only one of monopole or dipole scattering is dominant), then we
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may approximate this physical behaviour as a single-input, single-output linear system without

this ‘large distance’ constraint.

We have shown how the expression for the RF signal in terms of the tissue reflectivity and a
spatially varying PSF can be transformed into a representation in terms of complex analytic
signals. The complex model incorporates a spatially varying complex PSF envelope that takes
account of variations in the shape of the real PSF as well as well as changes in the speed of sound
and the centre frequency of the backscattered signal.

It is easier to perform simulation and analysis of ultrasound scattering using this complex repre-
sentation than using RF signals because accurate modelling of spatial variation on the scale of a
wavelength is not necessary, and the various quantities do not vary at RF frequencies and hence
can be sampled more sparsely. Our approach provides a direct interpretation of the complex
quantities in terms of their RF analogues and thus makes it easier to understand the physical
significance of results. We show how the complex representation can easily be used to derive the

first and second order statistics of fully developed speckle.
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List of Symbols

® Convolution with respect to ¢

¢

® Convolution with respect to x

X

(o) Expected value of a quantity

A Surface of the active aperture

A; and A, Amplitude of the signal at points 1 and 2
ap (Xa) Apodisation weighting

co Speed of sound in a homogeneous medium

E,, (w) or ey (t)
E(e)

Electromechanical transfer function/impulse response
Complete elliptic integral of the second kind

F~H{e} Inverse temporal Fourier transform

F (xp,w) Force on the active aperture

fm (x) or fr (2,y,2) Tissue reflectivity

fm (z,y,2) Amplitude from tissue reflectivity, random phase
2 F (o) Gaussian hypergeometric function
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h(x,t) or h(z,y,z,t)
hpe (X,1)

H, (x,w)

h(z,y,z,t)

Hi{o}

S(e)

I and I,

(2, y,t)

R(s)

S

t

vV

V (Xa,w)

Vi (W) or vy, (t)
Vpe (W) or vpe (t)

Wy

p(p,q)

Td (Xa)

(Xo,UJ) orr (X07t) orr ($7y7t)

PSF of the imaging system

Pulse-echo impulse response

Spatial transfer function

Complex envelope of the point spread function
Hilbert transform in time

Imaginary part of a number

Intensity of signal at points 1 and 2
Complete elliptic integral of the first kind
Spatial frequency or wave number

Total pressure field

Incident pressure field

Scattered pressure field

Probability of a particular value
Three-dimensional space

RF Voltage trace

Base-band analytic RF signal

Real part of a number

Scattering operator

Time coordinate

Volume containing scatterers
Position-dependent normal velocity over A
Position-independent normal velocity over A4
Pulse-echo wavelet

Std. deviation width in z dir. of Gaussian resolution cell

Position vector in three-dimensional space

Point in V; also a dummy variable of integration
Centre of the active aperture

Point on the active aperture

Compressibility (monopole) scattering term
Change in compressibility introduced by scatterers
Change in density introduced by scatterers

A small displacement in the z direction

Uniform compressibility in a homogeneous medium
Magnitude of normalised covariance of 7(z,y, 2, t)
Density (dipole) scattering term

Uniform density in a homogeneous medium
Pearson correlation coefficient between p and g
Standard deviation of the probability distribution
Delay term for focussing

Temporal angular frequency
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A Proof of Equation 13

For convenience, we restate equation 13:

For any vector-valued function A (x) and scalar function b (x), if A (x) is zero outside

some volume V', then

b(x)V-A(x)d®x=— [ A(x)-Vb(x)d’x
1% 14

Proof: This proof is taken from [12, pp. 325-326]. We begin with the identity
b(x)V-A(x)=—A(x)-Vb(x)+V-[b(x)A (x)] (41)
which can be verified by expanding the RHS and simplifying. Integrating both sides over V',

bOV-ARdx=- [ AR -Vb@dx+ [ V- pEAXdEx  (42)
V! v 1

By the divergence theorem [15, p. 407], the second integral on the RHS is equal to the surface
integral §, b(x) A (x) - i (x) d*x, where S’ is some surface enclosing V' and i (x) is a unit vector
normal to &'. Since A (x) is zero outside V', the surface integral reduces to zero and equation 13
follows. Q.E.D.

B Proof of Equation 14

For convenience, we restate equation 14:

At locations that are far away from the active aperture,

2
w
(VH, - VH,) (x,w) ~ — (a) H? (x,w)
Proof: We define the wave vector k = Cw—of', where T = \1:2\; in words, T is a unit vector parallel

to X — X, and k is a vector also parallel to x — x, but with magnitude Cw—o We can then rewrite

equation 8 for the spatial transfer function as

1 ) efjk'(xfxﬂ)

Hs (X,LU) = % Aap (Xa) eiijd(xa W dZXa (43)
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Taking the gradient,

(VHS) (X,w) = 1 ap (Xa) e_j“”d(xa)v |:

e_jk'(x_xa)
27 A

d’x,
X — Xal

) —jk-(x—x%a) .
S RS i B ) P
A

2 |x — Xa|

— gk (x—xgq —Jjk(x—x4
_ i ap (xa) e*jWTd(xa) —]k € J ( ) B e J ( ) f. d2xa
2 A |X—Xa| |X_Xa|2
i T P
-1 —jura(xa) —jk — & 44
o [ o e et (7 ) “
We apply the condition \x—l—xa| < [k| = £, which is equivalent to [x — Xa| 3> 5x since £ = 2.
Equation 44 then reduces to
1 —jwra(xa) e kb xa) : 2
(VHS) (X, UJ) ~ % 4 ap (Xa) € W (—]k) d Xa (45)

We also assume that the direction of k does not vary very much over the active aperture which
allows the —jk term on the RHS to be factored out of the integral,

efjk'(xfxﬂ)

(VHS) (XJ UJ) ~ lk ap (xa) e_jL’JTd(xa)

d>xa = —jk H 4
27'(' A |X—Xa| X .7 S(X7w) ( 6)

Equation 14 follows from this immediately. Q.E.D.

In practice, the condition |x — x| > % is satisfied for virtually the entire imaged region, since
the wavelengths from medical ultrasound probes are usually very short. For example, consider a
typical probe transmitting at 6.5 MHz into human tissue which has an average speed of sound of
1540 m/s. For this probe, % = 0.0377 mm which is practically negligible.

The condition that the direction of k not vary very much over the active aperture is much stricter
and is only satisfied in regions far away from the active aperture. To quantify exactly what is
meant by ‘far away’, we consider the setup of Figure 7.

(0,0,0

Xmin

[

Active aperture

Figure 7: Coordinate system for calculating an approximation to (VH, - VH,) (x,w).
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For a typical focussed probe, we expect the majority of the transmitted acoustic energy to be
concentrated in a small region enclosing the axial axis, and so we have chosen to consider only the
scenario where x lies along this axis. We can restate our requirement that k be uniform over the
active aperture by equivalently requiring k to be approximately parallel to x.

This requirement is most difficult to satisfy when we consider the point on the active aperture

farthest from the active aperture’s centre, i.e. when x5, = (Xa) Our requirement that k be

max"’

approximately parallel to x can be stated in terms of the dot product as k - x & |k| |x|; in the

case where x, = (Xa) (as shown in Figure 7), we require cosf = 1. If we allow a 10% error

max
in this approximation for cosf, we effectively impose the constraint cosf > 0.9 = 6 < 26°. From
Figure 7, |Xmin| = |(Xa) .| €Ot and so our requirement that § < 26° translates to requiring

x| > 2(xa)

max

maxl'

What we have demonstrated in this brief discussion is that the approximation in equation 14 is
satisfied well at axial depths that are greater than the diameter of the active aperture (for non-
circular apertures, this diameter is the diameter of the smallest circle within which the active

aperture can be inscribed). The same claim is made without proof in [8].

C Motivation for Equation 33

Consider a pulse P of an unspecified complex quantity propagating into a medium in the z direction
at speed w/k.
P (wt —kz)

It is reflected at a depth z; and travels back in the —z direction. Changes in phase and amplitude
during the reflection are represented by ¢;. The reflected pulse is

1P (wt+ (z—21) k — 21k)
When this pulse gets back to the probe, i.e. 2 = 0, we have
@1 P (wt — 2kzy)

Hence we represent h (z,y,z,t) — jHi{h (z,y,2,t)} as h(z,y, z,t)ed“ot=2k02) in equation 33.

D Proof of Equation 36

We start by reproducing equation 35 from [18] in our notation, and introduce a modulus sign
as the analytic signal can otherwise result in a complex value (as noted in the comment below
equation 36 in [18]).
3 = [r7s)]
202
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Using equation 18 from [17] together with the definition of the Pearson correlation coefficient

(equation 38), we can compute equation 39 in the main text of this paper.
p(Il,IQ) = )\2 (47)

Equation A.6 in [14] is
p(Il,IQ) =b (48)

(the reader is referred to [14] for the definition of b) and equation 14 from [14] is
(@)\*
Combining equations 47, 48 and 49 gives us
A=1- 2 (50)

The quantities (i) and (I), which are defined in [14], can be expressed in terms of the complex
resolution cell / using equations 21 and 22 from that paper.

—kz/// :I:y,zt d:z:dydz
1 . - 2
(i) = 5]62 /// [h(:c+6$,y,z,t) — h(z,y,2,t)| dz dy dz

where k? represents the average backscattering intensity. We can substitute these expressions into
equation 50 and cancel k2, to give equation 36

+oo ~ 2
Iff [h(x—}—éz,y,z,t) — h(w,y,z,t)] dz dy dz
A=1-2

fof[ a:y,zt]A dr dy dz
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