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ABSTRACT where S; is theith basis matrix and\"" is the corresponding
Recently, structured precision matrix models were found to outper- basis coefficientS; is a symmetric matrix with an arbitrary rank,
form the conventional diagonal covariance matrix models. Min- £, which can be further decomposed into a superpositiof® of
imum phone error discriminative training of these models gave basis vectorsa;,.. P, is constrained to be positive-definite. If,
very good unadapted performance on large vocabulary continu-Si is rankd (B = 1), equation 1 becomes a STC model when
ous speech recognition systems. To obtain state-of-the-art perfors = d and an EMLLT model wher < n < §(d+1). Removing
mance, it is important to apply adaptation techniques efficiently to the rank-1 constraint gives the SPAM model (with unconstrained
these models. In this paper, simple row-by-row iterative formulae mean), which gave the best performance on LVCSR systems [6].
are described for both MLLR mean and constrained MLLR trans- Previously, MLLR speaker adaptation and Speaker Adaptive
form estimations of these models. These update formulae are de-Training (SAT) techniques have been applied to EMLLT [4] and
rived within the standard expectation maximisation framework and SPAM models [5]. However, the estimation of the adaptation trans-
are guaranteed to increase the likelihood of the adaptation dataforms proposed in the papers does not have an efficient closed-
Efficient approximate schemes for these adaptation methods ardorm solution and was achieved using standard numerical optimi-
also investigated to further reduce the computation. Experimentalsation techniques. This paper presents efficient forms of speaker
results are presented based on the MPE trained Subspace for Preéadaptation and adaptive training of these precision matrix mod-
cision and Mean models, evaluated on both broadcast news anc!s, focusing primarily on the MPE discriminatively trained SPAM
conversational telephone speech English tasks. models. Iterative row-by-row update formulae are derived within
the Expectation Maximisation (EM) framework for both MLLR
mean and constrained MLLR adaptations. Efficient approximate
schemes to further reduce computational cost are also discussed.
1. INTRODUCTION The rest of this paper is organised as follows. Section 2 de-
. ) scribes a general form of row-by-row iterative update approach,
The Hidden Markov Model (HMM) is the most popular acous- \hich forms the basic foundation for the EM-based transform esti-
tic model for continuous speech recognition tasks. The output mation formulae for both the MLLR mean and constrained MLLR
probability distribution associated to each state is typically repre- ggaptations. The derivation of these update formulae are given in
sented by a multivariate Gaussian Mixture Model (GMM). Anis- - gections 3 and 4 respectively. Section 5 then presents a more com-
sue when using multivariate Gaussians is how to model correlation pact statistics required for SPAM models by exploiting the preci-
efficiently in the feature in that increasing the feature dimension gjon matrix structure. Finally, experimental results on Broadcast

dramatically increases the number of model parameters and comyews (BN) and Conversational Telephone Speech (CTS) English
putational cost (curse of dimensionality). Typically, a diagonal tasks are given in Section 6.

covariance matrix approximation is employed to circumvent this
problem. Gaussian components are used to model the correlation

implicitly. Recently, efficient forms of explicit correlation mod- 2. ADAPTATION OF PRECISION MATRIX MODELS
elling have been achieved using structured precision matrix ap-

proximations. For examples, the Semi-tied Covariance (STC) [1], ?hn |mpc|J_rtaS_t|_;aspfec; of ta?_y f(,)[rthf. |mpr(:v?t(1j aCOUStC'jC lmo_?;z_ls IS
Extended Maximum Likelihood Linear Transform (EMLLT) [2] € applicabiity of adaptation techniques to these models. This pa-

and Subspace for Precision and Mean (SPAM) [3] models have per considers the Maxi_mum Likelihood Linear Regression (MLLR)
been founF()j to yield good performance g(ains or)1 [L\}CSR systems mean [7] and const_re_uned (CMLLR) (8] adap_tatlo_n schemes for
using both Maximum Likelihood (ML) [4, 5, 6] and Minimum the structured precision matrix models. Estimating the MLLR
Phone Error (MPE) [6] training criteria. I,n cjeneral, these struc- mean transforms for full covariance matrix systems using the di-

tured precision matrix models can be expressed in a general form;%%glgzzg:?guftzllijrt:?::;r[g(]a;i:aclogggitléiattlOig:ﬂ)éseXFnePhsigle :ngr”;n
of basis superposition: y . paper,

efficient row-by-row iterative update approach is presented. Diag-
n n R onal precision matrix approximation is used to initialise the trans-

Po=Y A8 =3 A0 Y Avaliai ) forms. The results given later shows that such initialisation scheme

i=1 i=1 r=1 provides a very good approximation that subsequent iterative up-

This work was supported by DARPA grant MDA972-02-1-0013. The dates may be safely omitted. Also, previous work on SAT training
paper does not necessarily reflect the position or the policy of the US Gov- Of EMLLT [4] and SPAM [5] models was realised based on nu-
ernment and no official endorsement should be inferred. merical optimisation techniques. Again, an efficient row-by-row
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iterative closed-form solution is derived in this paper.

The row-by-row iterative update formulae for MLLR mean
and CMLLR transformation matrices are derived within the stan-
dard Expectation Maximisation (EM) framework. The general
form of the auxiliary function to be maximised is given by

M,
O(W") = K +nflog|W'| — £ 3 Te(PuX ™) (2)

m=1

whereW " is the transformation matri¥s subsumes terms inde-
pendent ofW ", n is a selector variable that is set to 0 and 1 for
MLLR mean and CMLLR respectivelyf = 327 S™T . (¢),

M, is the number of component in regression class, (¢) is the
posterior of component: at timet and

T
X =3 g ()@t~ WY ) @~ W)
t=1

zm: andy,,, can either be the observation vector or the mean

vector depending on the adaptation schemg, is the vector to

be adapted. Differentiating equation (2) with respeabtq theith

row of W7, yields
oQ(WT)

C; v’ ~(rii) (r4)
- —w; G + k
311)17 s c;w’

®)

whereg; is the cofactors of théh row of W" and

M,

G = > p(inj)Gm @)
m=1
v M, d B
JAGD) Z P, () K — Z w;G(”]) (5)
m=1 j=1,j#i

pm(i,7) andp,, (i) denotes the(s, j)th element andth row of
P, respectively. The component level statistics are given by

T T
G’"L - Z Ym (t)ymtyfmt and K, = Z 'Y"L(t)wwnty’lmt

t=1 t=1

Next, row-by-row estimation formulae for MLLR mean and CM-
LLR adaptations are derived in Section 3 and 4 respectively.

3. MLLR MEAN ADAPTATION

MLLR adaptation of the mean vector [7] can be written as
f, = Ap,, + b =W'E, 6)

where A™ andb” are thed x d linear transformation matrix and
the bias vector respectively associated to the regression elass,
(m € r). p,, and i, denote the original and adapted mean
vectors respectively for component. W™ = [A” | b"] and

&, = [ul, 1] are the augmented transformation matrix and mean

vector respectively. These parameters can be estimated by so"’in%iagonal

equation (3) withe,,.,; = o¢ andy,,,, = §,,,.- Thus,

Gm - Bmém‘ffm

where the sufficient statistics are given by

and K"L = umg,lm

T T
B =D Am(t)  um =) ym(t)or
t=1 t=1
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With n = 0, equating (3) to zero and solve far; gives the ML
update as

w; _ G(m’i)—lk:(ri)

This update formula is dependent on the other rows through the
term k" in equation (5). Hence, an initial estimate Bf " is
required and an iterative approach used. AlthoMyti can be
initialised as an identity matrix, a better starting value may be
found by using a diagonal precision matrix approximation, where
pm(t,7) = 0 for j # i. Equation (5) simplifies to that of a di-
agonal covariance matrix system [7]. In fact, the results presented
later indicates that subsequent row-by-row iterations yield very lit-
tle gain in terms of likelihood and the diagonal precision matrix
approximation itself gives good estimates.

4. CONSTRAINED MLLR ADAPTATION

A simple way to achieve variance adaptation for structured pre-
cision matrix models is to train speaker-dependent basis matri-
ces. The efficiency of this kind of variance adaptation depends
on the computational cost of the basis matrix update of the pre-
cision matrix model. This approach is computationally inefficient
for EMLLT and SPAM models. Alternatively, feature space CM-
LLR transforms may be used, where a single transformation ma-
trix is estimation for both the mean vector and the covariance ma-
trix. This can also be viewed as a feature-based speaker normal-
isation [10] technique where speaker-dependent feature transform
is estimated. In CMLLR, a linear feature transformation matrix,
W" = [A" | b"], is estimated for each regression classuch

that

¢ = )
where¢, and ¢, are the augmented vectors of the original and
adapted observation respectively. Again, equation (2) is maximised
to obtain the ML estimate oW ", but now withe,,: = p,,, and

Yume = G- Thus,

Ao, +b" =W'¢,

T
Gn=> )¢ and Kpn=p,,u'
t=1

The sufficient statistics am, G, andu,, = 37| v (), Set-
ting equation (3) to zero with = 1 yields the ML update for each
row of W7 as

w; =« <ci + )\kW)) G-t (8)
Equation (8) is similar to the update formula derived for the case of
diagonal covariance matrix [10], differed by the tek¥i”), which
also depends on other rows in this cage.is found by solving
a quadratic equation as described in [10]. It is easy to see that
whenp, (¢, j) = 0for j # i, equation (8) simplifies to the case of
covariance matrix systems.

Unlike the case of MLLR mean, diagonal precision matrix
approximation does not work for constrained MLLR because the
estimated transforms operates on both the mean vectors and the
precision matrices. However, the CMLLR transforms estimation
process for SPAM models can be approximated using a diagonal
covariance matrix model. For good approximation, this model
should be the starting point used to train the SPAM model.



5. SUFFICIENT STATISTICS FOR SPAM MODELS 543 @
The required statistics associated to each regression cléss -54.35
both MLLR mean and CMLLR adaptations a8 for 1 < i <
d;1<j <iandk™ forl < i < d, as given by equations (4) and
(5) respectively. The number of parameters to be stored for these
statistics aréZ (d + 1)) + d?, which is dominated by ("?). For
structured precision matrix models, the memory requirement can
be reduced by exploiting the basis superposition structure. Substi-
tuting equation (1) into equation (4) yields

-54.4

-54.45

-54.5

-54.55

Average log likelihood
Average log likelihood

-54.6
n M,

G =3 "5 (i, )G and GTV =D AVG ~5465 o _
b=1 m=1 —=— mllr %EEHT
. . 47 5 0 % 5 10
wheres; (2, j) denotes thé:, j)th element of théth basis matrix, iterations iterations
Sy andl < b < n. So, instead of storin§ (d+1) terms ofG "/,
only n terms of G are needed. Thus, the required memory Fig. 1. Change in average log likelihood of one speaker on CTS
is reduced from the orded(d*) to O(nd?). These statistics are ~ with increasing number of MLLR iterations for (a) MLLR mean
directly related to those presented in [5] whe§ andG% arethe ~ and (b) CMLLR, for 28-component SPAM model
same a€z("® for MLLR mean and CMLLR cases respectively.
The notationk used in [5] has the same meaningbassed in this
paper. AlsoG% relates taK (") = Zf\ffil AIEZ,")Km. were generated using an adapted HLDA systeRescoring re-
- sults are summarised in Table 1. For MLLR mean adaptation, a

6. EXPERIMENTAL RESULTS

System Adapt Test Set WER (%)
Experimental results are presented based on two LVCSR English Config || eval03 [ dev04 [ dev04f
tasks: Broadcast News (BN) and Conversational Telephone Speech DIAGC milr 10.7 | 13.2 | 20.0
(CTS). 12 PLP coefficients were used with 188 energy term, SPAM mllr+ 10.6 13.1 195
first, second and third derivatives to form a 52-dimensional feature milr 106 | 13.1 19.5
vector. Side-based vocal tract length, cepstral mean and cepstral SAT+DIAGC | cmllr 10.6 13.1 195
variance normalisations were only used in the CTS task. Systems cmilr+ 10.2 12.7 18.6
were built using triphone models with approximately 6000 distinct SAT+SPAM cmllr 10.2 12.8 18.8

states, within the 39-dimensional HLDA subspace. CMLLR trans-
forms were used for building SAT models. Instead of training the Table 1. Comparisons of MLLR mean and CMLLR adaptations
SAT+SPAM system from the SPAM system, the training approach for 16-comp DIAGC and SPAM models on BN system

described in [5] was adopted, where a speaker adaptively trained

diagonal covariance matrix system (SAT+DIAGC) was used as the gender dependent (GD) DIAGC system was chosen as the base-
starting point. In other words, the SPAM precision matrix mod- |ine. This system gave WERS of 10.7%, 13.2% and 20.0% on the

elling was performed within the SAT feature space. _In testing, tnree test sets. The exceptionally poor performancele4f
MLLR mean transforms for the SPAM models were estimated Us- s que to the large mismatch between the training and the test

ing two row-by-row iterations as described in Sectiom8I( ) or data. Bothmllr+ andmllr configurations yielded the same
simply approximated using the diagonal precision matrix assump- performance, which is 0.1% absolute better than the baseline on
tion (mllr+ ). Similarly, the CMLLR transforms were estimated gy3103 anddevo4 . The gain ordev04f s larger, 0.5% abso-
either using the exact methodnilir ) as described in Section 4 |te_ This shows that MLLR mean adaptation can be efficiently ap-
or approximated using a SAT+DIAGC systeom{lir+ ). proximated with the diagonal precision matrix assumption for the

Figure 1 illustrates the change in the average log likelihood of spaM models and other forms of precision matrix models such as
one speaker with increasing number of iterations for both MLLR  gnjLT.

mean and CMLLR adaptations. On each iteration, the component 5o two forms of CMLLR adaptation for SAT+SPAM mod-
alignment was recomputed based on the transforms estimated iny|s were compared using the SAT+DIAGC system as the baseline.
the previous iteration. The average log likelihood was found to in- Thjg system has the same WER performance as the MLLR mean
crease upon every iteration. In Figure 1(a), there is very little dif- adapted SPAM system. Thenllr+  configurations gained 0.4%
ference between thallr andmlir+  methods for MLLR mean  gpsolute on the first two test sets and 0.9%den04f . Again,
transform estimation. For CMLLR, the log likelihood gain from  there is a large gain from the adapted SPAM models due to the mis-
using thecmlir - method is about twice that of the approximated  match between the training and test sets. Similar performance was

methodcmlir+ , as depicted in Figure 1(b). _ obtained oreval03 using the exactmllr  configuration. Sur-
Word Error Rate (WER) performance was also examined. FOr pyisingly, 0.1% and 0.2% degradations were observedeno4

BN task, 16-component models were trained using 374 hours of 3nqdevoaf although the likelihood of the test data given these

bnetrain04sub training data. This consists of 143 hours of i ansforms was higher than those approximated usmgr+

carefully annotated data and 231 hours of lightly supervised data. opart from the gains from thenllr+  andmilr - SPAM models on
Adaptation experiments were conducted based on three 3-hour test

sets: eval03 , devO4 anddevO4f . 4-gram rescoring lattices 1Similar to theP2 stage of the CU-HTK evaluation system
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eval03 anddev04 , all the gains shown in Table 1 were found cally significant. Similar gains were also found with more com-
to be statistically significaft plex adaptation techniques [11].

Similar comparisons were made on the CTS task. 28-component
models were trained using 400 hours of Fisher data?2004sub )
and evaluated on two test setsval03 consists of two parts,
Switchboard §25) and Fisherfgh ), 3 hours eachdev04 , on This paper has examined the linear adaptation of structured preci-
the other hand, is a 3 hours test set, containing only Fisher data.sjon matrix models combining the speaker adaptive training, SPAM
Table 2 summarises the results of various adaptation configura-precision matrix modelling and MPE discriminative training in

state-of-the-art large vocabulary continuous speech recognition sys-

7. CONCLUSIONS

Table 2. Comparisons of MLLR mean and CMLLR adaptations
for 28-comp DIAGC and SPAM models on CTS system

tions on CTS. The WERs of the baseline DIAGC system after
MLLR adaptation were 22.3% and 18.4%eval03 anddev04
respectively. SPAM model with diagonal precision matrix approx-
imated MLLR adaptation gave 0.4-0.5% gains, although a large
proportion of the gain oeval03 came froms25 (0.6%). Per-
forming two additional row-by-row iterations, although improved
the likelihood, degraded the WER performance by 0.1% on the
fsh part ofeval03 anddev04 . The SAT+DIAGC system is
about 0.3%-0.5% absolute better than the non-SAT baseline on
both test sets. Using this model to estimate the CMLLR trans-
forms for the SAT+SPAM systentillir+ ) improved the WERs

by 0.5% and 0.3% absolute @val03 anddev04 respectively.
Again, the gain ors25 dominated for theval03 test set. Exact
implementation using themllr method gave a consistent im-
provement of 0.1% on all test sets.

Finally, a state-of-the-art SAT+SPAM system was trained us-
ing the 2180 hourésh2004h5etrain03b training data. This
training data comprises both Fisher (1820 hdist®2004 ) and
Switchboard (360 hourB5etrain03b ) data. This system was
evaluated on botleval03 anddev04 test sets and compared
with the SAT+DIAGC system.

Svstem Adapt eval03 dev04

Y Config || s25 | fsh [ Avg Avg
SAT+DIAGC | cmllr 22.7| 155 19.2 16.1
cmllr+ || 22.1| 15.0 | 18.6 15.7

SATFSPAM | “cniir || 221 | 15.0 || 187 || 155

Table 3. Comparisons of CMLLR adapted 36-comp SAT+DIAGC
and SAT+SPAM models on state-of-the-art CTS

In Table 3, the WER performance of the baseline SAT+DIAGC
system was 19.2% and 16.1% emal03 anddev04 respec-
tively. As before, the difference betweemllr andcmllr+ for
SAT+SPAM is small. Comparing to SAT+DIAGC, the SAT+SPAM
system gained about 0.5-0.6% and 0.4-0.6% absolutval®3
anddev04 respectively. These gains were found to be statisti-

2Significance tests were carried out using the NIST Scoring Toolkit.
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System Adapt eval03 dev04 tems. In contrast to the previous work, this paper presented simple
Config || s25 | fsh ] Avg Avg iterative row-by-row update formulae for both MLLR mean and
DIAGC milr 2611 1811 22.3 184 constrained MLLR adaptation of structured precision matrix mod-
mir+ T 2551 1791 21.9 17.9 els which guanratees to increase the likelihood of the adaptation
SPAM mir Il 2551 1801 219! 180 data. Further approximations of these adaptation schemes to re-
SATIDIAGC | cmiir 5581 1781 219 179 duce (_:omputational cost were found to yield similar perfqrmgnpe.
Experimental results were presented based on MPE discrimina-
SAT+SPAM cmilr+ 1 25.0 | 17.6 || 21.4 17.6 tively trained SPAM models for broadcast news and conversational
cmilr || 249 | 175 || 21.3 17.5

telephone speech English tasks. The SAT+SPAM system gave the
best performance gain of approximately 0.5% absolute over the
SAT+DIAGC system.
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