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Abstract

This paper sets out a tracking framework, which is appliedht recovery of three-
dimensional hand motion from an image sequence. The methodlds the issues of ini-
tialization, tracking, and recovery in a unified way. In aghninput image with no prior
information of the hand pose, the algorithm is equivalerd toerarchical detection scheme,
where unlikely pose candidates are rapidly discarded. dg#sequences a dynamic model
is used to guide the search and approximate the optimalriteguations. A dynamic model
is given by transition probabilities between regions ingpaeter space and is learned from
training data obtained by capturing articulated motione algorithm is evaluated on a num-
ber of image sequences, which include hand motion withamifusion in front of a cluttered
background.

Keywords: Probabilistic algorithms, video analysis, kiag.

1 Introduction

One of the fundamental problems in vision is that of trackahgects through sequences of im-
ages. Within this paper we present a Bayesian algorithnrdoking the 3D position and orienta-
tion of rigid or non-rigid objects. The application congielé here is tracking hands in monocular
video sequences, but the method is equally applicable tdb@udy tracking [28, 29]. Great
strides have been made in the theory and practice of traciong@xample the development of
particle filters recognized that a key aspect in tracking a/stter representation of the posterior
distribution of model parameters [11, 17, 20, 36, 37]. letiilters go beyond the uni-modal
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Gaussian assumption of the Kalman filter by approximatitgtrary distributions with a set of

random samples. The advantage is that the filter can dealckitter and ambiguous situa-
tions more effectively, by not placing its bet on just one tiyy@sis. However, a major concern
is that the number of particles required increases expa@igntiith the dimension of the state

space [10, 27]. In addition, even for low dimensional spdbesge is a tendency for particles to
become concentrated in a single mode of the distributiohdhd the tracker’s stability mostly

relies on the quality of the importance sampler.

Within this paper we consider tracking an articulated harauttered images, without the use
of markers. In general this motion has 27 degrees of freed@H), 21 DOF for the joint angles
and 6 for orientation and location [13, 32]. This state sgarebe reduced by reparameterization.
Wu et al. [45] show that due to the correlation of joint angles, theestspace for the joints can
be approximated with 7 DOF by applying PCA, however the teatias difficulties dealing with
out-of-plane rotations and scale changes.

There are several possible strategies for estimation ih Himensional spaces. One way
is to use a sequential search, in which some parameters tareatesl first, and then others,
assuming that the initial set of parameters is correctlyreged. This strategy may seem suitable
for articulated objects. For example, Gavrila and Daviq difiygest, in the context of human
body tracking, first locating the torso and then using thfsrimation to search for the limbs.
Unfortunately, this approach is in general not robust téedgnt view points and self-occlusion.
MacCormick and Isard [27] propose a particle filtering fravoek for this type of method in
the context of hand tracking, factoring the posterior infr@duct of conditionally independent
variables. This assumption is essentially the same as tlizdvrila and Davis, and tracking has
been demonstrated only for a single view point with no setthasion.

The development of particle filters was primarily motivabgdthe need to overcome ambigu-
ous frames in a video sequence so that the tracker is abledeae Another way to overcome the
problem of losing lock is to treat tracking as object detactt each frame [1, 2, 33, 34]. Thus if
the target is lost in one frame, this does not affect any syed frame. Template based methods
have yielded good results for locating deformable objetesscene with no prior knowledge, e.g.
for pedestrians [15]. These methods are made robust ancteffity the use of distance trans-
forms such as the chamfer or Hausdorff distance betweenlatergind image [4, 19], and were
originally developed for matching a single template. A keggestion was that multiple tem-
plates could be dealt with efficiently by building a tree ahfgates [15, 31]. Given the success
of these methods, it is natural to consider whether or nokiing might not be best effected by
template matching using exhaustive search at each frame.ai$wer to this question is gen-
erally no, because dynamic information is needed, firstlyemlve ambiguous situations, and
secondly, to smooth the motion. One approach to embed téenplatching in a probabilistic
tracking framework was proposed for complete image franyedofic et al. [24] and for exem-
plar templates by Toyama and Blake [43]. However, it is askedged thatone problem with
exemplar sets is that they can grow exponentially with dlgemplexity. Tree structures appear
to be an effective way to deal with this problem, and we waki&tb find effective ways of using
them in a probabilistic setting."This paper presents one solution, which combines ideas from
hierarchical view-based detection and probabilistickirag in the object parameter space. A
large number of templates are generated from a 3D model areta¢hy of these templates is
constructed off-line by partitioning the parameter spadee finest partition corresponds to the
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leaves of the tree. At each time instant the posterior 8istion of the state parameters is esti-
mated over these partitions. If no dynamic information igikable, for example in the first frame
of a sequence, this corresponds to a hierarchical detestioeme. In subsequent frames, the
distribution is propagated over time while making use obglcand intrinsic object dynamics.

2 Hierarchical Filtering

This section proposes an algorithm for Bayesian trackintgchlvis based on a multi-resolution
partitioning of the state space. It is motivated by methatt®duced in the context of hierarchical
object detection, which are briefly outlined in the next gett

2.1 Tree-based detection

Methods for detecting objects are becoming increasindigient. Examples are real-time face
detection or pedestrian detection [15, 44], both of whiah laased on hierarchical or cascaded
methods. However, applying these techniques to hand datdodbm a single image is difficult
because of the large variation in shape and appearance oflarndifferent poses. In this case
detection and pose estimation are tightly coupled. Onecaaprto solving this problem is to
use a large number of shape templates and find the best matehimage. Irexemplar-based
methods, such templates are obtained directly from theitrgisets [8, 15, 26, 43]. For example,
Gavrila uses approximately 4500 shape templates to deteetsfrians in images [15]. To avoid
exhaustive search, a template hierarchy is formed by bettprlustering based on the chamfer
distance. A number of similar shape templates are repregéyta cluster prototype. This proto-
type is first compared to the input image, and only if the eisdrelow a threshold value, are the
templates within the cluster compared to the image. The tiagemplate hierarchy is reported
to result in a speed-up of three orders of magnitude comparexhaustive matching [15].

If a parametric object model is available, another optiobutd such a tree of templates is
by partitioning the state space. Let this tree havevels, each levdl defines a partitiorP; of
the state space inty, distinct setd =1, ..., L, such thatP;, = {Si’l}fvzll. The leaves of the tree
define the finest partition of the state spate= {Si’L}fiLl. The use of a parametric model also
allows the combination of a a template hierarchy createdirgf with an on-line optimization
process. Once the leaf level is reached, the model can beddsiycontinuous optimization of
the model’s parameters. In [42] we used this method to atiemhape of a generic hand model
to an individual user in the first frame.

A draw-back of a single-frame exemplar based detector, as¢he one presented in [15], is
the difficulty of incorporating temporal constraints. Wkeanspiration from Jojiet al.[24] who
modeled a video sequence by a small number of image exenagpldnmiodeled the motions by a
discrete label set, imposing dynamics by a hidden Markovehadkhis idea was taken further by
Toyama and Blake [43] who suggested a metric mixture modedemplar-based tracking. The
integration of a dynamic model is useful, firstly to resolvebdguous situations, and secondly,
to smooth the motion. However, in [43] no template hierarishiprmed as the problem is not
seen as one of efficient object detection. The followingieadhtroduces an algorithm which
combines the efficiency of hierarchical methods with Bagediltering.



2.2 Tree-based filtering

Tracking is formulated as a Bayesian inference problem,revlige internal parameters of an
object at timet are given by valuex; € R"™ of a random variablet;, and the measurement
obtained are values, € R™ of the random variableZ;. Given the observations up to and
including timet, z,.;, = {z;}!_,, the state estimation is expressed as a pair of recursidécfion
and update equations [23]:

Pl )= / p(XelXe—1) Pet|Z1e-1) dXeo1 1)
and  p(x¢|zi) = ¢; ' p(ze|xe) p(xe|Z1:0-1) (2)
where ct:/p(zt|xt)p(xt|z1:t_1)dxt. (3)

In the general case itis not possible to obtain analytictemiag for these equations, but there exist
a number of approximation methods which can be used to ohtainmerical solution [12, 38].

An importantissue in each approach is how to represent thegird posterior distributions in
the filtering equations. One suggestion, introduced by BunySenne [9], is to use a point-mass
representation on a uniform grid. The grid is defined by ardiscset of points in state space, and
is used to approximate the integrals in the filtering equmastioy replacing continuous integrals
with Riemann sums over finite regions. The distributionssgmgroximated as piecewise constant
over these regions. The underlying assumption of this neeiththat the posterior distribution is
band-limited, so that there are no singularities or larg@llations between the points on the grid.
Typically grid-based filters have been applied using an lgvgmaced grid and the evaluation is
thus exponentially expensive as the dimension of the staeesincreases [5, 9]. Bucy and
Senne suggest modeling each mode of the distribution by aratepadapting grid, and they
devise a scheme for creating and deleting local grids am-If different approach is taken by
Bergman [5], who uses a fixed grid, but avoids the evaluatigmid points where the probability
mass is below a threshold value.

The aim in this section is to design an algorithm that can tkeantage of the efficiency
of tree-based search to efficiently compute an approximatahe optimal Bayesian solution
using a grid-based filter. In the following, assume that thiei@s of the state vectokse R" are
within a compact regiofR of the state space. In the case of hand tracking, this canetspto
the fact that the parameter values are bounded, the bourdharys being defined by the valid
range of motion. Define a multi-resolution partition of tlegionR as described in section II-A

by dividing the regiorR at each tree-levélinto V, partitions{Si’l}f\Zl,

N,
US“:R fori=1,...,L. (4)
=1

A graphical depiction is shown in figure 1. The posteriorribsttion is represented as piecewise
constant over these sets, the distribution at the leaf lesiglg the representation at the highest
resolution.
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Figure 1:Hierarchical partitioning of the state space. The state space is partitioned using a
multi-resolution grid. The regionSS’VL}iN;1 at the leaf level define the finest partition, over which
the filtering distributions are approximated as piecewismstant. The number of regions is
exponential in the state dimension. However, if large negiof parameter space have negligible
probability mass, these can be identified early, achievaayction in computational complexity.
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Figure 2:Discretizing the filtering equations. (a)The transition distributions are approximated
by transition probabilities between discrete regions iatstspace, which can be modeled by a
Markov transition matrix.(b) The likelihood function is evaluated at the cent(&’') of each
region, assuming that the function is locally smooth.

N

Define a discrete probability distributigrix}') over the regions™,

P o) = [ ploimn) dx. ©)
XtGS '
In the first frame, the posterior is set to the likelihood wlgttion. In the following frames the
discrete recursive relations are obtained from the contisicase by integrating over regions.
Given the distribution over the leaves of the treex’”, |z1.._1 ), at the previous time step— 1,
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the prediction equation now becomes a transition betwesmate regions’* andS’" in state

Space.:
Np

P& z) = S pEIE5) pE z). (6)
=1

Given the state transition distributigrix;|x;_,) the transition probabilities are approximated
by region to region transition probabilities, see figure Raorder to evaluate the distribution
p(xI!|z1,), the likelihoodp(z,|%)") needs to be evaluated for a region in parameter space. This
is computed by evaluating the likelihood function at a sengbint, taken to be the centre of the
regionc(S?!). This approximation assumes that the likelihood functiothie regionS’* can be
represented by the value at the centre locatidii'), see figure 2b.

p(zef%]) o (ze]c(SM)). (7)

This is similar to the idea of using a cluster prototype taespnt similar shapes.

Having laid out Bayesian filtering over discrete statesgiestion arises how to combine the
theory with the efficient tree-based algorithm previoustgatibed. The idea is to approximate
the posterior distribution by evaluating the filter equasi@t each level of the tree. In a breadth-
first traversal regions with low probability mass are idéeti and not further investigated at
the next level of the tree. Regions with high posterior arpl@ed further in the next level
(Figure 3). It is expected that the higher levels of the trdenat yield accurate approximations
to the posterior, but are used to discard inadequate hypeshéor which the posterior of the
set is below a threshold value. In the experiments the tempii@rarchy is built by manually
setting the resolution for each parameter dimension siatttile appearance within each region

s Al maz

is below a threshold value. At each level of the tree the marim,™** and minimunp.”"" of
the posterior values is computed and the threshold is chesen
~l,min ~l,mazx ~l,min
S P (S 8)

wherec, = 0.5 in our experiments. Alternatively, to fix the computatiomd, only a constant
number of modes could be explored. By changing the threshallte, the trade-off between
accuracy and computational time can be regulated. Notdhbkdbcal maxima on one level do
not necessarily correspond to the global maxima of the postdistribution. In particular, if- is

set too high, the branch containing the global maximum mamissed, leading to an incorrect
pose estimate in that frame. After each time stée posterior distribution is represented by the
piecewise constant distribution over the regions at thidésal. When a hand is in the scene, this
leads to a distribution where there is at least one stronlg, pd@ereas in background scenes the
values do not vary as much. In this case no dynamic informagiased and as in the initialization
step only the likelihood values are computed at the firstllefa overview of the algorithm is
given in Algorithm 1.

2.3 Edge and color likelihoods

This section introduces the likelihood function which igdsvithin the algorithm. The likelihood
p(z|x) relates observationsin the image to the unknown state The observations are based on
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Algorithm 1 Tree-based filtering equations
Notation: par(j) denotes the parent of noge

Initialization step at ¢ = 1, assuming uniform distribution over the states initially.

Atlevell = 1: P! 21) = plm|%")  forj=1.... N, (©)
Atlevel [ > 1:
57 : ~par(j),l—
D) = | P i o ) > (10)
! p(ETIZ) otherwise,

Normalize after computing the values at each lé\glch thatZ] 1p(x1 |z1) = 1.

Attime ¢ > 1
Atlevell = 1: p(X) [214) = p(zel %)) p(X7 |2141) (11)
wnere (i) = 3D %) P ) (12)
=1
Atlevel [ > 1:
N 7 ar(j),l—1

P 71) = { zgx"‘(?p("‘l')) gtféw;s(: ma)>nt )

where p(x |z1t 1) Zp (%7 xt’_L1|z1;t_1) ) (24)

Normalize after computing the values at each lé\slch thatZ] (& |214) = 1.
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Figure 3: Tree-based estimation of the posterior density. (afssociated with the nodes at
each level is a non-overlapping set in the state space, dgfenpartition of the state space. The
posterior for each node is evaluated using the center of sathdepicted by a hand rotated by a
specific angle. Sub-trees of nodes with low posterior ardunther evaluated(b) Correspond-
ing posterior density (continuous) and the piecewise @nspproximation. The modes of the
distribution are approximated with higher precision at bdevel.

the edge map*°®° of the image, as well as pixel color valugs'. These features have proved
useful for detecting and tracking hands in previous work [ZG 46]. In the following sections
the joint likelihood ofz = (z°9¢, z*°))T is approximated as

p(zlx) = p(z°¥, 2z |x) ~ p(z°¥|x) p(z* |x), (15)

thus treating the observations independently. The libelithterm for each of the observations is
derived in the following sections.

Edge likelihood: The edge likelihood term(z¢¥¢| x) is based on the chamfer distance func-
tion [4, 7]. Given the set of template pointg = {a;}2, and the set of Canny edge points
B = {bi}f\ﬁl, a quadratic chamfer distance function is given by the ayeed the squared dis-
tances between each point.dfand its closest point ii5:

_ 1 e
d(AB) = + grbr;%;ua b (16)

The chamfer function can be computed efficiently for many ehdeimplates by using a distance
transform (DT) of the edge image. This transformation takesset of feature point8 as input
and assigns each location the distance to its nearest éeaterr the DT value at location
contains the valuenin, g || u—0b|[. The chamfer function for a single template can be computed
by correlating its points with the DT image. To increase sihass toward partial occlusion the
DT image is thresholded by an upper bounoh the distance to the edge, typicatly= 20. Edge
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orientation is included by decomposing both template amng @thage into a number of separate
orientation channels according to gradient orientatione @istance is computed separately for
each channel, thereby increasing the discriminatory paivere likelihood function, especially
in cases when there are many background edge points presietimage [31]. The used cost

term is thus N
1 «— ) ) 9
B) = EZ Z.mm <Ifng%||a—b|| ,7‘) (17)
i=1 aEAZ €

whereA’ andB' are the feature points in orientation chanihelnd N, = 6, in our experiments.
A shape template is treated as the centre of a mixture disitvilp each component beingreetric
exponentiatlistribution [43]. Given the shape templgdeand the observed edge imagfé’, the
likelihood function is defined as

P | %) = 2 exp (< d(A), B))) (19)

where A(x) denotes that the set of template poidtss generated by projecting the model using
the state vectox, and3 is the set of edge points obtained from the edge im#iéf€. Another
option is to define the likelihood function based on ®BF projection theorenj41], which
incorporates information about the distribution of backgrd edges as well and is perhaps better
justified by theory.

Color likelihood:  The color likelihood functiomp(z*!|x) is based on a skin color distribution
p* and a background color distributipf?, respectively. Given a state vectqrcorresponding to a

particular hand pose, the pixels in the image are partittom a set of locations within the hand
silhouette{k : k € S(x)} and outside this regiofk : £ € S(x)}. If pixel-wise independence is
assumed, the likelihood function for the whole image cardototed as

p(z*[x) = H p (k) [ »* (19)

keS(X kes(x

wherel (k) is the color vector at locatioh in the image. When taking the logarithm, this term
is converted into a sum. The evaluation can now be perforrffeieatly by computing a sum
table (or integral imageB*“", which has the same size as the image and contains the cwaulat
sums along the-direction:

xT

B (z,y) = Y _ (logp*(I(i,y)) —log p"(1(i,y))) , (20)

i=1

where in this equation the imagdas indexed by its: andy-coordinates. This array only needs to
be computed once and is then used to compute sums over araddibyg and subtracting values
at points on the silhouette contour. Thus the computatime tis proportional to the contour
length. In the experiments skin color is modeled with a Gansgistribution in(r, ¢)-space, for
background pixels a uniform distribution is assumed. Nb if a distribution of background
appearance can be obtained, this should be used, e.g.gfithestatic scene.
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For an illustrative example using single-frame detectishich shows how combining edge
and skin color information facilitates detection when ohéhe features becomes unreliable, see
figure 4. Color is very useful when edge information is uraielé due to many background edges,
low intensity contrast or fast hand motion. On the other hadde information allows accurate
matching when the hand is in front of skin colored background

Input Image Edges Color Detection

3
)

y w% ool ©

P, \m

- TN
Figure 4: Detection with integrated edge and color features. (Top rowHand in front of
cluttered backgroundpottom row) hand in front of face; situations in which one of the cues is
not discriminative (edges in row 1, color in row 2), but byngsthem in combination the hand is
correctly detected in both cases (last column).

In a second experiment on a sequence of 640 frames the haadmasskept fixed as an
open hand parallel to the image plane with 4 DOF motion; tedios in x, y, and z-direction,
as well as rotation around theaxis. The task is made challenging by introducing a clatter
background with skin-colored objects. The hand motion &, fand during the sequence the
hand is partially and fully occluded, as well as out of the eeanview. A set of 500 templates is
generated, corresponding to 100 discrete orientationgiemdifferent scales, to search for the
best match over the image. The translation space is samipestpixel resolution. No dynamics
are used in this sequence as the hand leaves and re-enteasité view several times. Figure 5
shows typical results for a number of frames as well as the @ftipn error measured against
manually labelled ground truth. The RMS error over the catgpbequence for the frames in
which the hand was detected, was 3.7 pixels. For comparsaemgle hypothesis version of
the Kalman filter [39] was run on this sequence using a fouredisional state space and a first
order dynamic model. Thenscented Kalman filt§tJKF) is a nonlinear extension of the Kalman
filter [25]. The UKF uses an approximation of the underlyingtigbutions using a set of sample
points which are propagated through the original Kalmaerfé¢guations. The observation model
used are local skin color edges, as in [27], i.e. points ofsiteon between areas of high and low
skin color likelihood. The UKF tracker was initialized maatly in the first frame and tracked the
hand for only 20 frames before lock was lost. The main reagamthis are that the color edge
features alone are not robust enough and that the dynamielrisodot able to handle fast and
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abrupt motion. Different models (constant velocity andstant acceleration models) were also
tested, but once the target was lost, the tracker was unabdedver.

2 — UKF
=" —— Detection H
5 : ; ; |
L s B BE R S e .
- . ; :
2 : :
o
: [ A
0 100 200 300 400 500 600
Frame

Figure 5:Detecting an open hand.This figure shows successful detection using edge and color
features of an open hand showing the best match superimpbgeslikelihood function is above
a constant threshold. The sequence is challenging bechad®atkground contains skin-colored
objects and motion is fast, leading to motion blur and missggkes. The method handles partial
occlusion and lighting changes to some degree, can irdgadéind deal with unsteady camera
motion. The graph shows an error plot for the detection ailpon and a Kalman filter (UKF)
tracker. The hand position error was measured against miylgabelled ground truth. The
shaded areas indicate intervals in which the hand is eitby bccluded or out of camera view.
The detection algorithm successfully finds the hand in theleveequence, whereas the UKF
tracker using skin-color edges is only able to track the himméh few frames. The reasons for the
loss of track is that the hand motion is fast between two feaamel that skin-color edges cannot
be reliably found in this input sequence.

2.4 Modeling hand dynamics

The global motion of the hand is modeled using a zero orders&an model, making only
weak prior assumptions about motion continuity. Other ngydaich as a second order model
learned from data [6] or a mixed-state tracker [22] have béssn used for modeling global hand
motion. However, as shown in the previous experiment, dngas particular motion model can
be restrictive.

Articulated motion is naturally constrained, since eadhtjocan only move within certain
limits and the motion of different joints is correlated [49]hus the articulation parameters are
expected to lie within a compact region in the 21 dimensi@magjle space. The dynamics for
this articulated motion are modeled as a first order prooghg;h are learned from training
data obtained from three subjects with a data glove. Sineerete regions in state space are
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considered, the process can be described by a Markov imsitatrix M*% ¢ [0, 1]Ve*Ne,
which contains the transition probabilities between trgiams {SJ?L};V:L1 at the leaf-level. In

order to evaluate the transitions at different tree levetsansition matrid* ¢ [0, 1)¥2*M for
each level of the tree is required, where each matrix contains the galue

Mfé = pxMxbt), i=1,... Ny, j=1,...,N,. 1)

In practice, these matrices are sparse and the non-zeresvala stored in a look-up table.

- & § 3 ¥k &

Figure 6: Tracking a pointing hand. The images are shown with projected contours super-
imposed(top row) and corresponding 3D modébottom row), which are estimated using the
tree-based filter. The hand is translating and rotating.

3 Experimental Results

The following experiments show the effectiveness of théneue by detecting and tracking a
hand in scenes using input from a single camera (image38ize 240).

3.1 Tracking rigid body motion

In the following experiments the hierarchical filter is usedrack rigid hand motion in cluttered
scenes using a single camera.

The results show the ability to tolerate self-occlusionimyiout-of-image-plane rotations.
The 3D rotations are limited to a hemisphere and for eachesexua three-level tree is built,
which has the following resolutions at the leaf level: 15meg in two 3D rotations, 10 degrees
in image rotation and 5 different scales, resulting in alwita3 x 13 x 19 x5 = 16, 055 templates.
The resolution of the translation parameters is 20 pixethafirst level, 5 pixels on the second
level, and 2 pixels at the leaf level. The translation is dopeshifting the templates in the 2D
image. Note that for each of the sequence a different treenistucted, using the corresponding
hand configuration. Figure 6 shows the tracking results omput sequence of a pointing hand
during translation and rotation. The top row shows the irfparmes with the projected model
contours superimposed. The bottom row shows the corregmppdse of the 3D model. During
the rotation there is self-occlusion as the index finger rmawdront of the palm. For each frame
the maximum a-posteriori (MAP) solution is shown. Figurehdws frames from the sequence
of an open hand performing out of image plane rotation. Tégience contains 160 frames and
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shows a hand first rotating approximately 180 degrees andhiag to its initial pose (figure 7,
two top rows). This is followed by a 90 degree rotation (figirgwo bottom rows), and returning
to its initial position. This motion is difficult to track akere is little information available when
the palm surface is normal to the image plane.

Figure 7:Tracking out-of-image-plane rotation. In this sequence the hand undergoes rotation
and translation. The frames showing the hand with selftsoh do not provide much data, and
template matching becomes unreliable. By including pmdoimation, these situations can be
resolved. The projected contours are superimposed on thges) and the corresponding 3D
model is shown below each frame.

Figure 8 shows example frames from a sequence of 509 franagsoamting hand. The tracker
handles fast motion and is able to recover after the handdfiathé camera view and re-enters
the scene. The computation takes approximately two sequardsame on a 1GHz Pentium |V,
corresponding to a speed-up of two orders of magnitude odreausstive detection. Note that in
all cases the hand model was automatically initialized enfitst frame of the sequence.
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Figure 8: Fast motion and recovery. This figure shows frames from a sequence tracking 6
DOF. (Top row) The hand is tracked during fast motion afimbttom row) the tracker is able to
successfully recover after the hand has left the camera view

Figure 9 shows error plots for the three sequences. Theistior localization error measured
against manually labelled ground truth locations of theofiphe thumb and one finger. It can be
observed that the presence of peaks, which are due to lonahain the likelihood function, do
not cause tracking to fail. The mean RMS error for the thregeeces above is 6.7, 6.6, and 7.9
pixels, respectively.
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Figure 9: Error performance. This figure shows the error performance in terms of finger tip
localization measured against manually labelled groundghr (a) pointing hand sequence of
figure 6,(b) rotating hand sequence of figure(¢€) pointing hand sequence of figure 8, where the
hand is out of the view in frames 319-3%&) opening and closing hand sequence of figure 15.

3.2 Initialization

Two illustrative experiments demonstrate the algorithmirduthe initialization phase. In the
first frame of each sequence the posterior tetid! |z, ) for each region is proportional to the
likelihood valuep(z, |x)") for the first observation, . A tree with four levels and 8748 templates
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of a pointing hand at the leaf level was generated, corretipgrto a search over 972 discrete
angles and nine scales, and a search over translation dpsingla pixel resolution. As before,
the motion is restricted to a hemisphere. The search pratesferent levels of the tree is illus-
trated in figure 10. The templates at the higher levels cpoed to larger regions of parameter
space, and are thus less discriminative. The image regiahe dace and the second hand, for
which there is no template, have relatively low cost as theytan skin color pixels and edges.
As the search proceeds, these regions are progressivelynated, resulting in only few final
matches. Figure 11 gives a more detailed view by showing plesof templates at different
tree levels which are above (accepted) and below (rejetitedhreshold valueg, ! = 1,..., L,

in equation (8). It can be seen that the templates which areeaitve threshold at the first level
do not present very accurate matches, however a large nwhigenplates can be rejected at this
stage. At lower tree levels the accuracy of the match ineeas

Figure 10:Automatic initialization. From Top Left: Input image next: Images with detection
results super-imposed. Each square represents an imagéidocwhich contains at least one
node with a likelihood estimate above the threshold valuge ifitensity indicates the number
of matches, high intensity indicated larger number of meschAmbiguity is introduced by the
face and the second hand. Regions are progressively elieadnthe best match is shown on the
bottom right.
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Level 1
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Figure 11:Search results at different levels of the treeThis figure shows templates above and
below the threshold values at levels 1 to 3 of the tree, ranked according to their likebi val-
ues. As the search is refined at each level, the differeneecleetaccepted and rejected templates

decreases.

() (b)

(© (d)

Figure 12:Variation along principal components. This figures shows the variation in hand pose
when moving away from the mean pose into the direction ofahérst, (b) second/c) third,
and (d) fourth principal component. The input data set contained80 joint angle vectors,
obtained from a data glove. The subject was moving the fingersandom way while trying to
cover the possible range of motion.

3.3 Constructing a tree for articulated motion

As mentioned above, finger joint angles are highly corrélatéven though the model has 21
DOF for finger articulation, it has been observed that lesampaters are usually sufficient to
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model articulated hand motion. Using a data glove, 15 sejsinf angles (sizes of data sets:
3000 to 264,000) were captured from three different subjeatrying out random hand gestures,
trying to cover the possible range of finger motion. It wasiiin all cases that 95 percent of the
variance was captured by the first eight principal compa)entten of the data sets within the
first seven, which largely confirms the results reported §] ph a larger data set. The variation
along the first four principal components is illustrated gufie 12. Two methods to obtain the
discrete set§S™'}M. 1 =1,..., L, have been implemented:

=1

e Clustering in parameter space:Since the joint angle data lies within a compact region in
state space, the data points can simply be clustered usiegaadhicalt-means algorithm
with the distance measuix;, x,) = ||(x1 — x2) mod 7||s.

A partition of the state space is given by the Voronoi diagdefined by these nodes, see
figure 13a.

e Partitioning the eigenspace: The joint angle data is projected onto the fiksprincipal
componentsi < 21), and the partitioning is done in the transformed paramspece.
The centres of these regions are then used as nodes on oheOQelye partitions, which
contain data points need to be considered, see figure 13lipMuksolutions are obtained
by subdividing each partition.

o A A2 A

Tl )\1

@) (b)

Figure 13:Partitioning the state space.This figure illustrates two methods of partitioning the
state spacei(a) by clustering the data points in the original space, gbjl by first projecting
the data points onto the firgt principal components and then using a regular grid to define a
partition in the transformed space.

Both techniques are used to build a tree for tracking fingecwdation. In the first sequence
the subject alternates between four different gesturesfigere 14). For learning the transition
distributions, a data set of size 7200 was captured whil®pemg the four gestures a number of
times in random order. In this experiment the tree is builhl®rarchicalk-means clustering of

the whole training set. The tree has a depth of three, wherér#t level contains 300 templates
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together with a partitioning of the translation space abax 20 pixel resolution. The second
and third level each contain 7200 templates (i.e. the whata det) and a translation search at
5 x 5 and?2 x 2 pixel resolution, respectively. The transition matride”’ are obtained by
histogramming the data [18, 43]. The tracking results ferttiee constructed by clustering are
shown in figure 14. No global parameters other than tramsigtarallel to the image plane was
estimated in this experiment. As before, initializatiom@ndled automatically.

Figure 14:Tracking articulated hand motion. In this sequence a number of different finger
motions are tracked. The images are shown with projectedocos superimposed (top) and
corresponding 3D avatar models (bottom). The nodes in g dre found by hierarchical clus-
tering of training data in the parameter space. Dynamicsemmeoded as transition probabilities
between the clusters.

Figure 15 shows the results of tracking global hand motigetioer with finger articulation.

In this case the opening and closing of the hand is capturetiéofirst two eigenvectors, thus
only two articulation parameters are estimated. For tlgaeece the range of global hand motion
is restricted to a smaller region, but it still has 6 DOF. Itat®5,000 templates are used at the
leaf level. The resolution of the translation paramete0ipixels at the first level, 5 pixels on
the second level, and 2 pixels at the leaf level. The outr@lge-plane rotation and the finger
articulation are tracked successfully in this sequencee RNIS error for this sequence, mea-
sured as localization error against labelled ground tristehown in figure 9d. The mean RMS
error is 9.3 pixels, this larger error compared to the otlkegusnces is mainly attributable to the
discretization error introduced by using only two paramsete model articulated motion. The
execution time for this sequence is about three secondsgraefon a 2.4 GHz P4 computer.
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Figure 15:Tracking a hand opening and closing with rigid body motion. This sequence is

challenging because the hand undergoes translation aratiast while opening and closing the
fingers. 6DOF for rigid body motion plus DOF for finger flexion and extension are tracked
successfully.

The purpose of the tree structure is efficiency, thus it isrggting to examine ways of con-
structing an optimal tree in terms of run-time. One apprdaamalyzing the performance of the
method for the detection case is to interpret the templaieattchy as a tree of classifiers [3, 40].
A classifierC! at each node decides whether or not the current observatisithin the region
below that node. The aim is to design classifiers with higlect&in rates with modest false pos-
itive rates, minimizing the computational cost at the falilog levels. The expected run time for
a tree below the nodeat levell is given, similar to [3], by the recursion

E[T(C*)]=T*(C™) + E[pos(C™)] Y _E[T(C**)], (22)

jE€succe(z)

whereT(C) is the run time of classifie€’, pos(C) is the detection rate of classifi€f, and
succ(i) are the successors of nodeMinimizing this function requires simultaneous optintina
of the tree structure as well as the threshold values.

The view of the nodes as classifiers also raises the questiether chamfer or silhouette
template matching are optimal for classification [40]. IsHhmeeen shown that classifiers trained
with large sets of real image data perform better, howewenetis a trade-off between compu-
tation time and classification performance as shown in fi@@éWNhen used in a classification
hierarchy, the detection rate of a classifier needs to behigly, so as not to miss any true pos-
itives. The false positive rate for each single pose classii a fixed detection rate of 0.99, is
given in the last column of tabl&?. Chamfer and Hausdorff matching, while having a largerefals
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positive rate, are about 10-14 times faster to evaluatertterginalized templates [40] and about
40 times faster than the trained linear classifier [14]. Idi&oh, they only require the contour
points to be stored in memory.

Classification Method Number of Points ~ Execution Timefp attp = 0.99
Chamfer 400 13 ms 0.10
Hausdorff 400 13 ms 0.12
Marginalized template [40] 5,800 186 ms 0.02
Linear classifier [14] 16,384 524 ms 0.01

Figure 16:Computation times for template correlation. The execution times for computing the
dot product of 10,000 image patches of si28 x 128, where only the non-zero coefficients are
correlated for efficiency. The time for computing a distammaasform or dilation, which needs to
be only computed once for each frame when chamfer or Hadsdat€thing is used, is less than
2 ms and is therefore negligible when matching a large nunatbéemplates. The last column
shows the false positivép] rates for each single pose classifier at a fixed true pos(tiverate

of 0.99.

4 Conclusions and future work

In this paper a framework was developed for tracking aréiad hand motion from a video. The
ability of the proposed hierarchical filter to recover 3D oot even under self-occlusion, was
demonstrated. The combination of hierarchical detectimhBayesian filtering has a number of
benefits, in particular it specifically addresses the proklef initialization and recovery. The
results in this paper were obtained using sequential agincessing, motivated by applications
in the HCI domain. However, the leaf nodes can be viewed asidgfa discrete state model,
thus it is straightforward to process the sequence usindch ladgorithm as in hidden Markov
models to optimize over the whole sequence [8, 24]. It shbaldoted that in contrast to particle
filters [12, 21, 17] the tree-based filter is a deterministierfiwhich was motivated by a number
of problem-specific reasons. First of all, the facts thatcharotion can be fast and that the
hand can enter and leave the camera view in HCI applicatialhi$or a method that provides
automatic initialization. The second important consitlerais the fact that the time required
for projecting the model is approximately three orders ofgmtude higher than evaluating the
likelihood function. This makes the sampling step in a péetfilter costly and the off-line
generation of templates attractive. The ideas of treeebéitering and particle filtering can
also be combined by using the posterior distribution edechavith the tree-based filter as an
importance distribution for a particle filter in a way sinmita [30]. The range of allowed hand
motion is currently limited by the number of templates thaed to be stored. This currently
poses a main obstacle for extending this method to a fulledvad tracker. There is a trade-off
between generating templates online and storing them efftinfast access, i.e. memory usage
vs. speed. The proposed method is to be used when speed iseshiam and memory is not.
With better hardware acceleration model projection wilfdster, while at the same time memory
will also increase. One can expect, for example, that cuggstems using a PC cluster to store
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large data bases of templates [35] will become much more aotmfn fact, storing one million
shape templates requires about 2 gigabytes, and keepimgith@emory is a viable option on
current PCs. Additionally faster online generation of téaigs as well as learning a relevant set
of representative templates will allow a reduction of themmey requirement.
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