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Abstract. An approach to increase adaptability of a recognition system,
which can recognise 10 elementary gestures and be extended to sign
language recognition, is proposed. In this work, recognition is done by
firstly extracting a motion gradient orientation image from a raw video
input and then classifying a feature vector generated from this image to
one of the 10 gestures by a sparse Bayesian classifier. The classifier is
designed in a way that it supports online incremental learning and it can
be thus re-trained to increase its adaptability to an input captured under
a new condition. Experiments show that the accuracy of the classifier
can be boosted from less than 40% to over 80% by re-training it using
5 newly captured samples from each gesture class. Apart from having a
better adaptability, the system can work reliably in real-time and give a
probabilistic output that is useful in complex motion analysis.

1 Introduction

One of the challenges in building a system for sign recognition (and also gesture
recognition) is that inter- and intra- personal variation may lead to a poor
performance. In most situation, different signers may sign in different ways and
even the same signer may not sign in the same way all the time (see Figure 4). A
classifier that is capable to give a good classification result on one dataset may
not be able to give a good result on another set. This idea can be illustrated by
Figure 3 that shows an original decision boundary (the line in a lighter intensity)
can separate original positive and negative samples (‘×’ and ‘•’ in a lighter
intensity) properly but not for new samples (shown in a darker intensity).

Adaptability is therefore an essential property of a sign recognition system
applied on a wide range of users. Instead of training a recognition system using
all possible samples, it is sensible to train the system using a limited amount of
samples and then re-train it using online samples. As illustrated in Figure 3, an
updated decision boundary (the line in a darker intensity) could be estimated
based on some of the new samples in order to achieve a good classification result
on both new and original samples.

In the past decade, sign recognition was done by exploiting Hidden Markov
Models (HMMs). In [1], HMMs were directly applied to solve the problem and
their extensions such as parallel HMMs [2] and self-organizing HMMs [3] were



also proposed to improve the performance. In addition, HMMs have also been
extended to perform adaptive gesture recognition [4].

Recently, the use of HMMs has been criticised. One major criticism is that us-
ing HMMs to recognise gesture requires large training sets (e.g. [5]) and this will
inhibit the growth of the vocabulary. In addition, recent HMMs design analyses
each sign as a whole without breaking it down into corresponding components
(e.g. [6]), making the model more complicated and reducing its extensibility. Al-
though recent works (e.g. [5, 6]) provide some alternative solutions to the sign
recognition problem and achieve an acceptable accuracy, they have not consid-
ered how to improve the adaptability of their recognition systems.

In this paper, an adaptive approach to recognise 10 primitive movements,
which can be considered as the building blocks in any sign language system, is
proposed. Motion recognition is done by exploiting motion gradient orientation
(MGO) images to form motion features and using a sparse Bayesian classifier
to map the features into their corresponding classes. The Bayesian classifier is
designed in a way so that it can be re-trained using online samples. The present
research has three main contributions. Firstly, by allowing online learning, the
adaptability and the accuracy of the recognition system are raised. Secondly, due
to the use of the Bayesian classifier, the final outcome is a probabilistic value,
which is useful in high-level inference processes that must maintain multiple
hypotheses. Thirdly, the classifier maintains a sparse model, which facilitates an
efficient use of computational resources and leads to a real-time performance.

2 Approach

As mentioned in the previous section, HMMs are not the only choice for per-
forming sign recognition and there are alternative solutions such as [5, 6]. This
paper extends the work of Derpanis et al. [6] to allow online training and clas-
sifying inputs captured under a wider range of conditions. The basic framework
and theory used will be described in the following sub-sections.

2.1 Framework

In [6], Derpanis et al. introduced the idea of breaking down signs into constituent
primitive movements with the aid of linguistic information (e.g. [7]). Sign lan-
guage recognition can then be considered as recognising the primitive movements
and the corresponding sequence. Derpanis et al. used simple and manually de-
fined mapping functions to map the motion data in time-series format into their
corresponding movement classes. Their work is thus difficult to be extended. In
this paper, we adopt their divide-and-conquer strategy but also exploit a general
recognition procedure to increase the extensibility.

This paper focuses on the hand motion classification problem (i.e. classifying
a given video sequence of hand motion into one of the movement primitives).
Motivated by [6], we have 10 primitive movements to be classified: (1) upward,
(2) downward, (3) rightward, (4) leftward, (5) toward signer, (6) away signer,



(7) nod, (8) supinate, (9) pronate, and (10) circular. Figure 1 illustrates these 10
primitives. The classification scheme used will be presented next in sub-section.

Fig. 1: This figure shows the 10 primitive movements recognised by the proposed system.

2.2 Theory

Unlike recent works such as [6, 5] that are exploiting simple classification schemes,
this work is going to handle inter- and intra-personal variation through the use of
a powerful classifier. Among several state-of-the-art classifiers, a sparse Bayesian
classifier or Relevance Vector Machine (RVM) is used in the proposed system.

Compared with other state-of-the-art classifiers such as Support Vector Ma-
chine (SVM), the RVM classifier performs equally well in term of accuracy. In
addition, the final outcome of the RVM classifier is a probabilistic value instead
of a simple true-or-false answer. Furthermore, the sparsity of the model stored
by the RVM classifier ensures fast and efficient classification process, and this
implies the classifier can be implemented in computing devices with limited
memory storage such as Pocket PC or Smartphone.

RVM classifier is a simple binary classifier. Consider a training set that con-
sists of N motion feature vectors, {xn, tn}

N
n=1

. The problem of learning a bi-
nary classifier can be expressed as that of learning a function f so that the
input feature xn will map onto their correct classification label tn and the
probability of xn is classified as the target class (where tn = 1) equals to
σ(yn) = 1/(1 + e−yn)where yn = f(xn).

The function f can be written as a sparse model where (M � N) [8]:

f(xn) =

M∑

m=1

ωmφm(xn) + ω0 (1)

where ω = (ω0, ...ωM )T are the weights and φm(xn) = K(xn,xm) with K(·, ·) a
positive definite kernel function (where Gaussian Kernel with width 1 is used in
the proposed system) and xm an example (or a relevance vector) from the train-
ing set. Under the RVM framework where hyperparameters α = {α0, ..., αM} are
introduced, learning f from the training data means inferring ω from the data
t = {t1, ..., tN} such that the posterior probability over the weights, p(ω | t, α),
is maximised. Given A = diag(α0, α1, ..., αN ), Bnn = σ{yn}[1 − σ{yn}] and Φ



is the N × (N + 1) design matrix, the optimal values of the weights can be esti-
mated by using an iterative procedure [8], where the inverse of a Hessian matrix
at ‘most probable’ weight (ωMP ), ∇∇ log p(t, ω | α)|wMP

= −(ΦTBΦ+A) have
to be computed for a current, fixed values of α at each loop. The values of α
can be inferred from the training data such that the marginal likelihood p(t | α)
is maximised. The iterative procedure for estimating ω and α is repeated until
some suitable convergence criteria are satisfied.

In a batch-learning approach, all training examples will be considered as
relevance vectors at the initial stage and the irrelevance vectors will be ‘pruned’
after re-evaluation of α in each iteration. In other words, every αi has a finite
value at the beginning and the Hessian matrix to be computed in each estimation
loop has a size of (N + 1)× (N + 1) initially, where N is the number of training
samples. Since inversion of Hessian matrices is involved in the learning algorithm,
the overall training complexity is O(N3). This implies that if the initial sample
size is huge, the learning algorithm may take a long time to converge.

According to [9], we can also start with an initially small model and sequen-
tially ‘add’ relevance vectors to increase the marginal likelihood. Considering the
marginal likelihood, or equivalently, its logarithm L(α):

L(α) = log p(t | α) = −
1

2
[N log 2π + log | C | +tT C−1t] (2)

with C = B−1 + ΦA−1ΦT . From the analysis given in [9], C can be rewritten
in this way: C = B−1 +

∑
m 6=i α−1

m φmφT
m + α−1

i φiφ
T
i = C−i + α−1

i φiφ
T
i , where

C−i is C without basis vector i. L(α) can be therefore rewritten as:

L(α) = L(α−i) +
1

2
[log αi − log(αi + si) +

q2

i

αi + si

] (3)

where si = φT
i C−1

−i φi and qi = φT
i C−1

−i t. From [9], estimation of α, which gives
maximum value of marginal likelihood, can be computed directly from:

αi =
s2

i

q2

i
−si

, if q2

i > si,

αi = ∞, if q2

i ≤ si,
(4)

The implication of this evaluation method for α is that we can make discrete
changes to the model while we are guaranteed to increase the marginal likelihood.
This means we can start from an initially small model and test the ‘relevance’ of
each new input vector i sequentially. When vector i is in the model (i.e. αi < ∞)
but q2

i ≤ si, then vector i should be removed (i.e. αi set to ∞); When vector i
is not in the model (i.e. αi = ∞) and q2

i > si, vector i should be added (i.e. αi

set to a certain optimal value). Classification model is thus built incrementally.
By adopting this incremental training approach, computational complexity

is O(M3) where M is the number of relevance vectors and M � N . In other
words, the training time can be reduced dramatically. In addition, this learning
approach allows any new input to be evaluated on the fly and to be added to
the model if certain criteria are fulfilled. This property can be used to develop
an online adaptive recognition system where online training is needed.



3 Implementation details

The hand motion recognition problem addressed in this paper can be divided
into 2 tasks, namely feature extraction and classification.

3.1 Feature Extraction

Extraction of MGO: In this work, a motion gradient orientation (MGO) im-
age is extracted directly from a raw video input and transformed to a motion
feature vector that contains necessary spatial-temporal information. MGO im-
age was proposed by Bradski and Davis [10] to explicitly encode image changes
introduced by motion events. The MGO is computed from a motion history im-
age (MHI) and a motion energy image (MEI) [11]. MHI is an image that shows
moving edges where the recency of a motion is represented by intensity level;
MEI is a binary image that indicates where the current moving edges (moving
regions) are; Pixels in MGO encode the change in orientation between nearest
moving edges shown on the MHI and the region of interest is defined as the
largest rectangle covering all bright pixels in MEI. The MGO therefore contains
information about where and how a motion occurred. The MGO obtained within
the region of interest will be rescaled to a standard size, which is 200 × 200 in
the proposed system. Typical MGO images corresponding to the 10 primitive
movements used are illustrated in Figure 2.

Fig. 2: This figure illustrates the MGO images corresponding to the 10 primitive move-

ments classified by the proposed system.

Dimension Reduction: In order to reduce the necessary number of training
samples (which is proportional to the dimension size), dimension reduction is
done on the training MGO images that can be potentially very large in image
size (i.e. the dimension size). Principal Component Analysis (PCA) is used in the
proposed system to reduce the dimension of the MGO images. By performing
PCA on all training MGO images, the eigenvalues indicate that the first 12
components provide an adequate summary of all the images, which account for
95% of the variation. Thus, the first 12 eigenvectors are chosen as the new basis
functions for converting any new incoming MGO image into a new feature vector.
Finally, normalization is done to give a final feature vector (x) with zero mean
and standard deviation of one in all dimensions.



3.2 Learning and Classification

Binary Classification: As explained in the previous section, given a training
set {xn, tn}

N
n=1

, a RVM classifier can be trained to separate positive and negative
samples in an iterative manner through maximising the marginal likelihood.
Under the incremental learning scheme, each sample in the training set will be
tested sequentially to determine whether it will be included in or excluded from
the classification model. Decision boundary will be updated once sample vector
is added to or removed from the model.
Multi-class Classification: The RVM classifier can be extended to a multi-
class classifier by using the “one-versus-others” method. Since we have a total of
10 classes of motion, 10 independent RVM classifiers are constructed and each
of them is trained to separate one class of data from all others. After all the
classifiers are trained, the system can be tested by feeding a sample to all the
classifiers. In practice, suppose this sample belongs to class i, the classifier which
is trained to separate class i data from the others will give the largest output.
Re-training Procedure: If a new sample of class i is used to re-train the
RVM classifiers, this sample will become a positive sample for i−th RVM classi-
fier while become a negative sample for the other classifiers. All RVM classifiers
will be trained separately by evaluating the relevance of this new sample. This
sample will be either added to or ignored by the classification model of each
RVM classifier. The decision boundary of each classifier will also be re-evaluated
accordingly. In other words, if the new sample is quite different from the previ-
ously trained samples due to inter- and intra-personal variation, the classification
model and the associated decision boundary will be adjusted to account for its
influence. This implies adaptability can be achieved through the integration of
a new training sample to the previously trained model.

4 Experiments

The proposed method was implemented using unoptimised C++ code and the
OpenCV library. All the experiments described were executed on a P4 2.4GHz
computer with 1G memory.

4.1 Experiments on synthetic data

We first utilise a set of synthetic data to illustrate how incremental training
scheme improves the adaptability. An initial training set consisted of 2 classes,
where class I (denoted by ‘×’ in a lighter intensity) was sampled from a mixture of
2 Gaussians while class II (denoted by ‘•’ in a lighter intensity) was sampled from
a mixture of 3 Gaussians. Similarly, a training set for re-training the classifier
consisted of 2 classes. Class I was still sampled from the same distribution as
those used to generate the initial training set. Class II, however, was sampled
from a mixture of 3 Gaussians whose means are shifted upward compare to the
Gaussian mixture that generated the initial training set (see Figure 3). The
sample points for re-training are shown in a darker intensity.



Firstly, the initial training set was used to train a RVM classifier using the in-
cremental learning scheme. Afterwards, the re-training set was used to re-train
the RVM classifier. The training results are illustrated in Figure 3. The plot
shows that the decision boundary adjusts (bends upwards) automatically to sep-
arate the ‘re-training’ samples from different classes. Another RVM classifier was
trained by these training sets using batch learning. Similar decision boundary
was achieved but the training time was longer (7344 ms vs. 766 ms).

Fig. 3: This figure illustrates the training result on the initial training set (denoted by

lighter ‘×’ and ‘•’) by a RVM classifier using incremental learning and also the re-

training result on the re-training set (denoted by darker markers) by the same RVM

classifier. The decision boundary obtained from training using the initial training set

is shown as a lighter line while the decision boundary obtained from training using the

re-training set is shown as a darker line. Relevance vectors are shown circled.

4.2 Experiments on real data

In this part, we will use video data to evaluate the performance of the RVM
classifier using incremental learning. Both training and testing data were video
captured under arbitrary room conditions (with various backgrounds and light-
ing). The video was captured by a webcam with a resolution of 320× 240 pixels
at 15 frames per second. In each video clip, the signer signs one of the ten prim-
itive movements as described in Section 2. On average, each movement, which
is manually segmented, lasts between 2 and 5 seconds.

We have five pairs of training set and testing set. Different pairs are captured
under different conditions. Each dataset has a size of 300 (where each class of
movement contributes to 30 samples). The first pair captured the motion of a
signer (subject I) who signs the primitive movements using hand shape ‘B5’ (see
Figure 4). The second, third and fourth pairs captured the motion of the same
signer who signs using hand shape ‘B’, to sign in a faster speed, and to sign with
a slight deviation in direction respectively. The fifth pair captured the motion
of another signer (subject II) who signs in the same way as subject I did in



the first pair. The difference in capturing conditions between these datasets and
their corresponding MGO images generated are illustrated in Figure 4.

Fig. 4: This figure illustrates the difference in capturing conditions between the datasets

used and the corresponding MGO images produced. In all cases, the signers sign the

‘Upward’ gesture.

The training set from the first pair was exploited to train a RVM classifier
and a SVM classifier (both have the same kernel configuration). The testing
sets of all five pairs of dataset were used to evaluate the performance of these
classifiers. The training and testing results are summarised in Table 1.

Table 1: This table shows the training and testing results on all testing sets by a SVM

classifier and a RVM classifier.

SVM incremental RVM

Training Time (ms) 2156 885906

Average No. of RVs 140 3

Classification Time (ms) 15.8 4.2

Accuracy on Accuracy% (Unrecognised%)

Set 1 (normal) 0.80 (0.18) 0.93 (0.03)

Set 2 (hand shape) 0.04 (0.96) 0.21 (0.68)

Set 3 (hand speed) 0.05 (0.95) 0.29 (0.57)

Set 4 (direction) 0.06 (0.93) 0.32 (0.53)

Set 5 (subject) 0.12 (0.87) 0.39 (0.59)

The training sets of the remaining four pairs (i.e. Set 2, 3, 4, and 5) were
exploited to re-train the RVM classifier. We used different amount of training
data per each pair to re-train the classifier (sample sizes used are 10, 20, 50, 100,
300). The testing sets of all five pairs were used to test the system. The training
and testing results are shown in Table 2.



Table 2: This table shows the training and testing results of using RVM classifiers that

are re-trained by a different amount of training samples.

No. of Re-training Samples 10 20 50 100 300
per Training Set

Training Time (ms) 18922 27796 81344 140281 1085406

Average No. of RVs 4.8 6.0 7.4 9.2 12.5

Accuracy on Accuracy% (Unrecognised%)

Set 1 (normal) 0.90 (0.03) 0.92 (0.02) 0.90 (0.03) 0.90 (0.04) 0.91 (0.03)

Set 2 (hand shape) 0.35 (0.3) 0.72 (0.11) 0.88 (0.05) 0.93 (0.01) 0.94 (0.01)

Set 3 (hand speed) 0.54 (0.18) 0.66 (0.10) 0.82 (0.04) 0.91 (0.02) 0.93 (0.01)

Set 4 (direction) 0.47 (0.22) 0.63 (0.09) 0.78 (0.04) 0.86 (0.04) 0.89 (0.02)

Set 5 (subject) 0.54 (0.25) 0.82 (0.12) 0.91 (0.04) 0.92 (0.02) 0.92 (0.02)

4.3 Discussion

The experimental results illustrate three main advantages of using incremental
RVM for motion recognition. Firstly, a RVM classifier maintains a sparse model
and can thus perform classification with a minimum amount of online computa-
tional resources. Experiments show that the RVM classifier maintains a sparser
model than the SVM classifier (3 RVs vs. 140 SVs). The time taken for perform-
ing RVM classification on a feature vector is shorter (4.2 ms by RVM vs. 15.8
ms by SVM). Since the time taken for extracting the motion features is 34.3 ms,
the total time for performing RVM classification on video data is 38.5 ms (i.e.
26 frames per second). That is to say, the system can run in real-time.

Secondly, a RVM classifier returns a probabilistic result, which can provide
information about uncertainty and facilitate high-level inference. Experiments
demonstrate that the number of unrecognisable samples is higher if a SVM classi-
fier is used. This is mainly because the RVM classifier has a better generalisability
than the SVM classifier. Apart from this, the relatively poor classification result
of SVM may also be due to the non-probabilistic nature of its output. Under
the “one-versus-others” scheme, if all SVM classifiers give ‘0’ response, the sys-
tem will conclude that the input is not recognisable. In contrast, RVM classifiers
give probabilistic values as output, the final decision will be made based on these
values and will seldom give unrecognisable results with the exception that all
probabilistic values are too low.

Thirdly, a RVM classifier allows incremental learning and thus has a higher
adaptability to new samples captured under different environment. Experiments
indicate that re-training a RVM classifier using a small amount of new samples
is sufficient to achieve a fairly high accuracy when the classifier is applied on
unseen data, which is captured under a different condition. In other words, re-
training of a RVM classifier enables a better adaptability of the classifier towards
variations, such as changes in hand shape, moving speed and moving direction,
and even different person.

Experiments also reflect the main problem of using RVM classifiers is its
relatively long training time compare with SVM classifiers. Incremental learning,



however, does shorten the learning time (7344 ms by batch learning vs. 766 ms
by incremental learning). In addition, it is worth spending less than 2 minutes
on re-training a RVM classifier with a small amount of new samples to achieve
a better classification result.

5 Conclusion

A new method is proposed to increase the adaptability of a gesture recognition
system that can be extended to sign language recognition. The proposed method
performs better than recently used methods in three ways. Firstly, through the
use of an incremental learning approach, newly available samples can be ex-
ploited to re-train the classifier that has been trained by an initial training set.
Such an online re-training scheme can increase the adaptability of the classifier
to input captured under a new condition. Secondly, by using a sparse Bayesian
classifier that has relatively better generalisability and sparsity, the final classi-
fication result is comparable to other motion recognition methods and the result
can be obtained with a minimum amount of online computational resources. Fi-
nally, the probabilistic nature of the Bayesian classifier implies that the proposed
method can be applied in complex motion analysis that must maintain multiple
hypotheses. A further investigation of how to extend this work to analyse com-
plex motion and how to further reduce the training time is under progress.
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