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Abstract

In this paper we address the problem of learning Gaussian Mixture Models (GMMs)
incrementally. Unlike previous approaches which universally assume that new data
comes in blocks representable by GMMs which are then merged with the current
model estimate, our method works for the case when novel data points arriveone-
by-one, while requiring little additional memory. We keep only two GMMs in the
memory and no historical data. The current fit is updated with the assumption that
the number of components is fixed, which is increased (or reduced) when enough evi-
dence for a new component is seen. This is deduced from the change from the oldest fit
of the same complexity, termed theHistorical GMM, the concept of which is central
to our method. The performance of the proposed method is demonstrated qualita-
tively and quantitatively on several synthetic data sets and video sequences of faces
acquired in realistic imaging conditions.

1 Introduction

The Gaussian Mixture Model (GMM) is a semi-parametric method for high-dimensional
density estimation. It is used widely across different research fields, with applications
to computer vision ranging from object recognition [3], shape [2] and face appearance
modelling [7] to colour-based tracking and segmentation [11], to name just a few. It is
worth emphasizing the key reasons for its practical appeal: (i) its flexibility allows for the
modelling of complex and nonlinear pattern variations [7], (ii) it is simple and efficient in
terms of memory, (iii) a principled model complexity selection is possible, and (iv) there
are theoretically guaranteed to converge algorithms for model parameter estimation.

Virtually all previous work with GMMs has concentrated on non time critical appli-
cations, typically in which model fitting (i.e. model parameter estimation) is performed
offline, or using a relatively small training corpus. On the other hand, the recent trend
in computer vision is oriented towards real-time applications (for example for human-
computer interaction and on-the-fly model building) and modelling of increasingly com-
plex patterns which inherently involves large amounts of data. In both cases, the usual
batch fitting becomes impractical and an incremental learning approach is necessary.

Problem challenges Incremental learning of GMMs is a surprisingly difficult task. One
of the main challenges of this problem is the model complexity selection which is required
to be dynamic by the very nature of the incremental learning framework. Intuitively, if
all information that is available at any time is the current GMM estimate, a single novel
point nevercarries enough information to cause an increase in the number of Gaussian
components. Another closely related difficulty lies in theorder in which new data arrives



[9]. If successive data points are always badly correlated, then a large amount of data has
to be kept in memory if accurate model order update is to be achieved.

1.1 Related Previous Work

The most common way of fitting a GMM is using the Expectation-Maximization (EM)
algorithm [4]. Starting from an estimate of model parameters, soft membership of data is
computed (theExpectationstep) which is then used to update the parameters in the maxi-
mal likelihood (ML) manner (theMaximizationstep). This is repeated until convergence,
which is theoretically guaranteed. In practice, initialization is frequently performed using
theK-means clustering algorithm [1, 5].

Incremental approaches Incremental fitting of GMMs has already been addressed in
the machine learning literature. Unlike the proposed method, most of the existing meth-
ods assume that novel data arrives inblocksas opposed to a single datum at a time. Hall
et al. [8] merge Gaussian components in a pair-wise manner by considering volumes of
the corresponding hyperellipsoids. A more principled method was recently proposed by
Song and Wang [14] who use theW statistic for covariance and the Hotelling’sT2 statis-
tic for mean equivalence. However, they do not fully exploit the available probabilistic
information by failing to take into account theevidencefor each component at the time
of merging. Common to both [8] and [14] is the failure to make use of the existing model
when the GMM corresponding to new data is fitted. What this means is that even if some
of the new data is already explained well by the current model, the EM fitting will try
to explain it in the context of other novel data, affecting the accuracy of the fit as well
as the subsequent component merging. The method of Hickset al. [10] (also see [9])
does not suffer from the same drawback. The authors propose to first “concatenate” two
GMMs and then determine the optimal model order by considering models ofall low
complexities and choosing the one that gives the largest penalized log-likelihood. A sim-
ilar approach of combining Gaussian components was also described by Vasconcelos and
Lippman [15].

Model order selection Broadly speaking, there are three classes of approaches for
GMM model order selection: (i) EM-based using validation data, (ii) EM-based using
model validity criteria, and (iii) dynamic algorithms. The first approach involves random
partitioning of the data to training and validation sets. Model parameters are then itera-
tively estimated from training data and the complexity that maximizes the posterior of the
validation set is sought. This method is typically less preferred than methods of the other
two groups, being wasteful both of the data and computation time. The most popular
group of methods is EM-based and uses the posterior of all data, penalized with model
complexity. Amongst the most popular are the Minimal Description Length (MDL) [12],
Bayesian Information (BIC) [13] and Minimal Message Length (MML) [19] criteria. Fi-
nally, there are methods which combine the fitting procedure with dynamic model order
selection. Briefly, Zwolinski and Yang [20], and Figueredo and Jain [6] overestimate the
complexity of the model and reduce it by discarding “improbable” components. Vlassis
and Likas [18] use a weighted sample kurtoses of Gaussian kernels, while Verbeeket al.
introduce a heuristic greedy approach in which mixture components are added one at the
time [16].
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Figure 1:TC-GMMs: (a) Average distribution of Euclidean distance between temporally consec-
utive faces across video sequences of faces in unconstrained motion. The distribution peaks at a
low, but greater-than-zero distance, which is typical of Temporally-Coherent GMMs analyzed in
this paper. Both too low and too large distances are infrequent, in this case the former due to the
time gap between the acquisition of consecutive video frames, the latter due to the smoothness of
face shape and texture. (b) A typical sequence projected to the first three principal components
estimated from the data, the corresponding MDL EM fit and the component centres visualized as
images. On average, we found that over 80% of pairs of successive faces have the highest likelihood
of having been generated by the same Gaussian component.

2 Incremental GMM Estimation

A GMM with M components in aD-dimensional embedding space is defined as:

G (x;θ) =
M

∑
j=1

α jN (x; µ j ,C j ) (1)

whereθ = ({αi},{µi}{Ci}) is the set of model parameters,αi being the prior of thei-th
Gaussian component with the meanµi and covarianceCi :

N (x; µ ,C) =
1

(2π)D/2
√
|C| exp

(
−1

2
(x−µ)TC−1(x−µ)

)
(2)

2.1 Temporally-Coherent GMMs

We assumetemporal coherenceon the order in which data points are seen. Let{xt} ≡
{x0, . . . ,xT} be a stream of data, its temporal ordering implied by the subscript. The
assumption of an underlying Temporally-Coherent GMM (TC-GMM) on{xt} is:

x0 ∼ G (x;θ)
xt+1 ∼ pS(‖xt+1−xt‖) ·G (x;θ)

where pS is a unimodal density. Intuitively, while data is distributed according to an
underlying Gaussian mixture, it is also expected to vary smoothly with time, see Figure 1.



Algorithm 1Incremental TC-GMM
Input : current GMMGN (x;θ1),

historical GMMG
(h)
N (x;θ (h)),

novel observationx.

Output : updated GMMGM (x;θ2).

1. Fixed-complexity update: update(GN,x)

2. Model splitting: GM = split-all(GN,G
(h)
N )

3. Pair-wise component merging:

for all (i, j) ∈ (1..N,1..N)

4. Expected description length:

[L1,L2] =DL
{

merge(GM , i, j), split(GM , i, j)
}

5. Complexity update

GM = L1 < L2 ?
merge(GM , i, j) : split(GM , i, j)

6. end
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Figure 2: Fixed complexity update:
The mean and the covariance of each
Gaussian component are updated ac-
cording to the probability that it gen-
erated the novel observation (red cir-
cle). Old covariances are shown as
dashed, the updated ones as solid el-
lipses corresponding to component pa-
rameters, while historical data points
are displayed as blue dots.

2.2 Method Overview

The proposed method consists of a three-stage model update each time a new data point
becomes available, see Algorithm 1. At each time step: (i) model parameters are updated
under the constraint of fixed complexity, (ii) new Gaussian components are postulated
by model splitting and (iii) components are merged to minimize the expected model de-
scription length. We keep in memory only two GMMs andno historical data. One is the
current GMM estimate, while the other is the oldest model od the same complexity after
which no permanent new cluster creation took place – we term this theHistorical GMM.

2.3 GMM Update for Fixed Complexity

In the first stage of our algorithm, the current GMMG (x;θ) is updated under thecon-
straint of fixed model complexity, i.e. fixed number of Gaussian components. We start
with the assumption that the current model parameters are estimated in the ML fashion in
a local minimum of the EM algorithm:

αi =
∑ j p(i|x j )

N
µi =

∑ j x j p(i|x j )

∑ j p(i|x j )
Ci =

∑ j (x j −µi)(x j −µi)T p(i|x j )

∑ j p(i|x j )
(3)



where p(i|x j) is the probability of thei-th component conditioned on data pointx j .
Similarly, for the updated set of GMM parametersθ ∗ it holds:

α∗i =
∑ j p∗(i|x j )+ p∗(i|x)

N+1
µ∗i =

∑ j x j p∗(i|x j )+xp∗(i|x)

∑ j p∗(i|x j )+ p∗(i|x)
(4)

C∗i =
∑ j (x j −µ∗i )(x j −µ∗i )T p∗(i|x j )+(x−µ∗i )(x−µ∗i )T p∗(i|x)

∑ j p∗(i|x j )+ p∗(i|x)
(5)

The key problem is that the probability of each component conditioned on the data
changeseven for historical data{x j}. In general, the change in conditional probabili-
ties can be arbitrarily large as the novel observationx can lie anywhere in theRD space.
However, the expected correlation between temporally close points, governed by the un-
derlying TC-GMM model allows us to make the assumption that component likelihoods
do not change much with the inclusion of novel information in the model:

p∗(i|x j ) = p(i|x j ) (6)

This assumption is further justified by the two stages of our algorithm that follow (Sec-
tions 2.4 and 2.5) – a large change in probabilitiesp(i|x j) occurs only when novel data is
not well explained by the current model. When enough evidence for a new Gaussian com-
ponents is seen, model complexity is increased, while old component parameters switch
back to their original value. Using (6), a simple algebraic manipulation of (3)-(4), omitted
for clarity, and writing∑ j p(i|x j)≡ Ei , leads to the following:

α∗i =
Ei + p(i|x)

N+1
µ∗i =

µiEi +xp(i|x)
Ei + p(i|x)

(7)

C∗i =
(Ci + µi µT

i −µi µ∗Ti −µ∗i µT
i + µ∗i µ∗Ti )Ei +(x−µ∗i )(x−µ∗i )T p(i|x)

Ei + p(i|x)
(8)

It can be seen that the update equations depend only on the parameters of the old model
and the sum of component likelihoods, butno historical data. Therefore the additional
memory requirements are of the orderO(M), whereM is the number of Gaussian com-
ponents. Constant-complexity model parameter update is illustrated in Figure 2.2.

2.4 Model Splitting

One of the greatest challenges of incremental GMM learning is the dynamic model or-
der selection. In the second stage of our algorithm, new Gaussian clusters are postulated
based on the parameters of the current parameter model estimateG and theHistorical
GMM G (h), which is central to our idea. As, by definition, no permanent model or-
der changes occurred between the Historical and the current GMMs, they have the same
number of components and, importantly, the 1-1 correspondence between them is known
(the current GMM is merely the Historical GMM that was updated under the constraint of
fixed model complexity). Therefore, for each pair of corresponding components(µi ,Ci)
and(µ(h)

i ,C(h)
i ) we compute the ‘difference’ component, see Figure 3 (a-c). Writing (3)

for the Historical and the current GMMs, and using the assumption in (6) thei-th differ-



−4 −2 0 2 4 6 8
−5

−4

−3

−2

−1

0

1

2

3

4

5

−4 −2 0 2 4 6 8
−5

−4

−3

−2

−1

0

1

2

3

4

5

(a) (b)

−6 −4 −2 0 2 4 6 8
−5

−4

−3

−2

−1

0

1

2

3

4

5

0 2 4 6 8 10 12 14
−10

0

10

20

30

40

50

Number of points added

E
xp

ec
te

d 
de

sc
rip

tio
n 

le
ng

th
 d

iff
er

en
ce

Merge components
Split components

(c) (d)

Figure 3: Dynamic model order selection:(a) Historical GMM. (b) Current GMM before the
arrival of novel data. (c) New data point (red circle) causes the splitting of a Gaussian component,
resulting in a 3-component mixture. (d) The contribution to the expected model description length
for merging and splitting of the component, as the number of novel data points is increased.

ence component parameters become:

α(n)
i =

Ei −E(h)
i

N−N(h)
µ(n)

i =
µiEi −µ(h)

i E(h)
i

Ei −E(h)
i

(9)

C(n)
i =

CiEi − (C(h)
i + µ(h)

i µ(h)
i

T
)E(h)

i +(µ(h)
i µT

i + µi µ
(h)
i

T
)E(h)

i −µi µT
i Ei

Ei −E(h)
i

+ (10)

µ(n)
i µT

i + µi µ
(n)
i

T −µ(n)
i µ(n)

i

T

2.5 Component Merging

In the proposed method, dynamic model complexity estimation is based on the MDL
criterion. Briefly, MDL assigns to a model a cost related to the amount of information
necessary to encode the model and the datagiven the model. This cost, known as the
description lengthL(θ |{xi}), is equal to the likelihood of the data under that model pe-
nalized by the model complexity, measured as the number of free parametersNE:

L(θ |{xi}) =
1
2

NE log2(N)−P({xi}|θ) (11)



In the case of anM-component GMM with full covariance matrices inRD space, free
parameters are(M−1) for priors,MD for means andMD(D+1)/2 for covariances:

NE = M−1+MD+M
D(D+1)

2
(12)

The problem is that for the computation ofP({xi}|θ) historical data{xi} is needed
– which is unavailable. Instead ofP({xi}|θ), we propose to compute theexpectedlike-
lihood of the same number of data points and, hence, use the expected description length
as the model order selection criterion. Consider two components with the corresponding
multivariate Gaussian densitiesp1(x) ∼ N (x; µ1,C1) and p2(x) ∼ N (x; µ2,C2). The
expected likelihood ofN1 points drawn from the former andN2 from the latter given
modelα1p1(x)+α2p2(x) is:

E
[
P({x j}|θS)

]
=

(∫
p1(x)(α1p1(x)+α2p2(x))dx

)N1
(∫

p2(x)(α1p1(x)+α2p2(x))dx
)N2

(13)

where integrals of the type
∫

pi(x)p j(x)dx are recognized as the Bhattacharyya distance,
which is for Gaussian distributions easily computed as:

dB(pi , p j ) =
∫

pi(x)p j (x)dx =
exp(−K/2)

(2π)D/2|CiC jC|1/2
(14)

where:

C =
(

C−1
i +C−1

j

)−1
µ = C(C−1

i µi +C−1
j µ j ) K = µiC−1

i µT
i + µ jC−1

j µT
j −µC−1µT

On the other hand, consider the case when the two components are merged i.e. re-
placed by a single Gaussian component with the corresponding densityp(x). Then we
compute the expected likelihood ofN1 points drawn fromp1(x) andN2 points drawn from
p2(x), given modelp(x):

E
[
P({x j}|θM)

]
=

(∫
p(x)p1(x)dx

)N1

·
(∫

p(x)p2(x)dx
)N2

(15)

Substituting the expected evidence and model complexity in (11) we get:

∆E[L] = E[LS]−E[LM ] =
1
4

D(D+1) log2(N1 +N2)−E[P({x j}|θS)]+ [P({x j}|θS)] (16)

Then the condition for merging is simply∆E[L] > 0, see Figure 3 (d). Merging equations
are virtually the same as (9) and (10) for model splitting, so we do not repeat them.

3 Empirical Evaluation

The proposed method was evaluated on several synthetic data sets and video sequences
of faces in unconstrained motion, acquired in realistic imaging conditions and localized
using the Viola-Jones face detector [17], see Figure 1 (b). Two synthetic data sets that we
illustrate its performance on are:



1. 100 points generated from a Gaussian with a diagonal covariance matrix in radial
coordinates:r ∼N (r = 5,σr = 0.1), φ ∼N (φ = 0,σφ = 0.7)

2. 80 points generated from a uniform distribution inx and a Gaussian noise perturbed
sinusoid inycoordinate :x∼U (minx= 0,maxx= 10), y∼N (y= sinx,σy = 0.1)

Temporal ordering was imposed by starting from the data point with the minimalx co-
ordinate and then iteratively choosing as the successor the nearest neighbour out of yet
unused points. The initial GMM parameters, the final fitting results and the comparison
with the MDL-EM fitting are shown in Figure 4. In the case of face motion video se-
quences, temporal ordering of data is inherent in the acquisition process. An interesting
fitting example is shown and compared with the MDL-EM batch approach in Figure 5.

Qualitatively, both in the case of synthetic and face data it can be seen that our algo-
rithm consistently produces meaningful GMM estimates. Quantitatively, the results are
comparable with the widely accepted EM fitting with the underlying MDL criterion, as
witnessed by the description lengths of the obtained models.

Failure modes On our data sets two types phenomena in data sometimes caused unsat-
isfactory fitting results. The first, one inherently problematic to our algorithm, is when
newly available data is well explained by the Historical GMM. Referring back to Sec-
tion 2.4, it can be seen in (9) and (10) that this data contributes to the confidence of
creating anewGMM component whereas it should not. The second failure mode was ob-
served when the assumption of temporal coherence (Section 2.1) was violated, e.g. when
our face detector failed to detect faces in several consecutive video frames. While this
cannot be considered an inherent fault of our algorithm, it does point out that ensuring
temporal coherence of data is not always a trivial task in practice.

In conclusion, while promising, a more comprehensive evaluation on different sets of
real data is needed to fully understand the behaviour of the proposed method.

4 Conclusions and Future Work

A novel algorithm for incremental learning of Temporally-Coherent Gaussian mixtures
was introduced. Promising performance was empirically demonstrated on synthetic data
and face appearance streams extracted from realistic video, and qualitatively and quanti-
tatively compared with the standard EM-based fitting.
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usual batch method.
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Figure 5:Face motion data set:Data (dots) and (a) MDL-EM GMM fit. (b) Incremental GMM fit.
(c) Description length of GMMs fitted using EM and the proposed incremental algorithm (shown
is the description length of the final GMM estimate). (d) GMM component centres visualized as
images for the MDL-EM fit (top) and the incremental algorithm (bottom).
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