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Abstract

Recently various techniques to improve the correlation model of feature vector elements in
speech recognition systems have been proposed. Such techniques include semi-tied covariance
HMMs and systems based on factor analysis. All these schemes have been shown to improve
the speech recognition performance without dramatically increasing the number of model pa-
rameters compared to standard diagonal covariance Gaussian mixture HMMs. This paper
introduces a general form of acoustic model, the factor analysed HMM. A variety of configu-
rations of this model and parameter sharing schemes, some of which correspond to standard
systems are examined. An EM algorithm for the parameter optimisation is presented along
with a number of methods to increase the efficiency of training. The performance of FAH-
MMs on medium to large vocabulary continuous speech recognition tasks is investigated. The
experiments show that without elaborate complexity control an equivalent or better perfor-
mance compared to a standard diagonal covariance Gaussian mixture HMM system can be
achieved with considerably fewer parameters.
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1 Introduction

Hidden Markov models (HMMSs) with continuous observation densities have been widely used for
speech recognition tasks. The observation densities associated with each state of the HMMs should
be sufficiently general to capture the variations among individual speakers and acoustic environ-
ments. At the same time, the number of parameters describing the densities should be as low as
possible to enable fast and robust parameter estimation when using a limited amount of training
data. Gaussian mixture models (GMMs) are the most commonly used form of state distribution
model. They are able to approximate non-Gaussian densities, including densities with multiple
modes. One of the issues when using GMMs is the form of covariance matrix for each compo-
nent. Using full covariance components increases the number of parameters dramatically which
can result in poor parameter estimates. Hence, components with diagonal covariance matrices are
commonly used in HMMs for speech recognition. Diagonal covariance GMMSs can model correla-
tions between the feature vector elements. However, it would be beneficial to have uncorrelated
feature vectors for each component when diagonal covariance matrices are used.

A number of schemes to tackle this intra-frame correlation problem have been proposed. One
approach to decorrelate the feature vectors is to transform each set of vectors assigned to a
particular component so that the diagonal covariance matrix assumption becomes valid. This
system would, however, have the same complexity as full covariance GMMs. Alternatively, a
single global decorrelation transform could be used [4]. Unfortunately, it is hard to find a single
transform that decorrelates speech feature vectors for all states in an HMM system. Semi-tied
covariance matrices (STCs) [4] can be viewed as a halfway solution. A class of states with diagonal
covariance matrices can be transformed into full covariance matrices via a class specific linear
transform. Systems employing STC generally yield better performance than standard diagonal
covariance HMMs, or single global transforms, without dramatically increasing the number of
model parameters.

Subspace models are an alternative approach to transform schemes for spatial correlation
modelling. Heteroscedastic linear discriminant analysis (HLDA) [5, 12] models the feature vectors
via a linear projection matrix applied to some lower dimensional vectors superimposed with noise
spanning the uninformative, “nuisance” dimensions. There is a close relationship between STC and
HLDA. The parameter estimation is similar and both can be viewed as feature space transform
schemes. Alternatives to systems based on LDA-like projections are schemes based on factor
analysis [18, 8]. These model the covariance matrix via a linear probabilistic process applied to a
simpler lower dimensional representation called factors. The factors can be viewed as state vectors
and the factor analysis as a generative observation process. Each component of a standard HMM
system can be replaced with a factor analysed covariance model [18]. This dramatically increases
the number of model parameters due to an individual loading matrix attached to each component.
The loading matrix and the underlying factors can be shared among several components as in
shared factor analysis (SFA). This system is closely related to the factor analysis invariant to linear
transformations of data [8] without the global linear transformation. SFA also assumes the factors
being distributed according to a standard normal distribution. Alternatively the standard factor
analysis can be extended by modelling the factors with GMMs as in independent factor analysis
(IFA) [1]. IFA also assumes independence between the individual factors which corresponds to a
multiple stream system, each stream consisting of one dimension (factor).

This paper introduces an extension to the standard factor analysis which is applicable to
HMMs. The model is called factor analysed HMM (FAHMM). FAHMMs belong to a broad class
of generalised linear Gaussian models [16] which extends the set of standard linear Gaussian models
[17]. Generalised linear Gaussian models are state space models with linear state evolution and
observation processes, and Gaussian mixture distributed noise processes. The underlying HMM
generates piecewise constant state vector trajectories that are mapped into the observation space
via linear probabilistic observation processes. FAHMM combines the observation process from SFA
with the standard diagonal covariance Gaussian mixture HMM acting as a state evolution process.
Alternatively, it can be viewed as a dynamic version of IFA with Gaussian mixture model as the
observation noise. Due to the factor analysis based observation process, FAHMMSs should model



the intra-frame correlation better than diagonal covariance matrix HMMs, yet be more compact
than full covariance matrix HMMs. In addition, FAHMMSs allow a variety of configurations and
subspaces to be explored.

The second section of this paper describes the theory behind FAHMMs including efficient
likelihood calculation and the parameter estimation. Implementation issues arising from increased
number of model parameters and resource constraints are discussed in the following section. An
efficient two level training scheme is described as well. A number of experiments with different
configurations in medium to large vocabulary speech recognition tasks are presented in Section 4.
Conclusions and future work are also provided.

1.1 Notation

In this paper, bold capital letters are used to denote matrices, e.g. A, bold letters refer to
vectors, e.g. a, and plain letters represent scalars, e.g. c¢. All vectors are column vectors unless
otherwise stated. Prime is used to denote the transpose of a matrix or a vector, e.g. A’,a’. The
determinant of a matrix is denoted by |A|. Gaussian distributed vectors, e.g. & with mean vector,
p, and covariance matrix, 3, are denoted by © ~ N (u,X). The likelihood of a vector z being
generated by the above Gaussian; i.e., the Gaussian evaluated at the point z, is represented as
p(z) = N(z;u, ). Vectors distributed according to a Gaussian mixture model are denoted by
x ~ > cmN(l,,, Xm). The lower case letter p is used to represent a continuous distribution,
whereas a capital letter P is used to denote a probability mass function of a discrete variable. The
probability that a discrete random variable, w, equals m is denoted by P(w = m).

2 Factor Analysed Hidden Markov Models

First, the theory behind factor analysis is revisited and a generalisation to factor analysis to
employ Gaussian mixture distributions is presented. The factor analysed HMM is introduced
in a generative model framework. Efficient likelihood calculation and parameter optimisation
for FAHMMs are then presented. The section is concluded by relating several configurations of
FAHMNMs to standard systems.

2.1 Factor Analysis

Factor analysis is a statistical method for modelling the covariance structure of high dimensional
data using a small number of latent (hidden) variables. It is often used to model the data instead
of Gaussian distribution with full covariance matrix. Factor analysis can be described by the
following generative model

x ~ N(0,I) (1)
0o=Cz+v, v~Nu ) (2)

where @ is a collection of k factors (k-dimensional state vector) and o is a p-dimensional observation
vector. The covariance structure is captured by the factor loading matrix (observation matrix),
C, which represents the linear transform relationship between the state vector and the observation
vector. The mean of the observations is determined by the error (observation noise) modelled as a
single Gaussian with mean vector p(?) and diagonal covariance matrix 3(°). The observation pro-
cess in Equation 2 can be expressed as a conditional distribution, p(o|z) = N'(0; Cx + u(®), ),
Also, the observation distribution is a Gaussian with mean vector p(®) and covariance matrix
ccC' +x0).

The number of model parameters in a factor analysis model is pk + 2p. It should be noted
that any non-zero state space mean vector, u*), can be absorbed by the observation mean vector
by adding Cpu® into p(®. Furthermore, any non-identity state space covariance matrix, E(I),
can be transformed into an identity matrix using eigen decomposition, =@ = QAQ'. Q consists



of the eigenvectors of =@ and A is a diagonal matrix with the eigenvalues of =@ on the main
diagonal. The eigen decomposition always exists and is real valued since the covariance matrix
is symmetric positive semi-definite. The transformation can be subsumed into the observation
matrix by multiplying C from the right by QA'/2. Tt is also essential that the observation noise
covariance matrix be diagonal. Otherwise, the sample statistics of the data can be set as the
observation noise and leave the loading matrix to zero. A reduction in the number of model
parameters compared to a full covariance model can be achieved by choosing the state space
dimensionality according to k < (p —1)/2.

Factor analysis has been extended to employ Gaussian mixture distributions for the factors in
IFA [1] and the observation noise in SFA [8]. As in the standard factor analysis above, there is a
degeneracy present in these systems. The covariance matrix of one state space component can be
subsumed into the loading matrix and one state space noise mean vector can be absorbed by the
observation noise mean. Therefore, the factors in SFA can be assumed to obey standard normal
distribution. The effective number of free parameters in a factor analysis model with Gaussian
mixture noise models is given by 2(M ) — 1)k + kp + 2M (©)p where M®) and M () represent the
number of mixture components in state and observation space respectively.

2.2 Generative Model of Factor Analysed HMM

Factor analysed hidden Markov model is a dynamic state space generalisation of a multiple com-
ponent factor analysis system. The k-dimensional state vectors, x;, are generated by a standard
diagonal covariance Gaussian mixture HMM. The p-dimensional observation vectors, o¢, are gen-
erated by a multiple noise component factor analysis observation process. A generative model for
FAHMM can be described by the following two equations

Ty ~ Mhmm7 Mhmm — {ai]7 gfl)’“lgi)’z(w)} (3)
o = Cixy + vy, vy~ ZC O)N N]ma 2(0)) (4)

where the observation matrices, C;, may be dependent on the HMM state or tied over multiple
states. The HMM state transition probabilities from state i to state j are represented by a;;
and the state and observation space mixture distributions are described by the mixture weights
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Figure 1: Bayesian network representing a factor analysed hidden Markov model.

Dynamic Bayesian networks (DBN) [6] are often presented in conjunction with generative
models to illustrate the conditional independence assumptions made in a statistical model. A DBN
describing a FAHMM is shown in Figure 1. The square nodes represent discrete random variables



such as the HMM state {q:}, and state and observation space mixture component indicators
{wf,w?}. Continuous random variables such as the state vectors, x;, are represented by round
nodes. Shaded nodes depict observable variables, o;, leaving all the other FAHMM variables
hidden. A conditional independence assumption is made between variables that are not connected
by directed arcs. The state conditional independence assumption between the output distributions
of a standard HMM is also used in a FAHMM.

2.3 FAHMM Likelihood Calculation

An important aspect of any generative model is the complexity of the likelihood calculations.
The generative model in Equations 3 and 4 can be represented by the following two Gaussian
distributions

plada: = j,wf =n) = Nz plt), S0 (5)

p(odl@s,ar = j,wf = m) = N0y Cyar + iy, 7)) (6)
The distribution of an observation o; given the state ¢; = j, state space component wy = n and
observation noise component wy = m can be obtained by integrating the state vector  out of the
product of the above Gaussians. The resulting distribution is also a Gaussian and can be written
as

bjmn(ot) = P(0t|Qt = jawto = mawi‘v = 7’L) = N(Ot; IJ’jmna E]mn) (7)

where
W = Cipse) + ) (8)
Sjmn = C;20C) 4+ 28 (9)

The state distribution of a FAHMM state j can be viewed as an M (®M®) component full co-
variance matrix GMM with mean vectors given by Equation 8 and covariance matrices given by
Equation 9.

The likelihood calculation requires inverting M (®) M ®) full p by p covariance matrices in Equa-
tion 9. If the amount of memory is not an issue, the inverses and the corresponding determinants
can be computed prior to starting off with the training and recognition. However, this can rapidly
become impractical for large system. A more memory efficient implementation requires the com-
putation of the inverses and determinants on the fly. These can be efficiently obtained using the
following equality for matrix inverses [11]

x 0)\— o)—1 o)—1 o)—1 r)—1\— 0)—1
(B0, + 3 = 3 - B o, SO ()

where the inverses of the covariance matrices E;O) and E(i) are trivial to compute since they are

m J
diagonal. The full matrices, C’} ESZ)L_IC i+ Zﬁ)_l, to be inverted are only k by k matrices. This
is dramatically faster than inverting full p by p matrices if k& < p. The determinants needed in
the likelihood calculations can be obtained using the following equality [11]

ic; =0+ 30 = 20 =0csl ey + =07 (11)
where again the determinants of the diagonal covariance matrices are trivial to compute and often
the determinant of the k by k matrix is obtained as a by-product of its inverse; e.g., when using
Cholesky decomposition. In a large system, a compromise has to made between precomputing
of the inverse matrices and computing them on the fly. For example, caching of the inverses can
be employed because some components are likely to be computed more often than others when
pruning is used.



The Viterbi algorithm [19] can be used to produce the most likely state sequence the same way
as with standard HMMs. The likelihood of an observation o; given only the state ¢; = j can be
obtained by marginalising the likelihood in Equation 7 as follows

M@ M@

w@>:mw%:ﬁ:§j§”23@mmot (12)
m=1

Any Viterbi algorithm based decoder such as token passing algorithm [20] can be easily modified
to support FAHMMSs this way. The modifications to forward-backward algorithm are discussed in
the training section below.

2.4 Optimising FAHMM Parameters

A maximum likelihood (ML) criterion is used to optimise the FAHMM parameters. It is also
possible to find discriminative training scheme such as minimum classification error [18] but for
this initial work only ML training is considered. In common with standard HMM training the
expectation maximisation (EM) algorithm is used. The auxiliary function for FAHMMs can be
written as

QM. M) = 3 [ PQIO.MP(XI0.Q.M)logp(0. X, QUM Xr) (1)
{Qr}

where {Qr} and {X7} represent all the possible discrete state and continuous state sequences of
length T respectively. O = o1, ..., 07 is a sequence of observation vectors and X = xq,...,x is
a sequence of state vectors. M represents the set of current model parameters.

The sufficient statistics of the first term, P(Q|O, M), in the auxiliary function in Equation 13
can be obtained using the standard forward-backward algorithm with likelihoods given by Equation
12. For the state transition probability optimisation, two sets of sufficient statistics are needed,
the posterior probabilities of being in state j at time ¢, v, (t) = P(q; = j|O, M), and being in state
i at time ¢ — 1 and in state j at time ¢, &;(t) = P(qi—1 = i, q = j|O, M). For the distribution
parameter optimisation the component posteriors, Yimn(t) = P(¢ = j,wf = m,wf = n|O, M),
have to be estimated. These can be obtained within the forward-backward algorithm as follows

1 o x
wmmwzzmo);iﬁhmmotEjmﬂn 1)8;(t) (14)

where Ny is the number of HMM states in the model, «;(t — 1) is the standard forward variable
representing the joint likelihood of being in state ¢ at time t—1 and the partial observation sequence
up to t — 1, p(g—1 = 4,01,...,04-1), and G;(t) is the standard backward variable corresponding
to the posterior of the partial observation sequence from time ¢ + 1 to T given being in state j at
time ¢, p(0¢41,...,07|q = J).

The second term, p(X|0, @, M), in the auxiliary function in Equation 13 is the state vector
distribution given the observation sequence and the discrete state sequence. Only the first and
second-order statistics are required since the distributions are conditionally Gaussian given the
state and the mixture components. As derived in [16] the sufficient statistics can be written as

Emn(t) = 1) + Kjmn (0r — Cpls) — ) (15)

Rjmn(t) = = = KjunC = 4 & () (1) (16)

where K jpn, = E;?C; (CjE%)C; + 25-2)_1. It should be noted that the matrix inverted in the
equation for K j,, is exactly the same as the inverse covariance matrix in Equation 10 and the
same efficient algorithms presented in Section 2.3 apply.

Given the two sets of sufficient statistics above the model parameters can be optimised by solv-
ing a standard maximisation problem. The parameter update formulae for the underlying HMM



parameters in FAHMM are very similar to standard HMM except the above state vector distri-
bution statistics replace the observation sample moments. The state parameter update formulae
can be written as

ayj = 20— (17)

== (18)

ﬂ(x) _ t=1 1 (19)

T M@

A Z Z Vimn (t)ijn (t)

() _ .. t=1 m=1 () ~ (z)
2]71 - dlag( T M© - /l’gn /l’gn ) (20)

Z Z Vimn (t)

t=1 m=1

where diag(-) sets all the off-diagonal elements of the matrix argument to zeros. The cross-
products of the new state space mean vectors and the first-order accumulates have been simplified
in Equation 20. This can only be done if the mean vectors are updated during the same iteration,
and the covariance matrices and the mean vectors are tied on the same level.

The new observation matrix, C j» has to be optimised row by row as in SFA [8]. The scheme
adopted in this paper follows closely the maximum likelihood linear regression (MLLR) transform
matrix optimisation [3]. The Ith row vector ¢;; of the new observation matrix can be written as

e = kG (21)
where the k by k matrices G;; and the k£ dimensional column vectors k;; are defined as follows

M@ T M®)

G = Z (0)2 D Yimn () Rjmn (1) (22)

]ml t=1 n=1
M@ T M®)

kjl = Z (o )2 Z Z 'Y]mn Otl - N_g‘:r)ﬂ)ijmn (t) (23)

m=1 ]mltlnl

(0)2 w18 the Ith diagonal element of the observation covariance matrix 25 °) oy and fi; )l are

the [th elements of the current observation and the observation noise mean vectors respectwely

where o



Table 1: Standard systems related to FAHMMs.

| system | relation to FAHMMs |
HMM M@ =0
SFA M@ =1
dynamic IFA M©) =1
STC k=pand vy, =0
Covariance EMLLT | k£ > p and v; =0

Given the new observation matrix, the observation noise parameters can be optimised using
the following formulae

T M®

SN Yjmn(t)

652 _ t=1 nTZI (24)

> )

T M®)
Z 'YJmn ( Ot — Cj:bjmn(ﬁ))
. (0) —1 n=
i = T (25)
Z ’ijn
t=1 n=1
(0) LA
~ (O ~ (0 /
Tjm = 7 M(I) ; 1 Yimn (¢ dlag(otot [C /‘l’§m:| [0&jmn(?) 00 ]
Z ’ijn
t=1 n=1
~ o Ao/ o ~ (o R'mntA'mnt ~ AOI
— [ 01}, (t) 0 ] |:Cj u}” + [Cj MEH L?/] ((t)) I 1 ( )] [Cj H;H ) (26)
jmn

Detailed derivation of the parameter optimisation can be found in [16].

A direct implementation of the training algorithm is inefficient due to the heavy matrix com-
putations required to obtain the state vector statistics. An efficient two level implementation of
the training algorithm is presented in Section 3.4. Obviously, there is no need to compute the
off-diagonal elements of the new covariance matrices in Equations 20 and 26.

2.5 Standard Systems Related to FAHMMs

A number of standard systems can easily be related to FAHMMs. Since the FAHMM training
algorithm described above is based on EM algorithm, it is only applicable if there is observation
noise. Some of the related systems have the observation noise set to zero which means that different
optimisation methods have to be used. The related systems are presented in Table 1 and their
properties are further discussed below.

e By setting the number of state space mixture components to zero, M *) = 0, FAHMM re-
duces to a standard diagonal covariance Gaussian mixture HMM. The observation noise acts
as the state conditional output distribution and the observation matrix is made redundant
because no state vectors will be generated.



e By setting the number of state space mixture components to one, M*) = 1, FAHMM
corresponds to SFA [8]. Even though the state space distribution parameters are modelled
explicitly, there are effectively an equal number of free parameters in this FAHMM and SFA
which assumes the state distribution with zero mean and identity covariance.

e By setting the number of observation space distribution components to one, M) = 1,
FAHMM corresponds to a dynamic version of IFA [1]. The only difference to the stan-
dard TFA is the independent state vector element (factor) assumption which would require
a multiple stream (factorial) HMM [7] with one dimensional streams in the state space. Ef-
fectively multiple streams can model a larger number of distributions but the independence
assumption is relaxed in this FAHMM assuming uncorrelated factors instead of independent.

e By setting the observation noise to zero, v = 0, and setting the state space dimensionality
equal to the observation space dimensionality, £k = p, FAHMM reduces to a semi-tied covari-
ance matrix HMM. The only difference to the original STC model in [4] is that the mean
vectors are also transformed in FAHMM.

e By setting the observation noise to zero, v; = 0, and setting the state space dimensionality
greater than the observation space dimensionality, £k > p, FAHMM becomes a covariance ver-
sion of extended maximum likelihood linear transformation (EMLLT) [15] scheme. FAHMM
is based on a generative model which requires every state space covariance matrix being a
valid covariance matrix; i.e. positive semi-definite. EMLLT is an inverse covariance model
where the parameter matrix, A;, corresponding to the FAHMM state vector variances, may
also have non-positive values as long as the effective covariance matrices will be positive
semi-definite.

3 Implementation Issues

When factor analysed HMMs are applied for large vocabulary continuous speech recognition
(LVCSR) there are a number of efficiency issues that must be addressed. As EM training is
being used, an appropriate initialisation scheme is essential. Furthermore, in common with stan-
dard LVCSR systems, parameter tying may be used extensively. In addition, there is a large
amount of matrix operations that need to be computed. Issues with numerical accuracy have to
be considered. Finally, as there are two sets of hidden variables in FAHMMSs, an efficient two level
training scheme is presented.

3.1 Initialisation

One major issue with maximum likelihood training is that there are a number of local maxima.
An appropriate initialisation scheme may improve the chances of finding a good solution. A
sensible starting point is to use a standard HMM. A single Gaussian HMM can be converted to
an equivalent FAHMM as follows

B = Hjg (27)
@ _ 1

B0 = 5350k (28)
C, =1 (29)
(o) _ 0 }

ul? = 30
! {“j[kﬂm] (30)

iy 0

s0) _ {2 S5 ] 31
! 0 2jlk+1:p) 31)

where g1, represent the first k elements of the mean vector and (1. is the upper left & by k
submatrix of the covariance matrix associated with state j of the initial HMM.



The above initialisation scheme assumes that the first k feature vector elements are the most
significant. In the experiments, the state space dimensionality was chosen to be k = 13 which
corresponds to the static parameters in a standard 39-dimensional feature vector. Alternative
feature selection techniques such as Fisher ratio or recognition based can also be used within this
initialisation scheme.

3.2 Parameter Sharing

As discussed in Section 2.1, the order of number of free parameters per state in a FAHMM is
the same as in a factor analysis model with Gaussian mixture distributions. Table 2 summarises
the numbers of free parameters for HMM and FAHMM states. The dimensionality of the state
space, k, and the number of observation noise components, M (°) have the largest influence on the
complexity of FAHMMs.

Table 2: Order of number of free parameters using M (*) state space components, M (®) observation
noise components and no sharing of individual FAHMM parameters.
| System | Free Parameters |
HMM (M®) = 0) 2M©p
FAOMM (M@ > 0) | 2(M® — 1)k + pk +2M©)p

When context-dependent HMM systems are trained the selection of the model set is often based
on decision-tree clustering [2]. However, implementing decision-tree clustering for FAHMMs is very
complicated. Since the clustering is not optimal [14], decision-tree clustered HMM models may
be considered as a sufficiently good starting point for FAHMM initialisation. The initialisation of
the context-dependent models can be done the same way as using standard context-independent
HMDMs described above.

In addition to state clustering, it is sometimes useful to share some of the individual FAHMM
parameters. It is possible to tie any number of parameters between arbitrary number of models at
various levels of the model. For example, the observation matrix can be shared globally or between
classes of states as in semi-tied covariance HMMs [4]. A global observation noise distribution could
represent a stationary noise environment corrupting all the speech data. Implementing an arbitrary
tying scheme is closely related to standard HMM systems [20]. The sufficient statistics required
for the tied parameter are accumulated over the entire class sharing it before updating. If the
mean vectors and the covariance matrices of the state space noise are tied on a different level,
all the cross terms between the first-order accumulates and the updated mean vectors have to be
used in the covariance matrix update formula in Equation 20.

3.3 Numerical Accuracy

The matrix inversion described in Section 2.3 and the parameter estimation require many matrix
computations. Numerical accuracy may become an issue due to the vast amount of sums of prod-
ucts. In the experiments it was found that double precision had to be used in all the intermediate
operations. Nevertheless, single precision was used to store the accumulates and model parameters
due to the memory usage.

A lot of training data is required to get reliable estimates for the covariance matrices in a
large vocabulary speech recognition system. Sometimes the new variance elements may become
too small which causes trouble in the likelihood calculations. To avoid problems with FAHMMs
the full covariance matrices in Equation 9 must be guaranteed to be non-singular. The matrix
C; 25‘? C’;- is at most rank k provided the state space variances are valid. Therefore, it is essential
that the observation noise variances are floored properly. In the experiments it was found that
the flooring scheme usually implemented in HMM systems [20] is sufficient for the observation
variances in FAHMMSs. With very large model sets the new estimates for the state space variances



may become negative due to insufficient data for the component. In the experiments such variance
elements were not updated.

3.4 Efficient Two Level Training

To increase the speed of training, a two level algorithm is adopted. The component specific
first and second-order statistics form the sufficient statistics required in the parameter estimation
described in Section 2.4. This can be verified by substituting the state vector statistics, & jmn(t)
and 3jmn(t), in Equations 15 and 16 into the update Equations 17-26. The sufficient statistics
can be written as

T
t=1
T

Bjmn = > Vimn ()0 (33)
t=1

_ T

ijn = Z'ijn(t)otoé (34)
t=1

Given these accumulates and the current model parameters, M, the required accumulates for
the new parameters can be estimated. Since the estimated state vector statistics depend on
both the data accumulates and the current model parameters an extra level of iterations can
be introduced. After updating the model parameters, new state vector distribution given the
old data accumulates and the new model parameters can be estimated. These within iterations
are guaranteed to increase the log-likelihood of the data. Figure 2 illustrates the increase of the
auxiliary function values during three full iterations, 10 within iterations each.

full iteration 1 full iteration 2 full iteration 3
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Figure 2: Auxiliary function values against within iterations during 3 full iterations.

The efficient training algorithm can be summarised as follows
1. Collect the data statistics using forward-backward algorithm;
2. Estimate the state vector distribution p(x:|j, m,n, O, M);

3. Estimate new model parameters M;

4. If the auxiliary function value has not converged go to step 2 and update the parameters

M — M,

5. If the average log-likelihood of the data has not converged go to step 1 and update the
parameters M — M.

10



The within iterations decrease the number of full iterations needed in training. The overall
training time becomes shorter because less time has to be spent collecting the data accumulates.
The average log-likelihoods of the training data against the number of full iterations are illustrated
in Figure 3. Four iterations of embedded training were first applied to the baseline HMM. The
FAHMM system with & = 13 was initialised as described in Section 3.1. Both, one level training
and more efficient two level training with 10 within iterations, were used and the corresponding
log-likelihoods are shown in the figure.

-62
641 N —
B —
-66[ b
el
o
o
<
2 68 b
>
o
&-70F E
o
[
>
© =
-72F b
—74 —— HMM baseline I
—=— FAHMM one level training
FAHMM two level training, 10 within iter
—76 L L I I I
0 2 4 6 8 10 12

no. iterations

Figure 3: Log-likelihood values against full iterations for baseline HMM and an untied FAHMM
with £ = 13. One level training and more efficient two level training with 10 within iterations
were used.

4 Results

The results in this section are presented to illustrate the performance of some FAHMM configura-
tions on medium to large speech recognition tasks. Only a small number of possible configurations
have been examined and the configurations have not been chosen in accordance with any optimal
criterion. The aim is to show how FAHMMSs perform with some possible configurations as well as
compare them to standard semi-tied systems.

4.1 Resource Management

For initial experiments, a standard medium size speech recognition task, the ARPA Resource
Management (RM) task, was used. Following the HTK “RM Recipe” [20], the baseline sys-
tem was trained starting from a flat start single mixture monophone system. 3990 sentences
{train+dev_aug} were used for training. After four iterations of embedded training, the mono-
phone models were cloned to produce a single mixture cross word triphone system. These
initial triphone models were trained with two iterations of embedded training after which a
decision-tree clustering was applied to produce a tied state triphone system. This system was
used as an initial model set for standard HMM, STC and FAHMM systems. 1200 sentences
{feb89+0ct89+feb91+sep92} with a simple word-pair grammar were used for evaluation.

The baseline HMM system was produced by standard mixing up procedure [20] using four
iterations of embedded training per mixture configuration until no decrease in the word error rate
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Table 3: Order of number of free parameters and word error rates in Resource Management
baseline HMM, global full transform semi-tied HMM and global full observation matrix FAHMM
systems.

L v | v | 2 [ 3 [ 4 [ 5 [ 6 |
. 78 | 156 | 234 | 812 | 390 | 408
7.79% | 6.68% | 5.05% | 4.32% | 4.09% | 3.99%
S1C 78 | 156 | 234 | 312 | 390 | 468
7.06% | 5.30% | 4.32% | 3.93% | 3.83% | 3.85%
117 | 195 | 273 | 851 | 420 | 507
CFAHMM 1 6 5904 | 4.88% | 4.28% | 3.94% | 3.68% | 3.77%

was achieved. The word error rates with the order of number of free parameters per state up to 6
components are presented on the first row in Table 3. The best performance was 3.76% obtained
with 10 mixture components. The order of number of free parameters in the best baseline system
was 780 per state. As an additional baseline a global semi-tied HMM system was built. The
single mixture baseline HMM system was converted to the STC system by adding a global full
39 by 39 identity transformation matrix. The number of free parameters increased globally by
1521 compared to the baseline HMM system. As discussed in Section 2.5, this system corresponds
to a FAHMM with state space dimensionality £ = 39 and zero observation noise. The number
of mixture components was increased by the mixing up procedure. 9 full iterations of embedded
training were used with 20 within iterations and 20 row by row transform iterations [4]. The
results are presented on the second row in Table 3. The best semi-tied performance was 3.83%
obtained with 5 mixture components. As usual, the performance when using STC is better with
fewer mixture components. However, increasing the number of mixture components in a standard
HMM system can be seen to model the intra-frame correlation better.

A FAHMM system with state space dimensionality k£ = 39 and a global observation matrix was
built for comparison with the STC system above. The global full 39 by 39 observation matrix was
initialised to an identity matrix and the variance elements of the single mixture baseline HMM
system were evenly distributed among the observation and state space variances as discussed in
Section 3.1. The number of state space components was fixed to one and the observation space
components were increased by the mixing up procedure. The system corresponds to a global full
loading matrix SFA with non-identity state space covariance matrices. The number of additional
free parameters per state was 39 due to the state space covariance matrices and 1521 globally
due to the loading matrix. 9 full iterations of embedded training were used along with 20 within
iterations. The results are presented on the third row in Table 3. The best performance, 3.68%,
was achieved with 5 mixture components. The difference in the number of free parameters between
the best baseline and the best FAHMM system was 351 per state. Compared to the STC system,
FAHMM has only 39 additional free parameters per state. The FAHMM system provides a relative
word error rate reduction of 4% to the STC system.

These initial experiments show the relationship between FAHMMs and STC in practise. How-
ever, the training and recognition using full state space FAHMMSs is a lot more complex than
using global STC even though the observation matrix is shared globally. Since STC does not have
observation noise, the global transform can be applied to the feature vectors in advance and full
covariance matrices are not needed in the likelihood calculation. The performance of FAHMMs
using lower dimensional state space is investigated in the experiments below.

4.2 Minitrain

The Minitrain 1998 Hub5 HTK system [10] was used as a larger speech recognition task. The base-
line was a gender independent decision-tree clustered tied state cross word triphone Gaussian mix-
ture HMM system. The 18 hour Minitrain set containing 398 conversation sides of Switchboard-1
corpus and defined by BBN [13] was used as the acoustic training data. The test data set was the
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Table 4: Order of number of free parameters and word error rates in Minitrain FAHMM system
with k = 13.

M]g)( ) 1 2 4
1 585 663 819
53.3% | 51.7% | 51.0%
9 611 689 845
53.3% | 51.4% | 51.3%
4 663 741 897
53.0% | 51.0% | 50.9%
6 715 793 949
52.8% | 50.7% | 51.0%
8 767 845
52.6% | 51.0%

subset of the 1997 Hub5 evaluation set used in [10]. The best performance, 51.0%, was achieved
with 12 components which corresponds to 936 parameters per state. Mixing up was not continued
further since the performance started degrading after 12 components.

FAHMM system with state space dimensionality 13 was built starting from the single compo-
nent baseline system. An individual 39 by 13 observation matrix initialised as an identity matrix
was attached to each state. The first 13 variance elements of the HMM models were evenly dis-
tributed among the observation and state space variances as discussed in Section 3.1. The mixing
up was started from the single component baseline system increasing the number of state space
components while fixing the number of observation space components. The number of observation
space components of single state space component system was then increased and fixed until all
the state space components were mixed up and so on. The results up to the best performance per
column are presented in Table 4. As discussed in Section 2.5, the row corresponding to M *) =1
is related to a SFA system and the first column corresponding to M (?) = 1 is related to a dynamic
IFA without the independent element assumption. The same performance as the best baseline
HMM system was achieved using FAHMMSs with 2 observation and 4 state space components.
The difference in the number of free parameters per state is considerable, 195. The best FAHMM
performance, 50.7%, was also achieved using fewer free parameters than the best baseline system
though it is not statistically significant.

These experiments show how the FAHMM system performs in a large speech recognition task
when low dimensional state space is used. As the state space dimensionality and the initialisation
were selected based on intuition, the results seem promising. Choosing the state space dimension-
ality automatically is very challenging problem and it can be expected to improve the performance.
Complexity control and more elaborate initialisation schemes will be studied in the future.

4.3 Switchboard 68 Hours

For the experiments performed in this section, a 68 hour subset of the Switchboard (Hub5) acoustic
training data set was used. 862 sides of the Switchboard-1 and 92 sides of the Call Home English
were used. The set is described as “h5train00sub” in [9]. As with Minitrain, the baseline was a
gender independent decision-tree clustered tied state cross word triphone Gaussian mixture HMM
system. The 1998 Switchboard evaluation data set was used for testing. The baseline HMM
system word error rates with the order of number of free parameters are presented on the first
row in Table 5. The performance of the baseline system was going up with increasing number
of components until 30 components were used. However, the number of free parameters in such
a system is impractically high, 2340 per state. 14 component system seems to be a reasonable
compromise because the word error rate, 46.5%, seems to be a local stationary point. As an
additional baseline a global semi-tied covariance HMM system was trained the same way as in the
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Table 5: Order of number of free parameters and word error rates in Hub5 68 hour baseline
HMM, global full transform semi-tied HMM, SFA and global observation matrix SFA systems

with k& = 13.

MO 1 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 |

MM 78 156 312 468 624 780 936 1092 | 1248
55.1% | 52.4% | 49.6% | 48.5% | 47.7% | 47.2% | 46.7% | 46.5% | 46.5%

STC 78 156 312 468 624 780 936 1092 | 1248
54.3% | 50.4% | 48.4% | 47.3% | 46.7% | 46.3% | 46.3% | 45.8% | 45.7%

SFA 585 663 819 975 1131 | 1287 | 1443 | 1599 | 1755
49.1% | 48.0% | 47.2% | 46.6% | 46.3% | 46.4% | 46.0% | 45.8% | 45.9%

GSFA 91 169 325 481 637 793 949 1105 | 1261
55.2% | 52.1% | 49.4% | 48.4% | 47.4% | 46.9% | 46.7% | 46.4% | 46.1%

RM experiments. The results for the STC system are presented on the second row in Table 5.
The best performance, 45.7%, in the STC system was obtained using 16 components.

FAHMM system with state space dimensionality & = 13 was built starting from the single
component baseline system. An individual 39 by 13 observation matrix initialised as an identity
matrix was attached to every state. The first 13 variance elements of the HMM models were
evenly distributed among the observation and state space variances as discussed in Section 3.1.
The mixing up procedure for both state space and observation noise components was carried out
as in the Minitrain experiments above until no further gains were achieved. Unfortunately, filling
up a complete table was not feasible since the training time grows too long when increasing the
effective number of full covariance matrices over 16. The most interesting results here are achieved
using only one state space component which corresponds to the SFA. The results are presented on
the third row in Table 5. It is worth noting that the best baseline performance is achieved using
FAHMMSs with considerably fewer free parameters. The 12 component baseline performance is
also achieved by using FAHMMs with fewer parameters - namely 2 observation and 8 state space
components which correspond to 845 free parameters per state.

To see how the tying of parameters influence the results, a FAHMM system with state space
dimensionality k = 13 and a global observation matrix C' was built starting from the single com-
ponent baseline system as usual. The observation matrix was initialised as a 39 by 13 identity
matrix and the variance elements of the HMM models were evenly distributed among the obser-
vation and state space variances as discussed in Section 3.1. As before, the completion of the
table was not feasible due to the number of effective full covariance components in the system.
The single state space component system appears to be the most interesting but no conclusions
about the untested configurations can be made. The results for the single state space component
system are presented on the fourth row in Table 5. The 12 observation component system achieved
the same performance as the 12 component baseline system but further increasing the number of
components proved to be quite interesting. The 16 observation space component system achieved
the same performance as 24 component baseline system with 611 free parameters fewer. It should
also be noted that the STC system outperforms these configurations of FAHMMs in this task.
Further experiments with different evaluation data should be conducted.

These experiments show the current implementation of the FAHMM system has its limits when
the task size is increased from the Minitrain task. The same arguments about the initialisation
and chosen state space dimensionality as after the Minitrain experiments can be made. The
main contribution of these experiments was to show how an equivalent performance to HMMs
can be achieved using fewer model parameters in a large speech recognition task with simple
configurations of FAHMMs.

14



5 Conclusions

This paper has introduced the factor analysed HMM which is a general form of acoustic model.
It combines a standard Gaussian mixture HMM with a shared and independent factor analysis
models. FAHMM provides a better model for the correlation between the feature vector elements
than a standard diagonal covariance matrix HMM. It can be viewed as a compromise between
diagonal and full covariance matrix systems. In addition, FAHMM can be viewed as a general
state space model which allows a number of subspaces to be explored. A variety of configurations
and sharing schemes, some of which correspond to standard systems, have been investigated. The
estimation using EM algorithm is presented along with several schemes to improve both, time
and memory efficiency. The speech recognition performance is evaluated in experiments using
medium to large vocabulary continuous speech recognition tasks. The results show that equivalent
or slightly better performance to standard diagonal covariance Gaussian mixture HMMs can be
achieved with considerably fewer model parameters.

Due to the flexibility of FAHMMs a large number of configurations can be explored. Different
techniques to optimally choose the configuration have to be investigated. Another important
question is how to choose an optimal state space dimensionality. The model complexity has
become a standard problem in speech recognition and machine learning over the recent years. Yet,
a successful scheme for speech recognition systems has not been published. Current complexity
controls are derived from Bayesian schemes based on correctly modelling some held-out data.
However, it is well known that the models giving highest log-likelihood for some data do not
automatically have better recognition performance on unseen data. The future work also involves
the complexity control in FAHMM based systems.
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