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Abstract

In this work we consider face recognition frdrace Motion ManifoldfFMMSs). The use

of the Resistor-Average Distance (RAD) as a dissimilarity measure between densities con-
fined to FMMs is motivated in the proposed information-theoretic approach to modelling
face appearance. We introduce a kernel-based algorithm that makes use of the simplicity
of the closed-form expression for RAD between two Gaussian densities, while allowing
for modelling of complex and nonlinear, but intrinsically low-dimensional manifolds. Ad-
ditionally, it is shown how geodesically local FMM structure can be modelled, naturally
leading to a stochastic algorithm for generalizing to unseen modes of data variation. Recog-
nition performance of our method is demonstrated experimentally and is shown to exceed
that of state-of-the-art algorithms. Recognition rate of 98% was achieved on a database of
100 people under varying illumination.

Key words: face recognition, face motion manifolds, kernel, resistor-average distance

1 Introduction

Important practical applications of automatic face recognition (AFR) have made it a
very popular research area in the last three decades, see [1, 2, 3, 4] for surveys. Most
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of the methods developed deal wiimgle-shotecognition. In controlled imaging
conditions (lighting, pose and/or occlusions) many have demonstrated good (nearly
perfect) recognition results [4]. On the other hand, single-shot face recognition in
uncontrolled, or loosely controlled conditions still poses a significant challenge [4].

The nature of many practical applications is such that more than a single image of
a face is available. In surveillance, for example, the face can be tracked to provide
a temporal sequence of a moving face. In access control use of face recognition the
user may be assumed to be cooperative and hence can be instructed to move the
head in front of a fixed camera. Regardless of the setup in which multiple images
of a face are acquired, it is clear that this abundance of information can be used
to achieve greater robustness of face recognition by resolving some of the inherent
ambiguities of the single-shot recognition problem.

In the next section we briefly review relevant literature on face recognition from
video. Section 3 introduces the concept of classification using Kernel RAD, fol-
lowed by a section in which we show how errors in the face registration process
can be modelled and incorporated in the described recognition framework. Sec-
tion 5 describes the pipeline we used to extract and preprocess images of faces
from realistic video sequences. Experimental evaluation of the proposed method
and its comparison to state-of-the-art methods in the literature is reported in Sec-
tion 6. We conclude the paper with a discussion of the results and an outline of
promising directions for future research.

2 Related previous work

Single-shot face recognition is a well established research area. Algorithms such as
Bayesian Eigenfaces [5, 6], Fisherfaces [7, 4], Elastic Bunch Graph Matching [8, 9]
or the 3D Morphable Model [10, 11] have demonstrated good recognition results
when illumination and pose variations are not large. However, all existing single-
shot methods suffer from the limited ability to generalize to unseen illumination
conditions or pose.

Compared to single-shot recognition, face recognition from video is a relatively
new area of research. Most of the existing algorithms perform recognition from
image sequencesusing the temporal component to enforce prior knowledge on
likely head movements. In the algorithm of of Zhou et al. [12] the joint proba-
bility distribution of identity and motion is modelled using sequential importance
sampling, yielding the recognition decision by marginalization. In [13] Lee et al.
approximate face manifolds by a finite number of infinite extent subspaces and use
temporal information to robustly estimate the operating part of the manifold.

There are fewer methods that recognize from manifolds without the associated or-



dering of face images, which is the problem we address in this paper. Two algo-
rithms worth mentioning are the Mutual Subspace Method (MSM) of Yamaguchi
et al. [14, 15] and the Kullback-Leibler divergence based method of Shakhnarovich
et al. [16].

In MSM, infinite extent linear subspaces are used to compactly characterize face
sets i.e. the manifolds that they lie on. Two sets are then compared by computing
the first three principal angles between corresponding principal component analy-
sis (PCA) subspaces [14]. Varying recognition results were reported using MSM,
see [14, 16, 17, 15]. The major limitation of MSM is its simplistic modelling of
manifolds of face appearance variations. Their high nonlinearity (see Figure 1)
invalidates the assumption that data is well described by linear subspaces. More
subtly, the nonlinearity of modelled manifolds means that the PCA subspace esti-
mates are very sensitive to the particular choice of training samples. For example,
in the original paper [15] in which face motion videos were used, the estimates are
sensitive to the extent of rotation in a particular direction. Finally, MSM does not
have a meaningful probabilistic interpretation.

The Kullback-Leibler (KL) divergence based method [16] is founded on information-
theoretic grounds. In the proposed framework, it is assumed:ttlajperson’s

face patterns are distributed accordingpt¢x). Recognition is then performed

by finding p,(x) that best explains the set of input samples — quantified by the
Kullback-Leibler divergence. The key assumption in their work, that makes di-
vergence computation tractable, is that face patterns are normally distributed i.e.
pi(x) = N(x;,C;). This is a crude assumption (see Figure 1), which explains the
somewhat poor results reported with this method [17]. KL divergence was also
criticized for being asymmetric [18] (also see Section 3.1.1).

3 Recognition using statistical models of FMMs

Assuming that the AFR system user performs random head motion in front of the
camera, anatomical constraints of the head and the constraints of the imaging setup
make certain head poses more likely than others. This motivates the interpretation
of face video sequences that we employ in this work — as sets of independently and
identically distributed (i.i.d) samples from the corresponding probability density
functions (see Figure 1). An attractive feature of this approach is that it inherently
encapsulates a statistical interpretation of video sequences and naturally lends itself
to probabilistic modelling of noise and outliers.

Formalizing the above, we assume that an imagésubject’s face is drawn from

the probability densityaﬁé) (x) within the face space, and embedded in the image
space by means of a mapping functigfl : R — RP”. The resulting point in the
D-dimensional space is further perturbed by noise drawn from a noise distribution



Fig. 1.A typical face manifold of head motion (significant pitch and yaw, some roll) around
the fronto-parallel face. Shown is a projection to the first 3 principal components. The
manifold can be seen to be smooth and intrinsically low-dimensional, but highly nonlinear.

p,, (Note that the noise operates in the image space) to form the observedXmage
Therefore the distribution of the observed face images of the suliggiven by:

POX) = [ B GIpa(fi(x) — X)dx o

Note that both the manifold embedding functipand the density on the mani-
fold are subject-specific, as denoted by the superscripts, while the noise distribution
P IS @assumed to be common for all subjects.

3.1 Dissimilarity between manifolds

3.1.1 Kullback-Leibler divergence

One of the best known dissimilarity measures between probability density functions
(pdfs) is the Kullback-Leibler (KL) divergence, sometimes also called the Mutual
Entropy. It is defined as [19]:

Draloll) = [ ) 1og, (225 ) @

Itis nonnegative and equal to zerojiffx) = ¢(x). Note that it is also asymmetrical.

The appeal of KL divergence stems from its information theory founded approach
to quantifying how well a particular pdf(x) describes samples from anther pdf
p(x). To gain the intuition behind this divergence, consider the form of (2). The
integrandp(x) log, (p(x)/q(x)) can be seen to have a large value whér) is
significant andp(x) > ¢(x). Therefore, the regions of the integration space that
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Fig. 2. A 1D illustration of asymmetry of KL divergence (d)x(¢||p) is an order of
magnitude greater thatD g (p||g) — the “wider” distribution ¢(x) explains the “nar-
rower” p(x) better than the other way round. In (fPrap(p, q) is plotted as a function
of Drc1.(pllq) and D 1.(q|[p)-

produce a large contribution 0, (p||q) are those that are well explained i),

but not byg(x) (note that owing to the asymmetry of the expression the converse is
not true). This makes KL divergence suitable in cases when it is known a priori that
one of the densitieg(x) or ¢(x) describes a wider range of data variation than the
other (e.g. asin [20]), see Figure 2 (a). However, in the proposed recognition frame-
work, this is not the case — pitch and yaw changes are expected to be the dominant
modes of variation in both training and novel data. Additionally, exact head poses
assumed by the user are expected to somewhat vary from sequence to sequence and
the robustness to variations not seen in either is desired. This motivates the use of
a symmetric “distance” measure.



3.1.2 Resistor-Average distance.

In this paper we use the Resistor-Average distance (RAD) as a measure of dissimi-
larity between two probability densities. It is defined as:

Dran(p.4) = [Dics(plle)™ + Dcr(allp) "] 3

Much like the KL divergence from which it is derived, it is nonnegative and equal
to zero iff p(x) = ¢(x), but unlike it, it is symmetric. Another important property
of the Resistor-Average distance is that when two classes of pafieamsiC, are
distributed according to, respectivebfx) andq(x), Drap(p, q) reflects the error
rate of the Bayes-optimal classifier betwegrandC, [18].

To see in what manner RAD differs from the KL divergence, it is instructive to
consider two special cases: when divergences in both directions between two pdfs
are approximately equal and when one of them is much greater than the other:

e Dir(pllg) = Dkr(qllp) = D

Dgrap(p,q) = D 4)
e Dxr(pllg) > Dkr(q|lp) or
Drer(pllg) < Dkr(qllp)
Drap(p,q) = min (Dgr(pl||q), Drr(qllp)) 5)

It can be seen that RAD very much behaves like a smooth mibaf(p||¢) and
Dgr(ql|p), also illustrated in Figure 2 (b).

3.2 Estimating RAD for Nonlinear Densities

Following the choice of the Resistor-Average distance as a means of quantifying the
similarity of manifolds, we turn to the question of estimating this distance for two
arbitrary, nonlinear face manifolds. For a general case there is no closed-form ex-
pression for RAD. However, wher(x) andg(x) are two normal distributions [21]:

1 by
Dk r(pllq) :ilogQ (:EqD +
p

1 - e oy e D

§Tr (szq L+ 3, Y%, — %) (%, — xp)T) -5 (6)
whereD is the dimensionality of dat, andx, data means, ankl, and3, the
corresponding covariance matrices.



To achieve both expressive modelling of nonlinear FMMs as well as an efficient
procedure for comparing them, in the proposed method a nonlinear projection of
data using Kernel Principal Component Analysis (Kernel PCA) is performed first.
We shown that with an appropriate choice for the kernel type and bandwidth, the
assumption of normally distributed face patterns in the projection space produces
good KL divergence estimates. With the reference to (1), an FMM is effectively
unfolded from the embedding image space.

3.3 Kernel principal component analysis

PCA is atechnique in which an orthogonal basis transformation is applied such that
the data covariance matri® = ((x; — (x;))(x; — (x;))") is diagonalized. When
data{x;} lies on a linear manifold, the corresponding linear subspace is spanned
by the dominant (in the eigenvalue sense) eigenvectots éfowever, in the case

of nonlinearly distributed data, PCA does not capture the true modes of variation
well.

The idea behind KPCA is to map data into a high-dimensional space in which it
is approximately linear — then the true modes of data variation can be found using
standard PCA. Performing this mapping explicitly is prohibitive for computational
reasons and inherently problematic due to the “curse of dimensionality”. This is
why a technique known as the “kernel trick” is used to implicitly realize the map-
ping. Let function® map the original data from input space to a high-dimensional
pattern space in which it is (approximately) linedr,: R” — R2, A > D. In
KPCA the choice of mappings is restricted to the set such that there is a function

k (the kernel) such that:

D(x;) P(x;) = k(xi, x;) (7)

In this case, the principal components of the dat&®fh space can be found by
performing computations in the inp@®&? space only.

Assuming zero-centred data in the feature space (for information on centring data
in the feature space as well as a more detailed treatment of KPCA see [22]), the
problem of finding principal components in the feature space is equivalent to solv-

ing the eigenvalue problem:

Kui = )\iui (8)
whereK is the kernel matrix:

K, = k(x;,xz) = ®(x;)" ®(x) (9)

The projection of a data poirtto thei-th kernel principal component is computed



using the following expression [22]:

N
=y ugm)k(xm, x) (10)
m=1

3.4 Combining RAD and kernel PCA

The variation of face patterns is highly nonlinear (see Figure 3 (a)), making the
task of estimating RAD between two sparsely sampled face manifolds in the image
space hard. The approach taken in this work is that of mapping the data from the
input, image space into a space in which it lies on a nearly linear manifold. As
before, we would not like to compute this mapping explicitly. Also, note that the
inversions of data covariance matrices and the computation of their determinants
in the expression for the KL divergence between two normal distributions (6) limit
the maximal practical dimensionality of the pattern space.

In our method both of these problems are solved using Kernel PCA. The key obser-
vation is that regardless of how high the pattern space dimensionality is, the data has
covariance in at mos¥ directions, wheréeV is the number of data points. There-
fore, given two data sets of faces, each describing a smooth manifold, we first find
the kernel principal components of their union. After dimensionality reduction is
performed by projecting the data onto the fik$tkernel principal components, the
RAD between the two densities, each now assumed Gaussian, is computed. Note
that the implicit nonlinear map is different for each data set pair. The importance
of this can be seen by noticing that the intrinsic dimensionality of the manifold
thatbothsets lie on is lower than of the manifold that all data in a database lie on,
resulting in its more accurate “unfolding”, see Figure 3 (b).

We estimate covariance matrices in the Kernel PCA space using Probabilistic PCA
(PPCA) [23]. In short, probabilistic PCA is an extension of the traditional PCA
that recovers parameters of a linear generative model of data (i.e. the full cor-
responding covariance matrix), with the assumption of isotropic Gaussian noise:
C = VAVT + 1. Note the model of noise density in (1) that this assumption

implies: ¢ (p,(x)) ~ N(0, 6T), whereg® (f(i)(x)) — x.

4 Synthetically repopulating FMMs

For most applications, due to the practical limitations in the data acquisition pro-
cess, AFR algorithms have to work with sparsely populated face manifolds. Fur-
thermore, some modes of data variation may not be present in full. Specifically, in
the AFR for authentication setup considered in this work, the practical limits on
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Fig. 3. A typical face motion manifold in the input, image space exhibits high nonlinearity
(a). The “unfolded” manifold is shown in (b). It can be seen that Kernel PCA captures the
modes of data variation well, producing a Gaussian-looking distribution of patterns, con-
fined to a roughly 2-dimensional space (corresponding to the intrinsic dimensionality of the
manifold). In both (a) and (b) shown are projections to the first three principal components.

how long the user can be expected to wait for verification, as well as how con-
trolled his motion can be required to be, limit the possible variations that are seen
in both training and novel video sequences. Finally, the noise in the face localiza-
tion process (see Section 5) increases the dimensionality of the manifolds faces lie
on, effectively resulting in even less densely populated manifolds. For a quantita-
tive insight, it is useful to mention that the face appearance variations present in
a typical video sequence used in this paper typically lie on a manifold of intrinsic
dimensionality of 3-7, with 85 samples on average.

In this work, FMMs are synthetically repopulated in a manner that achieves both
higher manifold sample density, as well as some generalization to unseen modes
of variation (see work by Martinez [24], and Sung and Poggio [25] for related



Fig. 4. The original, input data (dots) and the result of stochastically repopulating the
corresponding manifold (circles). A few samples from the dense result are shown as images,
demonstrating that the proposed method successfully captures and extrapolates the most
significant modes of data variation.

approaches). To this end, we use domain-specific knowledge to learn face transfor-
mations in a more sophisticated way than could be realized by simple interpolation
and extrapolation.

Given an image of a face;, we stochastically repopulate its geodesic neighbour-
hood by a set of novel imaggs? }. Under the assumption that the embedding func-
tion £ in (1) is smooth, geodesically close images correspond to small changes in
the imaging parameters (e.g. yaw or pitch). Therefore, using the first-order Taylor
approximation of the effects of a projective camera, the face motion manifold is
locally similar to the theaffine warpmanifold ofx. The proposed algorithm then
consists of random draws of a face imagéom the data, stochastic perturbation

of x by a set of affine warp$A;} and finally, the augmentation of data by the
results of the warps — see Algorithm 2. Writing the affine warp matrix decomposed
to rotation and translation, skew and scaling:

cosf —sinf ¢, 1k0 14s, 0 O
A =|sinf cosf t,[|010 0 1+s,0 (11)
o 0 1)l\oo01 0 0 1

in the proposed method, affine transformation paramétets andt,, k, ands,
ands, are drawn from zero-mean Gaussian densities.
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Fig. 5. Typical outliers present in our data.
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Fig. 6.Intermediate results in the face localization and normalization pipeline employed in
our AFR system. (a) Original input frames with resolutior32d x 240 pixels. (b) Output

of the face detector with average bounding box siZ&of 75 pixels. (c) Face images after
background removal and feathering. (d) Face images after resizing to the uniform scale of
20 x 20 pixels (e) The final face images after histogram equalization.

4.1 Outlier rejection

In most cases, automatic face detection in cluttered scenes will result in a consider-
able number of incorrect localizationsodtliers. Typical outliers produced by the
face detector employed in this paper (see Section 5) can be seen in Figure 5.

Note that due to the complexity of face manifolds, outliers cannot be easily removed
in the input space. On the other hand, outlier rejection after Kernel PCA-based man-
ifold “unfolding” is trivial. However, a way of computing the kernel matrix robust

to the presence of outliers is needed. To this end, our algorithm uses RANSAC [26]
with the underlying Kernel PCA model. The application of RANSAC in the pro-
posed framework is summarized in Algorithm 1. Finally, the recognition method
proposed in this paper is in fullness shown in Algorithm 2.

5 Automatic preprocessing of face images

We use the now acclaimed Viola—Jones cascaded detector [27] for localization of
faces in cluttered images. Figure 8 shows examples of input frames, and Figure 6 (b)
shows a few examples of the correctly detected faces.

5.1 Background removal

The bounding box of a detected face typically contains a portion of the background.
The removal of the background is beneficial both because the it can contain signif-

11



Algorithm 1 RANSAC Kernel PCA

Input: set of observation§x; }, KPCA space dimensionalitfp
Output: kernel principal componentay, }

1: Initialize best minimal sample
Valid sample seB = ()

2: RANSAC iteration
forit=0to LIMIT do

3: Random sample draw
Random sample§y;} <2 {z;}
4: Kernel PCA
{ui} = KPCA({y:})
5: Nonlinear projection
(P} (2
6: Consistent data

Bit = \filte'r(DMAH(:cl-, 0) < T)|

7: Update best minimal sample
Bie| > |B| 7 B = By

8: end for

9: Kernel PCA using best minimal sample
{u;} = KPCA(B)

icant clutter and also depending on the environment in which specific people were
imaged, there is the danger of learning to discriminate based on the background,
rather than face appearance. This is achievesispecifiskin colour segmenta-

tion: Given a set of images from the same subject, we construct colour histograms
for that subject’s face pixels and for the near-face background pixels in that set.
Note that the classifier here is tuned for the given sulgadthe given background
environment. The face pixels are collected by taking the central portion of the few
most symmetric images in the set (assumed to correspond to the frontal face im-
ages); the background pixels are collected from the 10 pixel-wide strip around the
face bounding box provided by the face detector. After classifying each pixel within
the bounding box independently, we smooth the result using a simple 2-pass algo-
rithm that enforces the connectivity constraint on the face and boundary regions,
see Figure 6 (d).

12



Algorithm 2 Robust Kernel RAD

Input: sets of observations; }, {b;}
Output: Drap({a;}, {b;})
1: Inliers with RANSAC
V ={al'}, {b]} = RANSAC({a;}, {b;})
2: Synthetic data
S = {af}, {bf} = perturl{ (aV), (b))

3: RANSAC Kernel PCA
Principal componentéu; } = KPCA(V U S)

4: Nonlinear projection
{al}, (b} L v,8)

5: Closed-form RAD
Drap({a;}, {bi})

6 Empirical evaluation

We compared the recognition performance of the the following methods

KL divergence-based algorithm of Shakhnarovich et al. (Simple KLD) [16],
Simple RAD (based on Simple KLD),

Kernelized Simple KLD algorithm (Kernel KLD),

Kernel RAD,

Robust Kernel RAD,

Mutual Subspace Method (MSM) [15],

Majority vote using Eigenfaces, and

Nearest Neighbour (NN) in the set distance sense; that is, achieving
Minyeg, Minyeg, [|[x — y||2

In the all KLD and RAD-based methods, 85% of data energy was explained by
the principal subspaces. In non-kernelized algorithms this typically resulted in the

3 Methods were reimplemented through consultation with authors.

13



40

| — Input space
| — — KPCA space

35+ " B
30 Pl g

258, 1 B

15 ! R

Number of sequences (%)

0fF

0 I I I I
0 5 10 15 20 25 30

Principal subspace dimensionality

Fig. 7. Histograms of the dimensionality of the principal subspace in kernelized (dotted
line) and non-kernelized (solid line) KL divergence-based methods, across the evaluation
data set. The corresponding average dimensionalities were found-todbend~ 16. The

large difference illustrates the extent of nonlinearity of Face Motion Manifolds.

principal subspace dimensionality of 16, see Figure 7. In MSM, first 3 principal
angles were used for recognition, while the dimensionality of PCA subspaces de-
scribing the data was set to 9 [15]. In the Eigenfaces method, the 150-dimensional
principal subspace used explainedd5% of data energy. A 20-dimensional non-
linear projection space was used in all kernel-based methods with the RBF kernel
k(x;,x;) = exp—y(x; — x;)T(x; — x;). The optimal value of parameterwas
learnt by optimizing the recognition performance on a 20 person training data set.
Note that people from this set were not included in the evaluation reported in Sec-
tion 6.2. We used = 0.380 for greyscale images normalized to have pixel values

in the rangg0.0, 1.0].

6.1 Data

The evaluation of methods in this paper was done on a database with 100 individ-
uals of varying age (see Table 1) and race, and equally represented genders. For
each individual in the database we collected a training and a test video sequence
of the person’s face in random motion, sampled at 10fps. The motion was only
loosely controlled, most sequences containing significant yaw and pitch, and some
roll. lllumination conditions were mildly different in training and test sequences,
see Figures 8 and 9.

14



Table 1
The distribution of age for the database used in the experiments.

Age 18-25 26-35 36-45 46-55

Percentage 29% 45% 15% 7% 4%

Fig. 8.Frames from a typical video sequence used for method evaluation in this paper.
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Fig. 9.A single face motion sequence after face localization and preprocessing.

6.2 Results

The performance of evaluated recognition algorithms is summarized in Table 2.

The results suggest a number of conclusions.

Firstly, note the relatively poor performance of the two nearest neighbour-type
methods — the Set NN and the Majority vote using Eigenfaces. These can be con-
sidered as a proxy for gauging the difficulty of the recognition task, seeing that both

15



Table 2
Results of the comparison of our novel algorithm with existing methods in the literature.
Shown is the identification rate in %.

DB 1 DB 2 Avg.
Robust Kernel RAD 98 98 98
MSM 89 88 88
Kernel RAD 90 87 88
Kernel KLD 78 80 79
Set Nearest Neighbour 70 73 72
Majority Vote w/ Eigenfaces 72 70 71
Simple KLD 40 63 52

can be expected to perform relatively well if the imaging conditions are not greatly
different in training and test data sets. Inspection of the incorrect recognitions of
these methods offered an interesting insight in a particular weakness of these algo-
rithms, see Figure 10 (a). This reaffirms the conclusion of [28], showing that it is
not only changes in illumination that are problematic, but that there are also certain
intrinsically difficult imaging configurations.

The Simple KLD method consistently achieved the poorest results on our database.
We believe that the likely reason for this is the high nonlinearity of face manifolds
corresponding to training sets used, caused by near, office lighting used to vary the
illumination conditions. This is supported by the dramatic and consistent increase
in the recognition performance with kernelization. This result confirms the first
premise of this work, showing that sophisticated face manifold modelling is indeed
needed to accurately describe variations that are expected in realistic imaging con-
ditions. Furthermore, the improvement observed with the use of Resistor-Average
distance suggests its greater robustness with respect to unseen variations in face
appearance, compared to the KL divergence. Kernel RAD performance is compar-
ative to that of MSM, which ranked second-best. The best performing algorithm
was found to be the proposed Robust Kernel RAD. Significant improvement in
recognition ¢ 10%) with synthetic manifold repopulating was found. ROC curves
corresponding to the methods that best illustrate the contributions of this paper are
shown in Figure 10 (b), with Robust Kernel RAD achieving an Equal Error Rate of
2%.

7 Summary and conclusions

In this paper we introduced a novel approach to face recognition from Face Motion
Manifolds. In the proposed algorithm the Resistor-Average distance computed on

16
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Fig. 10.(a) Receiver Operator Characteristic (ROC) curves of the Simple KLD, MSM, Ker-
nel KLD and the proposed Robust Kernel RAD methods. The latter can be seen to exhibit
superior performance, achieving an Equal Error Rate of 2%. (b) The most common failure
mode of NN-type recognition algorithms is caused by “hard” illumination conditions and
head poses. The two top images show faces of two different people that due to severe illu-
mination and half-profile head orientation look very similar (see [28]) — Set NN incorrectly
classified these fames as belonging to the same person. Information from other frames (e.qg.
the two images on the bottom) is not used for a more robust similarity measure.

nonlinearly mapped data using Kernel PCA is used as a dissimilarity measure be-
tween distributions of face appearance, derived from video. A data-driven method
for generalizing to unseen modes of variation is described, resulting in stochastic
manifold repopulating. Finally, the proposed concepts were empirically evaluated
on a database with 100 individuals and mild illumination variation. Our method
consistently achieved a high recognition rate, on average correctly recognizing in
98% of the cases and outperforming state-of-the-art algorithms in the literature.

The findings of this paper suggest a number of promising research directions.
Firstly, we intend to explore other means of modelling FMMs, with emphasis on
methods that provide a more principled way of dealing with noise and can deal with
manifolds of higher intrinsic dimensionality. Additionally, the results presented in
this paper suggest thafpriori learning of reliability of head poses and illumination
conditions could be used for information fusing from multiple frames resulting in
a probabilistic estimate on the confidence of a recognition decision.

Acknowledgements

We would like to thank the Toshiba Corporation for their kind support for our re-
search, the people from the University of Cambridge Engineering Department who

17



volunteered to have their face videos entered in our face database and Trinity Col-
lege, Cambridge.

References

[1] W. A. Barrett, A survey of face recognition algorithms and testing results.,
Systems and Computers 1 (1998) 301-305.

[2] R. Chellappa, C. L. Wilson, S. Sirohey, Human and machine recognition of
faces: A survey., Proceedings of the IEEE 83 (5) (1995) 705-740.

[3] T.Fromherz, P. Stucki, M. Bichsel, A survey of face recognition., MML Tech-
nical Report. (97.01).

[4] W. Zhao, R. Chellappa, A. Rosenfeld, P. J. Phillips, Face recognition: A liter-
ature survey., UMD CFAR Tech. Report CAR-TR-948.

[5] R. Gross, J. She, J. F. Cohn, Quo vadis face recognition., Workshop on Em-
pirical Evaluation Methods in Computer Vision 1 (2001) 119-132.

[6] B. Moghaddam, W. Wahid, A. Pentland, Beyond eigenfaces - probabilistic
matching for face recognition, IEEE International Conference on Automatic
Face and Gesture Recognition (1998) 30-35.

[7] W. S. Yambor, Analysis of PCA-based and fisher discriminant-based image
recognition algorithms., Master’s thesis, Colorado State University (2000).

[8] D. S. Bolme, Elastic bunch graph matching., Master’s thesis, Colorado State
University (2003).

[9] B. Kepenekci, Face recognition using gabor wavelet transform., Ph.D. thesis,
The Middle East Technical University (2001).

[10] V. Blanz, T. Vetter, Face recognition based on fitting a 3D morphable model.,
IEEE Transactions on Pattern Analysis and Machine Intelligence 25 (9)
(2003) 1063-1074.

[11] S.Romdhani, V. Blanz, T. Vetter, Face identification by fitting a 3D morphable
model using linear shape and texture error functions., In Proc. IEEE European
Conference on Computer Vision (2002) 3-19.

[12] S. Zhou, V. Krueger, R. Chellappa, Probabilistic recognition of human faces
from video., Computer Vision and Image Understanding 91 (1) (2003) 214—
245,

[13] K. Lee, M. Yang, D. Kriegman, Video-based face recognition using proba-
bilistic appearance manifolds., In Proc. IEEE Conference on Computer Vision
and Pattern Recognition.

[14] K. Fukui, O. Yamaguchi, Face recognition using multi-viewpoint patterns for
robot vision., Int'| Symp. of Robotics Research.

[15] O. Yamaguchi, K. Fukui, K. Maeda, Face recognition using temporal image
sequence., IEEE International Conference on Automatic Face and Gesture
Recognition (10) (1998) 318-323.

[16] G. Shakhnarovich, J. W. Fisher, T. Darrel, Face recognition from long-
term observations., In Proc. IEEE European Conference on Computer Vision

18



(2002) 851-868.

[17] L. Wolf, A. Shashua, Learning over sets using kernel principal angles, Journal
of Machine Learning Research 4 (10) (2003) 913-931.

[18] D. H. Johnson, S. Sinanayi Symmetrizing the Kullback-Leibler distance.,
Technical report, Rice University.

[19] T. M. Cover, J. A. Thomas, Elements of Information Theory., Wiley, 1991.

[20] O. ArandjelovE, G. Shakhnarovich, J. Fisher, R. Cipolla, T. Darrell, Face
recognition with image sets using manifold density divergence., In Proc. IEEE
Conference on Computer Vision and Pattern Recognition.

[21] S. Yoshizawa, K. Tanabe, Dual differential geometry associated with
Kullback-Leibler information on the gaussian distributions and its 2-
parameter deformations., SUT Journal of Mathematics 35 (1) (1999) 113-
137.

[22] B. Sclolkopf, A. Smola, K. Miller, Kernel principal component analysis.,
Advances in Kernel Methods - SV Learning (1999) 327-352.

[23] M. E. Tipping, C. M. Bishop, Probabilistic principal component analysis,
Journal of the Royal Statistical Society 3 (61) (1999) 611-622.

[24] A. M. Martinez, Recognizing imprecisely localized, partially occluded and
expression variant faces from a single sample per class., IEEE Transactions
on Pattern Analysis and Machine Intelligence 24 (6) (2002) 748-763.

[25] K. K. Sung, T. Poggio, Example-based learning for view-based human face
detection., IEEE Transactions on Pattern Analysis and Machine Intelligence
20 (1) (1998) 39-51.

[26] M. A. Fischler, R. C. Bolles, Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography.,
IEEE Transactions on Computers 24 (6) (1981) 381-395.

[27] P. Viola, M. Jones, Robust real-time face detection., International Journal of
Computer Vision 57 (2) (2004) 137-154.

[28] T. Sim, S. Zhang, Exploring face space., IEEE Workshop on Face Processing
in Video (2004) 84.

19



