
The Layout Consistent Random Field for Recognizing and Segmenting Partially
Occluded Objects

John Winn
Microsoft Research Cambridge

Cambridge, UK
jwinn@microsoft.com

Jamie Shotton
Department of Engineering

University of Cambridge, UK
jdjs2@cam.ac.uk

Abstract

This paper addresses the problem of detecting and seg-
menting partially occluded objects of a known category. We
first define a part labelling which densely covers the object.
Our Layout Consistent Random Field (LayoutCRF) model
then imposes asymmetric local spatial constraints on these
labels to ensure the consistent layout of parts whilst allow-
ing for object deformation. Arbitrary occlusions of the ob-
ject are handled by avoiding the assumption that the whole
object is visible. The resulting system is both efficient to
train and to apply to novel images, due to a novel annealed
layout-consistent expansion move algorithm paired with a
randomised decision tree classifier. We apply our technique
to images of cars and faces and demonstrate state-of-the-art
detection and segmentation performance even in the pres-
ence of partial occlusion.

1. Introduction

This paper addresses the problem of detecting and seg-
menting both clean and partially occluded deformable ob-
jects of a known category. The approach uses a part la-
belling which densely covers the object and models the
label distribution using an enhanced Conditional Random
Field which we call the Layout Consistent Random Field
(LayoutCRF).

The use of parts has several advantages. First, recog-
nising parts of an object allows for object detection under
partial occlusion. Second, there are local spatial interac-
tions between parts that can help with detection; for exam-
ple, we expect to find the nose just above the mouth on a
face. Hence, we can exploit local part interactions to ex-
clude invalid hypotheses at a local level. Third, knowing
the location of one part highly constrains the locations of
other more distant parts. For example, knowing the loca-
tions of wheels of a car constrains where the rest of the car
can be detected. Thus, we can improve object detection by

incorporating long range spatial constraints on the parts. Fi-
nally, by inferring a part labelling for the training data, we
can accurately assess the variability in the appearance of
each part, giving better part detection and so better object
detection.

A key aspect of the model is the use of asymmetric pair-
wise potentials to capture the spatial ordering of parts, e.g.
car wheels must be below car body, not vice-versa. These
asymmetric potentials allow propagation of long-range spa-
tial dependencies using only local interactions.

The pairwise potentials are carefully constructed to dis-
tinguish between various types of occlusion, such as object
occluding background1, background occluding object, and
object occluding object. The model is capable of represent-
ing multiple object instances which inter-occlude, and in-
fers a pairwise depth ordering.

1.1. Related Work

There have been a number of recent parts-based ap-
proaches to segmentation and detection of categories of ob-
jects, though few have specifically dealt with partial occlu-
sion. It is possible to pre-select which parts are used as
in [4], though this requires considerable human effort for
each new object class. Alternatively, parts can be learned
by clustering visually similar image patches [1, 11] but this
approach does not exploit the spatial layout of the parts in
the training images. There has been work with generative
models that do learn spatially coherent parts in an unsuper-
vised manner. For example, the constellation models of Fer-
gus et al. [5] learn parts which occur in a particular spatial
arrangement. However, the parts correspond to sparsely de-
tected interest points and so parts are limited in size, cannot
represent untextured regions and do not provide a segmen-
tation of the image. More recently, Winn and Jojic [18] used

1Note that throughout the paper, ‘background’ is used to mean pixels
not belonging to an identified object class and ‘foreground’ is used to mean
pixels that do belong to the class. Hence it is possible to have background
objects in front of foreground ones, as illustrated by a person (background)
occluding a car (foreground) in figure 2.

1



a dense generative model to learn a partitioning of the ob-
ject into parts, along with an unsupervised segmentation of
the object. Their method does not learn a model of object
appearance (only of object shape) and so cannot be used for
object detection in cluttered images.

As well as unsupervised methods, there are a range of
supervised methods for segmentation and detection. Ull-
man and Borenstein [2] use a fragment-based method for
segmentation, but do not provide detection results. Shotton
et al. [15] use a partially-supervised boosting method based
on image contours for detection, but this does not lead to a
segmentation. A number of methods use a Conditional Ran-
dom Field (CRF) [10] to achieve segmentation [9] or sparse
part-based detection [14]. The OBJ CUT work of Kumar et
al. [8] uses a discriminative model for detection and a sepa-
rate generative model for segmentation but requires that the
parts are learned in advance from video.

None of the above methods deals explicitly with par-
tial occlusion, although OBJ CUT does allow for self oc-
clusion. The Variational Ising Classifier of Williams et al.
[17] presents a detection scheme which explicitly models
partial occlusions for cropped face images, but it is un-
clear whether this technique would scale to cluttered images
containing multiple object instances. The LayoutCRF pre-
sented here extends previous work on the LHRF [6] to allow
for multiple object instances and inter-object occlusion.

2. Layout Consistent Random Field Model

Our aim is to take an image x and infer a labelling for
each pixel indicating both the class of object and which in-
stance of that class the pixel belongs to. We denote the set
of all image pixels as V and for each pixel i ∈ V define
a instance label yi ∈ {0, 1, . . . ,M} where the background
label is indicated by yi = 0, and M foreground instances
by yi ∈ {1, . . . ,M}. We will describe the case where only
one non-background class is considered at a time, though
preliminary results for multiple classes are also given, in
which case yi labels pairs of (class, instance).

Additionally, a hidden layer of part labels hi is used as
introduced in the Hidden Random Field (HRF) model of
[16]. Each object instance has a separate set of H part la-
bels so that hi ∈ {0, 1, . . . ,H ×M}. These hidden vari-
ables represent the assignment of pixels to parts and are not
observed during training. Parts are learned so as to densely
cover the object in a coarse deformable grid (see figure 6).

Our model, the Layout Consistent Random Field
(LayoutCRF), is an HRF with asymmetric pairwise poten-
tials, extended with a set of discrete valued instance trans-
formations {T1, . . . , TM}. Each transformation T repre-
sents the translation and left/right flip of an object instance,
by indexing all possible integer pixel translations for each
flip orientation. Each of these transformation variables is

x

h

y

{T }

Figure 1. The Layout Consistent Random Field. All part label
nodes h (orange) are conditioned on the image x (dark blue), and
connected 4-wise with their neighbours. These pairwise potentials
are asymmetric in our model. A deterministic mapping links h to
class labels y (light blue). A set of instance transformations {T}
(green) are each connected to all of the part labels.

linked to every part label hi. This aspect of the model ex-
tends the work of [6] to cope with multiple object instances.

Fig. 1 shows the graphical model corresponding to the
LayoutCRF. Note that the local dependencies captured are
between parts rather than between instance labels. The
edges from part labels hi to instance labels yi represents the
unique deterministic mapping from part labels to instance
labels, which we denote as yi = y(hi).

The conditional distribution for the label image y and
part image h is defined as:

P (y,h, {T} |x;θ) =
1

Z(θ,x)

∏
i∈V

φi(hi,x;θ) δ(yi = y(hi)) λi(hi, {T};θ)

∏
(i,j)∈E

ψij(hi, hj ,x;θ). (1)

where θ represents the learned parameters of the model,
and E is the set of all 4-wise neighbours between pairs of
part labels. The unary potentials φi(hi,x;θ) use only lo-
cal image information, and, as described below, take the
form of randomised decision trees. The asymmetric pair-
wise potentials ψij(hi, hj ,x;θ) encourage local and, to a
certain extent, long-range compatibility between the part la-
bels. The instance potentials λi(hi, {T};θ) encourage the
correct long-range spatial layout of parts for each object in-
stance. Finally the potentials δ(yi = y(hi)) enforce the
deterministic mapping from part labels to instance labels.

2.1. Layout Consistent Pairwise Potentials

An important contribution of this paper is the form of the
pairwise potentials ψij . A common choice in CRF mod-



1 1

3 3

4 4

3

3

2 2

5 5

Consistent Foreground2 2

Background1 1

Instance Occlusion5 5

Class Occlusion4 4

Object Edge3 3

Figure 2. Distinguished transitions. The distinguished types of
transitions between neighbouring part label nodes in the graph.
See text for definitions. Note that a pairwise depth ordering is
implicit in these types.

els [16, 6] is to use only symmetric pairwise potentials,
whereas ours are asymmetric. The use of asymmetric po-
tentials allows the relative layout (above/below/left/right)
of parts to be modelled, whilst also propagating long-range
spatial constraints using only local pairwise interactions.

Figure 2 illustrates the types of transitions which we dis-
tinguish between in the pairwise potentials. To describe
these types, we must first define the concept of layout-
consistency. A label is layout-consistent with itself, and
with those labels that are adjacent in the grid ordering as de-
fined in figure 3. We assume that neighbouring pixels whose
labels are not layout-consistent are not part of the same ob-
ject. Hence, for a pair of neighbouring labels hi and hj , we
define transitions to be one of the following types:

Background Both hi and hj are background labels.

Consistent Foreground Both hi and hj are layout-
consistent foreground labels. Note the asymmetry here:
for example, if hi = a to the left of hj = b is layout-
consistent then (assuming a �= b) hi = b to the left of
hj = a is not layout-consistent (see figure 3).

Object Edge One label is background, the other is a
part label that lies on the object edge. Treating this
type of transition specially allows to encourage object-
background transitions at the true object boundary.

Class Occlusion One label is an interior foreground label,
the other is the background label. This represents the
case where the ‘background’ occludes the object.

Instance Occlusion Both are foreground labels but are not
layout-consistent, with at least one label being an object
edge. This represents the case where one instance of an
object occludes another instance.

Inconsistent Interior Foreground Both labels are interior
foreground labels which are not layout-consistent. This

can only occur due to transparency or self-occlusion,
both of which are considered to be rare and hence this
case is penalised more heavily.

The value of the pairwise potential varies according to
transition type as follows:

− logψij(hi, hj ,x;θ) =


βbg Background
0 Consistent Foreground
βoe.eij Object Edge
βco.eij Class Occlusion
βio.eij Instance Occlusion
βiif Inconsistent Interior Foreground

(2)

where cost eij is an image-based edge cost to encourage
object edges to align with image boundaries, and is set to
eij = e0 + exp(γ‖xi − xj‖2). The contrast term γ is esti-
mated separately for each image as (2 < ‖xi − xj‖2 >)−1

where <> denotes a mean over all neighbouring pairs of
pixels.

2.2. Instance Potentials

The instance potentials are look-up tables

λi(hi, {T1, . . . , TM};θ) = P̃ (hi|loc(Ty(hi), i))
ν (3)

where loc(Tm, i) returns position i inverse-transformed by
the transformation Tm, and ν is a parameter to weight the
strength of the potential. This potential encourages the
correct spatial layout of parts for each object instance by
gravitating parts towards their expected positions, given the
transformation Ty(hi) of the instance.

3. Inference

We use an annealed layout-consistent expansion move
algorithm to infer the part labellings and hence (determinis-
tically) instance labellings, as described below. First, how-
ever, we describe our three-step algorithm for inferring the
number of object instances and their locations.

Step 1 Initially we have no knowledge of the number of
objects and so do not distinguish between different in-
stances. We therefore collapse all the part labels together
across instances, so that we have hi ∈ {0, 1, . . . ,H}.
Additionally we merge all the instance labels together so
that yi ∈ {0, 1}, and remove the links from the instance
transformation nodes {T} to the part labels h. MAP in-
ference is performed on this simplified model, resulting
in a part labelling image h∗.

Step 2 We determine the number of layout-consistent re-
gions in the labelling h∗ using connected component
analysis, where two pixels are considered connected if



(a)

(1,1) (2,1) (3,1) (4,1) (5,1)

(1,2) (2,2) (3,2) (4,2) (5,2)

(1,3) (2,3) (3,3) (4,3) (5,3)

(b)

(p,q) (p+1,q)

(p+1,q-1)

(p+1,q+1)

(c)

(p,q)

(p, q+1) (p+1,q+1)(p-1, q+1)

(d)

(p,q)(p-1,q)

(p-1,q-1)

(p-1,q+1)

(e)

(p,q)

(p, q-1) (p+1,q-1)(p-1, q-1)

Figure 3. Layout-consistency. Colours represent part labels. (a) A sub-section of the regular grid with label numbers overlaid as pairs
(p, q). (b-e) Layout-consistent label pairs for pairwise links of each of the four orientations (left-to-right, top-to-bottom, right-to-left,
bottom-to-top). Note that slight deformations from the regular grid are still considered layout-consistent.

they have layout-consistent part labels. This yields an
initial estimate of the number of object instances M , and
an initial instance labelling.

It is then necessary to estimate the transformations
T1 . . . TM for each instance label. These are estimated as
arg max{T}

∏
i λi(hi, {T};θ), which can be computed

separably for each instance label. To capture two possi-
ble modes corresponding to left/right flips of the object,
we choose to create two instance labels for each con-
nected component. When estimating T for each label,
the first is constrained to have T facing left, the second
has T facing right. Thus, M is equal to twice the number
of connected components.

Step 3 We are now able to use the full model with the la-
bel set hi ∈ {0, 1, . . . ,H ×M}, yi ∈ {0, 1, . . .M} and
including the links from {T} to h. Using this model, we
re-run the MAP inference, obtaining ĥ which now distin-
guishes between different object instances. Typically, ĥ
contains part labels for only a subset of the instances. For
example, normally only one of each pair of left-facing
and right-facing instances is retained.

If desired, steps 2 and 3 can be iterated to refine the instance
transformation and the instance labelling, but this was not
performed in our experiments.

3.1. Expansion Move Algorithm

An annealed expansion move algorithm is used for ap-
proximate MAP inference of the part labels. We first de-
scribe the standard expansion move algorithm, followed by
our extensions.

The idea of the expansion move algorithm is to re-
duce the problem of maximizing a function f(h) with
multiply-valued labels h to a sequence of binary-valued
maximization problems. These sub-problems are called
α-expansions, and for regular energies can be efficiently
solved using graph cuts (see [3, 7] for details).

Suppose that we have a current configuration (set of la-
bels) h and a fixed label α ∈ U where U is the set of pos-
sible label values. In the α-expansion operation, each pixel

i makes a binary decision: it can either keep its old label or
switch to label α. A binary vector s ∈ {0, 1}V defines the
auxiliary configuration h[s] as follows for all i:

hi[s] =
{
hi if si = 0
α if si = 1 (4)

This auxiliary configuration h[s] has therefore transformed
the function f with multiple labels into a function of binary
variables f ′(s) = f(h[s]). The global maximum of this
binary function can be found using a graph cut.

The expansion move algorithm starts with an initial
configuration h0. Then it computes optimal α-expansion
moves for labels α in some order, accepting the moves only
if they increase the objective function.

The algorithm is guaranteed to converge. Its output is a
strong local minimum characterised by the property that no
α-expansion can increase the function f .

Annealed Expansion Move Algorithm

For our problem we wish to encourage the discovery of
contiguous regions of part labels that are layout-consistent.
Since any part of a regular grid is guaranteed to be layout-
consistent, we choose our expansion move to be to a repeat-
ing grid of labels at a fixed offset (see figure 4). The total
set of expansion moves is the set of possible offsets of this
repeating grid (though for efficiency these are quantised to
be only every 3 × 3 pixels). At each iteration, any of the
pixels can choose to adopt this new labelling and a region
that does so will form a local rigid grid structure. Deforma-
tions in the grid can be handled over a number of expansion
moves by using labels at nearby offsets. The resultant re-
gions will be layout-consistent and will form a deformed,
rather than rigid, grid. This process is illustrated in figure 4
which shows two expansion moves with slightly different
offsets being used to label a car with a deformed grid.

The set of expansion moves corresponding to all grid off-
sets (typically several hundred offsets) is applied in a ran-
dom order. Additionally, these expansion moves are inter-
spersed with standard α-expansion moves for changing to



1 2

Figure 4. Expansion move algorithm. During inference, at each
iteration of the expansion move algorithm, a repeated regular grid
re-labelling is permitted. Hence, an object can be labelled with a
deformed grid over several iterations. Note that the offsets of the
grid are different in the two iterations illustrated.

the background label. Our pairwise potentials are not guar-
anteed to be regular as defined in [3], but in the rare cases
where they are not regular (typically < 0.5% of cases) the
potential is truncated to the closest regular potential.

Despite this careful choice of expansion move, the algo-
rithm is vulnerable to getting stuck in local minima due to
the strong interaction terms that are present in the model.
Highly deformed objects are particularly affected as it takes
more expansion moves to reach the optimal labelling. To
ameliorate this, an annealing schedule is used: during early
rounds of the expansion move algorithm the pairwise po-
tential is weakened (by raising to a power less than one).
Experimentally, we have found that for fairly rigid classes
(such as cars, faces) the annealing gives a minor but notice-
able improvement in performance. However as we move
towards evaluating the technique on more deformable ob-
jects, such as horses, we anticipate that annealing will be-
come more important.

4. Learning

We learn the potentials in this model using a supervised
algorithm which requires a foreground/background seg-
mentation for each training image, but not part labellings.

4.1. Unary Potentials

For the unary potentials, we use randomised decision
trees [12] which are both straightforward to implement and
very efficient. Using a set of decision trees, each trained
on a random subset of the data, increases the efficiency
of learning and improves generalization performance over
using a single decision tree. For position i in image x,
decision tree tk returns a distribution over the part labels,
φk

i (yi,x; θ). The set of K such decision trees are combined
by simply averaging these distributions:

φi(yi,x; θ) =
1
K

K∑
k=1

φk
i (yi,x; θ). (5)

i

i i

i

Figure 5. Decision tree. Each non-terminal node in the binary tree
evaluates an intensity difference or absolute intensity difference
between a learned pair of pixels (indicated as black squares), rel-
ative to the position of pixel i being classified, and compares this
to a learned threshold. The terminal nodes represent distributions
over part labels, learned by histogramming all training examples
that reach this node.

Each decision tree tk is a binary tree (illustrated in fig-
ure 5), where each non-terminal node evaluates a binary test
based on one image feature. We employ two types of fea-
ture, chosen for speed: pixel intensity differences, and ab-
solute pixel intensity differences. Each are evaluated rela-
tive to the position of pixel i being classified. Both features
are constrained to only use pixel information within a box
of side D, centered on pixel i. We found that a small D
value was critical in achieving good recognition results of
occluded objects, since this ensures invariance to occlusions
which are further than D/2 pixels away. Having two types
of feature allows the classifier to detect both image edges
and smooth image regions. The intensity difference is com-
pared to a learned threshold, and the left or right branch of
the node is taken accordingly. At each terminal node, a dis-
tribution over part labels is learned as the histogram of all
the training image pixels which have reached that node. In-
ferring φk

i (yi,x; θ) simply involves traversing the tree, eval-
uating features relative to position i in image x, and taking
the learned distribution at the terminal node reached.

The trees are built in a simple, greedy fashion, where
non-terminal node tests are chosen from a set of candidate
features together with a set of candidate thresholds to max-
imise the expected gain in information. This process is
halted when the best expected gain in information falls be-
low a threshold ε. The time taken to learn the decision trees
is dominated by feature calculations and hence almost in-
dependent of the number of labels. This will become more
important as we move to more classes and labels in future.



Initial labellings Deformed labellings

Figure 6. Deforming the part labellings of training data. Left:
two examples of initial labellings, based on a tight-fitting regular
grid. Different colours represent different part labels; since the
initial labelling is scan-line ordered, the colours vary slowly along
rows and jump between rows. Right: the resulting labellings after
deformation. Note that corresponding parts (e.g. wheels, rear) are
now given corresponding labellings, and hence the unary classifier
will learn a tighter appearance model for each part, as desired.

Deformed Labellings

In order to build the unary classifier, a part labelling is re-
quired for each training image. We want the unary classi-
fier to learn consistent appearance models for each part, but
with deformable objects the part positions vary. To avoid re-
quiring hand-labelled part positions we propose an iterative
learning scheme as follows.

The part labelling for the training images is initialised
based on a dense regular grid that is sized to tightly fit the
bounding box of the object and then masked with the given
object segmentation (see figure 6 left). The dense grid is
spatially quantised such that a part covers several pixels (on
average an 8 × 8 pixel square). The unary classifiers are
learned as described above, after which a new labelling is
inferred for all the training images, illustrated in figure 6
right. The deformed labelling is then used to re-learn the
unary classifier which can now learn a much tighter ap-
pearance distributions for each part. Two iterations of this
process were found to be sufficient for good results.

4.2. Pairwise Potentials

The parameters for the pairwise potentials, βbg, βoe, βco,
βio, βiif, ν and e0 are learned using cross-validation, by a
search over a sensible range of positive values. The size
of our dataset made gradient-based maximum likelihood
learning of the parameters too slow to be used in practice.
In future we would like to investigate other more efficient
means of learning these parameters.

4.3. Instance Potentials

The instance potential look-up tables P̃ (h|w) for label h
at position w are learned as follows. The deformed part la-

bellings of all training images are aligned on their segmen-
tation mask centroids. A bounding box is placed relative
to the centroid around the part labellings, just large enough
to include all non-background labels. For each pixel within
the bounding box, the distribution over part labels is learned
by simply histogramming the deformed training image la-
bels at that pixel. A count of one (corresponding to a weak
Dirichlet prior) is added to ensure non-zero probabilities.

5. Evaluation

We have evaluated our technique on the UIUC car data-
base [11] for both detection and segmentation performance,
and on the Caltech and AR face databases [5, 13] for toler-
ance to partial occlusion.

5.1. UIUC Car Database

We train on 46 segmented images from the TU Darm-
stadt database [11] (for the purposes of this paper the car
windows were labelled as part of the car), and also a subset
of 20 images from the UIUC car database [11], containing
one completely visible car instance, which were segmented
by hand. To learn the pairwise potential parameters by cross
validation, the training set was divided into two halves, and
the parameters hand-optimised against one half. The unary
potentials were then retrained on the entire training set. The
final parameters used were: βoe = 6, βco = 12, βio = 12,
βiif = 30, ν = 0.2, e0 = 0.2 and D = 15.

Detection Accuracy: For testing detection accuracy, the
system was evaluated on the remaining 150 previously un-
seen images. These contain cars under considerable occlu-
sions and rotations, facing both left and right.

Figure 8 shows example detections (and the simulta-
neously achieved segmentations) achieved by our method.
The LayoutCRF detects multiple instances jointly and does
not involve any ad-hoc detection mechanisms such as
sliding windows, thresholding scores and post-processing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

1−Precision

R
ec

al
l

 

 

Shotton et al.

Fergus et al.

Agarwal & Roth

Leibe et al. + MDL

Our algorithm

Figure 7. Recall-precision curves for the UIUC Database. Note
that our unified algorithm does not have a simple threshold that
can be varied to generate the whole curve efficiently. Hence we
show only four points on the curve for comparison.



Figure 8. Example detections and segmentations on the UIUC Database. In each pair, the left shows the test image with detected
object segmentations illustrated in red, the right shows the corresponding instance labelling for each pixel, where colours denote different
instances. Note tolerance to partial occlusions, detection of multiple instances, detections facing both left and right, and very accurate
segmentations. The bottom right result is an example failure case where a false positive has been detected.

merging steps. However, the disadvantage of our unified
method is that generating a full recall-precision curve is ex-
tremely slow as the entire inference procedure must be re-
run for each point on the curve, using a different value of the
background prior βbg. Instead, we show the results of our
method as four points (at βbg ∈ {1.65, 1.70, 1.75, 1.80})
on the recall-precision axes alongside competing curves for
comparison (figure 7). The point closest to equal error rate
on the recall-precision curve we achieve is recall=96.1% at
precision=89.6%. Note that these figures are not directly
comparable with the other techniques as the method was
tested on only 150 of the 170 test images; moreover the 20
images removed from the test set and used for training were
clean, single-instance images, and so our performance over
the 150 remaining test images would be therefore expected
to be slightly lower than for the whole database. Also, we
discount detected cars instances with fewer than 70% of
parts, as the supplied ground truth data does not include
labellings of partially occluded cars.

Ignoring these differences, our detection performance
exceeds or is highly competitive with that of all competing
methods, bar that of [11] with their minimum-description
length criterion (without this our recall-precision points lies
above their performance). We are currently investigating
how our algorithm could be improved in an analogous but
more integrated way by imposing a prior on the number of
object instances.

Note also that our technique solves a harder problem
than the compared methods: allowing occluded cars gives
more degrees of freedom and hence a higher error rate than
if the model were constrained to detect only unoccluded
cars. For example, the false positive in figure 8 is unlikely
to have been detected had we been able to assume that there
was no occlusion.

Segmentation Accuracy: We evaluated the segmentation
accuracy on a randomly chosen subset of 20 of the UIUC
test images, containing a total of 34 car instances. These

were segmented by hand to produce ground-truth instance
labels. Averaged across all image pixels, we achieve a per-
pixel figure-ground segmentation accuracy of 96.5%. To
get a measure of the segmentation accuracy per instance, we
also computed the ratio of the intersection to the union of
the detected and ground-truth segmentations areas for each
car instance. The average of this measure across all 34 in-
stances was 0.67. Some example segmentations are shown
in figure 8. Note that our algorithm produces segmentations
that accurately delineate the true object boundary and cope
with occlusions correctly.

5.2. Face Databases

We also investigated the performance of the LayoutCRF
on the Caltech face database [5] under artificial partial oc-
clusion, using 20 segmented face images for training, and
evaluated the same trained model on images from the AR

Figure 9. Detection and segmentations on the Caltech face
database with artificial occlusions (top three rows) and the AR
face database with real occlusions (bottom row). Notice that
faces are detected correctly even when significant features (such
as eyes) are occluded.



face database [13] containing real occlusions. We show in
figure 9 some example results of detection and segmenta-
tion where randomly the top, bottom, left, or right half of
images were occluded by a uniform grey rectangle. Note
excellent detection and segmentation despite significant oc-
clusion; many sparse feature based approaches (which rely
heavily, say, on the presence of both eyes) would fail under
such occlusion.

6. Conclusions and Future Work

We have presented a novel discriminative model for the
detection and segmentation of partially occluded and de-
formable objects, and shown state-of-the-art performance
on the UIUC database. We have also demonstrated excel-
lent tolerance to occlusion on artificially occluded images
from the Caltech face database and naturally occluded im-
ages from the AR face database. Our approach is efficient:
in our unoptimised Matlab implementation, learning takes
approximately 30 minutes to learn from 66 images, domi-
nated heavily by the re-labelling process. Testing takes ap-
proximately 45 seconds per image to both detect the number
of object instances and segment each of these.

Currently the model assumes objects are at a fixed scale,
although the deformable part labellings tolerate a range of
scales around this fixed scale. For large changes in scale, it
would be necessary to learn scale invariant unary potentials
and extend the set of transformations T to include a scaling.

One limitation of the model as stated is that there is no in-
centive for layout-consistent disconnected regions to belong
to the same instance. This could be achieved by incorporat-
ing a prior on the number of instances and hence favour-
ing hypotheses where consistent disconnected regions cor-
respond to a single occluded object. The addition of such a
prior would also improve detection performance by remov-
ing false positives where multiple parts of the same car are

Figure 10. Examples of multi-class detection and segmentation.
One structured class (building) and three unstructured classes (sky,
tree, grass) are accurately detected and segmented using a multi-
class LayoutCRF. Left: input image. Middle: inferred parts la-
bellings. Unstructured classes are assigned only one part label
(shown as different shades of red), while structured classes have
a grid of part labels. Right: output segmentations given by de-
terministic mapping from the part labellings, with inferred class
labels superimposed.

given different instance labels.
This paper has presented a first investigation into the ca-

pabilities of the LayoutCRF model. We plan to further in-
vestigate the model performance, in terms of its tolerance to
scale, rotation, occlusion, and object deformation or articu-
lation and the effect of varying the numbers of parts. This
model can also be applied to multiple classes, both struc-
tured (e.g. cars, people) and unstructured (e.g. grass, road);
results from a preliminary experiment are given in figure 10.
In the multi-class case, the pairwise potential could be en-
hanced to model local object context (e.g. car appears above
road) while also handling inter-object occlusions.

References
[1] S. Agarwal and D. Roth. Learning a sparse representation for object

detection. In European Conference on Computer Vision, 2002.
[2] E. Borenstein, E. Sharon, and S. Ullman. Combining top-down and

bottom-up segmentation. In Proceedings IEEE workshop on Percep-
tual Organization in Computer Vision, CVPR 2004, 2004.

[3] Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal bound-
ary and region segmentation of objects in n-d images. Proc. of IEEE
ICCV., 2001.

[4] D. Crandall, P. Felzenszwalb, and D. Huttenlocher. Spatial priors for
part-based recognition using statistical models. In CVPR, 2005.

[5] R. Fergus, P. Perona, and A. Zisserman. Object class recognition
by unsupervised scale-invariant learning. In Computer Vision and
Pattern Recognition, 2003.

[6] A. Kapoor and J. Winn. Located hidden random fields learning dis-
criminative parts for object detection. In European Conference on
Computer Vision, 2006.

[7] V. Kolmogorov and R. Zabih. What energy functions can be mini-
mized via graph cuts? In IEEE Transactions on Pattern Analysis and
Machine Intelligence, volume 26, February 2004.

[8] M. P. Kumar, P. H. S. Torr, and A. Zisserman. OBJ CUT. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, San Diego, 2005.

[9] S. Kumar and M. Hebert. Discriminative random fields: A dis-
criminative framework for contextual interaction in classification. In
ICCV, 2003.

[10] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In
International Conference on Machine Learning, 2001.

[11] B. Leibe, A. Leonardis, and B. Schiele. Combined object categoriza-
tion and segmentation with an implicit shape model. In ECCV’04
Workshop om Statistical Learning in Computer Vision, May 2004.

[12] V. Lepetit, P. Lagger, and P. Fua. Randomized trees for real-time
keypoint recognition. In CVPR05, pages II: 775–781, 2005.

[13] A. Martinez and R. Benavente. The AR face database. Technical
Report 24, CVC, June 1998.

[14] A. Quattoni, M. Collins, and T. Darrell. Conditional random fields
for object recognition. In NIPS, 2004.

[15] J. Shotton, A. Blake, and R. Cipolla. Contour-based learning for
object detection. In ICCV, 2005.

[16] M. Szummer. Learning diagram parts with hidden random fields.
In International Conference on Document Analysis and Recognition,
2005.

[17] O. M. C. Williams, A. Blake, and R. Cipolla. The Variational Ising
Classifier (VIC) algorithm for coherently contaminated data. In Ad-
vances in Neural Information Processing Systems 17, pages 1497–
1504. MIT Press, Cambridge, MA, 2005.

[18] J. Winn and N. Jojic. LOCUS: Learning Object Classes with Unsu-
pervised Segmentation. In ICCV, 2005.


