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Abstract— This paper sets out a tracking framework,

which is applied to the recovery of three-dimensional hand
motion from an image sequence. The method handles the
issues of initialization, tracking, and recovery in a unified
way. In a single input image with no prior information of
the hand pose, the algorithm is equivalent to a hierarchical
detection scheme, where unlikely pose candidates are
rapidly discarded. In image sequences a dynamic model
is used to guide the search and approximate the optimal
filtering equations. A dynamic model is given by transition
probabilities between regions in parameter space and is
learned from training data obtained by capturing artic-
ulated motion. The algorithm is evaluated on a number
of image sequences, which include hand motion with self-
occlusion in front of a cluttered background.

Index Terms— Probabilistic algorithms, video analysis,
tracking.

I. INTRODUCTION

One of the fundamental problems in vision is that
of tracking objects through sequences of images.
Within this paper we present a Bayesian algorithm
for tracking the 3D position and orientation of
rigid or non-rigid objects. The application consid-
ered here is tracking hands in monocular video
sequences, but the method is equally applicable to
full body tracking [28], [29]. Great strides have
been made in the theory and practice of track-
ing, for example the development of particle filters
recognized that a key aspect in tracking was a
better representation of the posterior distribution
of model parameters [11], [17], [20], [36], [37].
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Particle filters go beyond the uni-modal Gaussian
assumption of the Kalman filter by approximating
arbitrary distributions with a set of random samples.
The advantage is that the filter can deal with clutter
and ambiguous situations more effectively, by not
placing its bet on just one hypothesis. However,
a major concern is that the number of particles
required increases exponentially with the dimension
of the state space [10], [27]. In addition, even for
low dimensional spaces there is a tendency for parti-
cles to become concentrated in a single mode of the
distribution [12] and the tracker’s stability mostly
relies on the quality of the importance sampler.

Within this paper we consider tracking an artic-
ulated hand in cluttered images, without the use
of markers. In general this motion has 27 degrees
of freedom (DOF), 21 DOF for the joint angles
and 6 for orientation and location [13], [32]. This
state space can be reduced by reparameterization.
Wu et al. [45] show that due to the correlation
of joint angles, the state space for the joints can
be approximated with 7 DOF by applying PCA,
however the tracker has difficulties dealing with out-
of-plane rotations and scale changes.

There are several possible strategies for estima-
tion in high dimensional spaces. One way is to use
a sequential search, in which some parameters are
estimated first, and then others, assuming that the
initial set of parameters is correctly estimated. This
strategy may seem suitable for articulated objects.
For example, Gavrila and Davis [16] suggest, in
the context of human body tracking, first locating
the torso and then using this information to search
for the limbs. Unfortunately, this approach is in
general not robust to different view points and self-
occlusion. MacCormick and Isard [27] propose a
particle filtering framework for this type of method
in the context of hand tracking, factoring the pos-
terior into a product of conditionally independent
variables. This assumption is essentially the same
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as that of Gavrila and Davis, and tracking has been
demonstrated only for a single view point with no
self-occlusion.

The development of particle filters was primar-
ily motivated by the need to overcome ambiguous
frames in a video sequence so that the tracker is able
to recover. Another way to overcome the problem of
losing lock is to treat tracking as object detection at
each frame [1], [2], [33], [34]. Thus if the target is
lost in one frame, this does not affect any subsequent
frame. Template based methods have yielded good
results for locating deformable objects in a scene
with no prior knowledge, e.g. for pedestrians [15].
These methods are made robust and efficient by the
use of distance transforms such as the chamfer or
Hausdorff distance between template and image [4],
[19], and were originally developed for matching a
single template. A key suggestion was that multiple
templates could be dealt with efficiently by building
a tree of templates [15], [31]. Given the success of
these methods, it is natural to consider whether or
not tracking might not be best effected by template
matching using exhaustive search at each frame. The
answer to this question is generally no, because
dynamic information is needed, firstly to resolve
ambiguous situations, and secondly, to smooth the
motion. One approach to embed template matching
in a probabilistic tracking framework was proposed
for complete image frames by Jojic et al. [24] and
for exemplar templates by Toyama and Blake [43].
However, it is acknowledged that “one problem with
exemplar sets is that they can grow exponentially
with object complexity. Tree structures appear to
be an effective way to deal with this problem, and
we would like to find effective ways of using them
in a probabilistic setting.” This paper presents one
solution, which combines ideas from hierarchical
view-based detection and probabilistic tracking in
the object parameter space. A large number of
templates are generated from a 3D model and a
hierarchy of these templates is constructed off-
line by partitioning the parameter space. The finest
partition corresponds to the leaves of the tree. At
each time instant the posterior distribution of the
state parameters is estimated over these partitions.
If no dynamic information is available, for example
in the first frame of a sequence, this corresponds
to a hierarchical detection scheme. In subsequent
frames, the distribution is propagated over time
while making use of global and intrinsic object

dynamics.

II. HIERARCHICAL FILTERING

This section proposes an algorithm for Bayesian
tracking, which is based on a multi-resolution par-
titioning of the state space. It is motivated by
methods introduced in the context of hierarchical
object detection, which are briefly outlined in the
next section.

A. Tree-based detection
Methods for detecting objects are becoming in-

creasingly efficient. Examples are real-time face
detection or pedestrian detection [15], [44], both of
which are based on hierarchical or cascaded meth-
ods. However, applying these techniques to hand
detection from a single image is difficult because
of the large variation in shape and appearance of a
hand in different poses. In this case detection and
pose estimation are tightly coupled. One approach
to solving this problem is to use a large number
of shape templates and find the best match in the
image. In exemplar-based methods, such templates
are obtained directly from the training sets [8], [15],
[26], [43]. For example, Gavrila uses approximately
4500 shape templates to detect pedestrians in im-
ages [15]. To avoid exhaustive search, a template
hierarchy is formed by bottom-up clustering based
on the chamfer distance. A number of similar shape
templates are represented by a cluster prototype.
This prototype is first compared to the input image,
and only if the error is below a threshold value,
are the templates within the cluster compared to the
image. The use of a template hierarchy is reported
to result in a speed-up of three orders of magnitude
compared to exhaustive matching [15].

If a parametric object model is available, another
option to build such a tree of templates is by
partitioning the state space. Let this tree have �
levels, each level � defines a partition ��� of the state
space into ��� distinct sets �	��

����������� , such that����� ������� ��������! #" . The leaves of the tree define the
finest partition of the state space ��$%�&��� �'� $ � �)(�! #" .The use of a parametric model also allows the
combination of a a template hierarchy created off-
line with an on-line optimization process. Once the
leaf level is reached, the model can be refined by
continuous optimization of the model’s parameters.
In [42] we used this method to adapt the shape of
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a generic hand model to an individual user in the
first frame.

A draw-back of a single-frame exemplar based
detector, such as the one presented in [15], is the
difficulty of incorporating temporal constraints. We
take inspiration from Jojic et al. [24] who modelled
a video sequence by a small number of image
exemplars and modelled the motions by a discrete
label set, imposing dynamics by a hidden Markov
model. This idea was taken further by Toyama
and Blake [43] who suggested a metric mixture
model for exemplar-based tracking. The integration
of a dynamic model is useful, firstly to resolve
ambiguous situations, and secondly, to smooth the
motion. However, in [43] no template hierarchy is
formed as the problem is not seen as one of efficient
object detection. The following section introduces
an algorithm which combines the efficiency of hi-
erarchical methods with Bayesian filtering.

B. Tree-based filtering

Tracking is formulated as a Bayesian inference
problem, where the internal parameters of an object
at time * are given by values +-,/. 021 of a
random variable 34, , and the measurement obtained
are values 56,7.8029 of the random variable :	, . Given
the observations up to and including time * , 5 "<; ,7��=5 � � ,�! #" , the state estimation is expressed as a pair
of recursive prediction and update equations [23]:>@? +A,CB 5 "<; ,ED " F � G >H? +A,�B +A,ED " F >@? +#,ED " B 5 "<; ,ED " FJI +A,ED " (1)

and >H? +A,�B 5 "<; , F �LK D ", >@? 5
,CB +M, F >@? +#,�B 5 "<; ,ED " F � (2)

where KN,�� G >@? 5O,�B +A, F >H? +M,�B 5 "<; ,ED " FJI +M,P� (3)

In the general case it is not possible to obtain
analytic solutions for these equations, but there exist
a number of approximation methods which can be
used to obtain a numerical solution [12], [38].

An important issue in each approach is how to
represent the prior and posterior distributions in
the filtering equations. One suggestion, introduced
by Bucy and Senne [9], is to use a point-mass
representation on a uniform grid. The grid is defined
by a discrete set of points in state space, and is
used to approximate the integrals in the filtering
equations by replacing continuous integrals with
Riemann sums over finite regions. The distributions

are approximated as piecewise constant over these
regions. The underlying assumption of this method
is that the posterior distribution is band-limited, so
that there are no singularities or large oscillations
between the points on the grid. Typically grid-based
filters have been applied using an evenly spaced grid
and the evaluation is thus exponentially expensive
as the dimension of the state space increases [5],
[9]. Bucy and Senne suggest modelling each mode
of the distribution by a separate adapting grid, and
they devise a scheme for creating and deleting
local grids on-line. A different approach is taken
by Bergman [5], who uses a fixed grid, but avoids
the evaluation at grid points where the probability
mass is below a threshold value.

The aim in this section is to design an algorithm
that can take advantage of the efficiency of tree-
based search to efficiently compute an approxi-
mation to the optimal Bayesian solution using a
grid-based filter. In the following, assume that the
values of the state vectors +Q.&0�1 are within a
compact region R of the state space. In the case
of hand tracking, this corresponds to the fact that
the parameter values are bounded, the boundary
values being defined by the valid range of motion.
Define a multi-resolution partition of the region R
as described in section II-A by dividing the regionR at each tree-level � into �S� partitions ��� ��� � � � ��! #" ,� �T�! #" � ��� � �UR for �A�V

�����������W� (4)

A graphical depiction is shown in figure 1. The
posterior distribution is represented as piecewise
constant over these sets, the distribution at the
leaf level being the representation at the highest
resolution. Define a discrete probability distribution>@?�X+ ��� �, F over the regions � �'� � ,>@?�X+ ��� �, B 5 "<; , F � G +-Y[Z��]\_^ � >@? +A,`B 5 "<; , FJI +A,<� (5)

In the first frame, the posterior is set to the
likelihood distribution. In the following frames
the discrete recursive relations are obtained from
the continuous case by integrating over regions.
Given the distribution over the leaves of the tree,>@?�X+ ��� $,ED " B 5 "<; ,ED " F , at the previous time step *ba�
 ,
the prediction equation now becomes a transition
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Fig. 1. Hierarchical partitioning of the state space. The state space
is partitioned using a multi-resolution grid. The regions c<d \!^ (fehgOi\kj
lat the leaf level define the finest partition, over which the filtering
distributions are approximated as piecewise constant. The number of
regions is exponential in the state dimension. However, if large re-
gions of parameter space have negligible probability mass, these can
be identified early, achieving reduction in computational complexity.
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Fig. 2. Discretizing the filtering equations. (a) The transition
distributions are approximated by transition probabilities between
discrete regions in state space, which can be modelled by a Markov
transition matrix. (b) The likelihood function is evaluated at the
centre m`nod
p ^ �_q of each region, assuming that the function is locally
smooth.

between discrete regions � ��� $ and �sr � � in state space:>@?�X+ r � �, B 5 "<; ,ED " F � � (t �_ #" >@?�X+ r � �, B X+ �'� $,ED " F >@?�X+ ��� $,ED " B 5 "<; ,ED " F �(6)
Given the state transition distribution >@? +H,�B +M,ED " F the
transition probabilities are approximated by region
to region transition probabilities, see figure 2a. In
order to evaluate the distribution >@?=X+ r � �, B 5 "<; , F , the
likelihood >@? 5
,�B X+ r � �, F needs to be evaluated for a
region in parameter space. This is computed by
evaluating the likelihood function at a single point,
taken to be the centre of the region K ? �2r � � F . This
approximation assumes that the likelihood function
in the region �2r � � can be represented by the value at
the centre location K ? � r � � F , see figure 2b.>@? 5
,�B X+ r � �, Fvu ? 5
,�B K ? �sr � � FwF � (7)

This is similar to the idea of using a cluster proto-

type to represent similar shapes.
Having laid out Bayesian filtering over discrete

states, the question arises how to combine the theory
with the efficient tree-based algorithm previously
described. The idea is to approximate the posterior
distribution by evaluating the filter equations at
each level of the tree. In a breadth-first traversal
regions with low probability mass are identified
and not further investigated at the next level of
the tree. Regions with high posterior are explored
further in the next level (Figure 3). It is expected
that the higher levels of the tree will not yield
accurate approximations to the posterior, but are
used to discard inadequate hypotheses, for which
the posterior of the set is below a threshold value.
In the experiments the template hierarchy is built by
manually setting the resolution for each parameter
dimension such that the appearance within each
region is below a threshold value. At each level of
the tree the maximum X> � � 97xhy, and minimum X> � � 9 � 1, of
the posterior values is computed and the threshold
is chosen asz �, � X> � � 9 � 1, { KN| ? X> � � 97xPy, a X> � � 9 � 1, F � (8)

where KN|}��~��o� in our experiments. Alternatively, to
fix the computation time, only a constant number of
modes could be explored. By changing the threshold
value, the trade-off between accuracy and compu-
tational time can be regulated. Note that the local
maxima on one level do not necessarily correspond
to the global maxima of the posterior distribution. In
particular, if z is set too high, the branch containing
the global maximum may be missed, leading to an
incorrect pose estimate in that frame. After each
time step * the posterior distribution is represented
by the piecewise constant distribution over the re-
gions at the leaf level. When a hand is in the scene,
this leads to a distribution where there is at least
one strong peak, whereas in background scenes the
values do not vary as much. In this case no dynamic
information is used and as in the initialization step
only the likelihood values are computed at the first
level. An overview of the algorithm is given in
Algorithm 1.

C. Edge and colour likelihoods

This section introduces the likelihood function
which is used within the algorithm. The likelihood>@? 5MB + F relates observations 5 in the image to the
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Algorithm 1 Tree-based filtering equations
Notation: >)�6��?'� F denotes the parent of node � .
Initialization step at *���
 , assuming uniform distribution over the states initially.

At level �-�V
 : >@?�X+ r ��"" B 5 " F � >@? 5 " B X+ r ��"" F for � ��

����������� " � (9)

At level ����
 : >@?�X+ r � �" B 5 " F ��� >H? 5 " B X+ r � �" F if >@?�X+�� xh�`� r`� � �_D "" B 5 " F � z �_D ", �>H?�X+�� xP�`� rw� � �_D "" B 5 " F otherwise,
(10)

Normalize after computing the values at each level � such that � �)�r  #" >@?�X+ r � �" B 5 " F ��
 .
At time *4��

At level �-�V
 : >@?�X+ r ��", B 5 "<; , F � >@? 5
,`B X+ r ��", F >@?�X+ r ��", B 5 "<; ,ED " F � (11)

where >@? X+ r ��", B 5 "<; ,ED " F � � (t �! #" >@? X+ r ��", B X+ ��� $,ED " F >H? X+ ��� $,ED " B 5 "<; ,ED " F (12)

At level ����
 : >@?�X+ r � �, B 5 "<; , F ��� >@? 5
,�B X+ r � �, F >@?�X+ r � �, B 5 "<; ,ED " F if >@?�X+ � xP�`� r`� � �!D ", B 5 "<; , F � z �!D ", �>@?�X+�� xP�`� r`� � �!D ", B 5 "<; , F otherwise,
(13)

where >H?�X+ r � �, B 5 "<; ,ED " F � � (t �! #" >@?�X+ r � �, B X+ ��� $,ED " F >@?�X+ �'� $,ED " B 5 "<; ,ED " F � (14)

Normalize after computing the values at each level � such that � �)�r  #" >@?�X+ r � �, B 5 "<; , F ��
 .
unknown state + . The observations are based on the
edge map 5����<�w� of the image, as well as pixel colour
values 5��[� � . These features have proved useful for
detecting and tracking hands in previous work [26],
[27], [46]. In the following sections the joint likeli-
hood of 5�� ? 5����P�h���C5
�[� � FP� is approximated as>H? 5AB + F � >@? 5 ���<�w� �C5 �[� � B<+ F � >@? 5 ���<�w� B<+ F >@? 5 �¡� � B<+ F �

(15)
thus treating the observations independently. The
likelihood term for each of the observations is
derived in the following sections.

a) Edge likelihood:: The edge likelihood term>H? 5 �¢�<�h� B<+ F is based on the chamfer distance func-
tion [4], [7]. Given the set of template points£ � �=¤ � � �J¥�! #" and the set of Canny edge points¦ ���=§ � ����¨�_ #" , a quadratic chamfer distance function
is given by the average of the squared distances

between each point of
£

and its closest point in
¦

:I ? £ � ¦ F � 
� x tx Z £ª©b«'¬­ Z ¦ B�B � a¯®�B�B °�� (16)

The chamfer function can be computed efficiently
for many model templates by using a distance trans-
form (DT) of the edge image. This transformation
takes the set of feature points

¦
as input and assigns

each location the distance to its nearest feature,
i.e. the DT value at location ± contains the value©²«�¬ ­ Z ¦ B'BP±³a´®�B'B . The chamfer function for a single
template can be computed by correlating its points
with the DT image. To increase robustness toward
partial occlusion the DT image is thresholded by
an upper bound z on the distance to the edge,
typically z �¶µO~ . Edge orientation is included by
decomposing both template and edge image into a
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Fig. 3. Tree-based estimation of the posterior density. (a) Associated with the nodes at each level is a non-overlapping set in the state
space, defining a partition of the state space. The posterior for each node is evaluated using the center of each set, depicted by a hand
rotated by a specific angle. Sub-trees of nodes with low posterior are not further evaluated. (b) Corresponding posterior density (continuous)
and the piecewise constant approximation. The modes of the distribution are approximated with higher precision at each level.

number of separate orientation channels according
to gradient orientation. The distance is computed
separately for each channel, thereby increasing the
discriminatory power of the likelihood function,
especially in cases when there are many background
edge points present in the image [31]. The used cost
term is thusI � ? £ � ¦ F � 
� x �J·t �! #" tx Z £ \ ©²«�¬¹¸�©b«'¬­ Z ¦ \ B�B � aº®
B'B °�� z�»

(17)
where

£ � and
¦ � are the feature points in orientation

channel ¼ , and �¾½�� ¿ , in our experiments. A
shape template is treated as the centre of a mixture
distribution, each component being a metric expo-
nential distribution [43]. Given the shape template� and the observed edge image 5À���P�h� , the likelihood
function is defined as>@? 5 �¢�<�h� B�+ F � 
Á Â�Ã�ÄÆÅCa}Ç I � ? £ ? + F � ¦ ? 5 �¢�<�h� F`FwÈ �

(18)
where

£ ? + F denotes that the set of template points£
is generated by projecting the model using the

state vector + , and
¦

is the set of edge points
obtained from the edge image 5 ���P�h� . Another option
is to define the likelihood function based on the
PDF projection theorem [41], which incorporates
information about the distribution of background
edges as well and is perhaps better justified by

theory.

b) Colour likelihood:: The colour likelihood
function >H? 5��[� � B + F is based on a skin colour distri-
bution >)É and a background colour distribution > ­ � ,
respectively. Given a state vector + , corresponding
to a particular hand pose, the pixels in the image
are partitioned into a set of locations within the
hand silhouette �fÊÌËÀÊÌ.ÎÍ ? + F � and outside this re-
gion �fÊ�Ë4Ê�. ÏÍ ? + F � . If pixel-wise independence
is assumed, the likelihood function for the whole
image can be factored as>@? 5 �[� � B + F � ÐÑ Z�Ò � + � > É ?¡Ó#? Ê F`F ÐÑ ZÕÔÒ � + � > ­ � ?¡Ó#? Ê F`F(19)
where ÓM? Ê F is the colour vector at location Ê in
the image. When taking the logarithm, this term is
converted into a sum. The evaluation can now be
performed efficiently by computing a sum table (or
integral image), Ö É[× 9 , which has the same size as
the image and contains the cumulative sums along
the Ø -direction:Ö É[× 9 ? ØH�`Ù F � yt �! #" Å<Ú'Û
Ü > É ?¡Ó#? ¼w�CÙ F`F aºÚ'Û
Ü > ­ � ?¡Ó#? ¼w�CÙ F`FwÈ �(20)
where in this equation the image Ó is indexed by
its Ø and Ù -coordinates. This array only needs to
be computed once and is then used to compute
sums over areas by adding and subtracting values
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Input Image Edges Colour Detection

Fig. 4. Detection with integrated edge and colour features. (Top
row) Hand in front of cluttered background, (bottom row) hand in
front of face; situations in which one of the cues is not discriminative
(edges in row 1, colour in row 2), but by using them in combination
the hand is correctly detected in both cases (last column).

at points on the silhouette contour. Thus the com-
putation time is proportional to the contour length.
In the experiments skin colour is modelled with a
Gaussian distribution in ?¡� �`Ý F -space, for background
pixels a uniform distribution is assumed. Note that
if a distribution of background appearance can be
obtained, this should be used, e.g. if there is a static
scene.

For an illustrative example using single-frame de-
tection, which shows how combining edge and skin
colour information facilitates detection when one of
the features becomes unreliable, see figure 4. Colour
is very useful when edge information is unreli-
able due to many background edges, low intensity
contrast or fast hand motion. On the other hand,
edge information allows accurate matching when
the hand is in front of skin coloured background.

In a second experiment on a sequence of 640
frames the hand pose was kept fixed as an open
hand parallel to the image plane with 4 DOF mo-
tion; translation in Ø , Ù , and Þ -direction, as well
as rotation around the Þ -axis. The task is made
challenging by introducing a cluttered background
with skin-coloured objects. The hand motion is fast,
and during the sequence the hand is partially and
fully occluded, as well as out of the camera view.
A set of 500 templates is generated, corresponding
to 100 discrete orientations and five different scales,
to search for the best match over the image. The
translation space is sampled at a 6-pixel resolution.
No dynamics are used in this sequence as the hand
leaves and re-enters the camera view several times.
Figure 5 shows typical results for a number of
frames as well as the 2D position error measured
against manually labelled ground truth. The RMS
error over the complete sequence for the frames

frame 0 100 250 257 390 519 598

Fig. 5. Detecting an open hand. This figure shows successful
detection using edge and color features of an open hand showing
the best match superimposed, if the likelihood function is above a
constant threshold. The sequence is challenging because the back-
ground contains skin-coloured objects and motion is fast, leading to
motion blur and missed edges. The method handles partial occlusion
and lighting changes to some degree, can initialize and deal with
unsteady camera motion. The graph shows an error plot for the
detection algorithm and a Kalman filter (UKF) tracker. The hand
position error was measured against manually labelled ground truth.
The shaded areas indicate intervals in which the hand is either fully
occluded or out of camera view. The detection algorithm successfully
finds the hand in the whole sequence, whereas the UKF tracker using
skin-colour edges is only able to track the hand for a few frames. The
reasons for the loss of track is that the hand motion is fast between
two frames and that skin-colour edges cannot be reliably found in
this input sequence.

in which the hand was detected, was 3.7 pixels.
For comparison, a single hypothesis version of the
Kalman filter [39] was run on this sequence using
a four dimensional state space and a first order
dynamic model. The unscented Kalman filter (UKF)
is a nonlinear extension of the Kalman filter [25].
The UKF uses an approximation of the underlying
distributions using a set of sample points which
are propagated through the original Kalman filter
equations. The observation model used are local
skin colour edges, as in [27], i.e. points of transition
between areas of high and low skin colour like-
lihood. The UKF tracker was initialized manually
in the first frame and tracked the hand for only
20 frames before lock was lost. The main reasons
for this are that the colour edge features alone are
not robust enough and that the dynamic model is
not able to handle fast and abrupt motion. Different
models (constant velocity and constant acceleration
models) were also tested, but once the target was
lost, the tracker was unable to recover.

D. Modelling hand dynamics

The global motion of the hand is modeled using a
zero order Gaussian model, making only weak prior
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Fig. 6. Tracking a pointing hand. The images are shown with
projected contours superimposed (top row) and corresponding 3D
model (bottom row), which are estimated using the tree-based filter.
The hand is translating and rotating.

assumptions about motion continuity. Other models,
such as a second order model learned from data [6]
or a mixed-state tracker [22] have also been used for
modelling global hand motion. However, as shown
in the previous experiment, choosing a particular
motion model can be restrictive.

Articulated motion is naturally constrained, since
each joint can only move within certain limits and
the motion of different joints is correlated [45].
Thus the articulation parameters are expected to lie
within a compact region in the 21 dimensional angle
space. The dynamics for this articulated motion are
modelled as a first order process, which are learned
from training data obtained from three subjects with
a data glove. Since discrete regions in state space
are considered, the process can be described by
a Markov transition matrix ß $f$ . àá~���
�â � (Àã � ( ,
which contains the transition probabilities between
the regions �fÍ r � $ � �)(r  #" at the leaf-level. In order to
evaluate the transitions at different tree levels, a
transition matrix ß $O� .ºàá~���
�â �)( ã � � for each level �
of the tree is required, where each matrix contains
the values:ß $O���� r � >@?�X+ r � �, B X+ �'� $,ED " F ��¼7�V

�������ä���¾$#� � �V

�������ä���¾�[�

(21)
In practice, these matrices are sparse and the non-
zero values are stored in a look-up table.

III. EXPERIMENTAL RESULTS

The following experiments show the effectiveness
of the technique by detecting and tracking a hand
in scenes using input from a single camera (image
size å6µO~�æÎµfç6~ ).
A. Tracking rigid body motion

In the following experiments the hierarchical fil-
ter is used to track rigid hand motion in cluttered
scenes using a single camera.

Fig. 7. Tracking out-of-image-plane rotation. In this sequence
the hand undergoes rotation and translation. The frames showing
the hand with self-occlusion do not provide much data, and template
matching becomes unreliable. By including prior information, these
situations can be resolved. The projected contours are superimposed
on the images, and the corresponding 3D model is shown below each
frame.

The results show the ability to tolerate self-
occlusion during out-of-image-plane rotations. The
3D rotations are limited to a hemisphere and for
each sequence a three-level tree is built, which
has the following resolutions at the leaf level: 15
degrees in two 3D rotations, 10 degrees in image
rotation and 5 different scales, resulting in a total
of 
�åºæè
�åºæé
�êºæë��� 
�¿���~6�
� templates. The
resolution of the translation parameters is 20 pixels
at the first level, 5 pixels on the second level, and
2 pixels at the leaf level. The translation is done by
shifting the templates in the 2D image. Note that
for each of the sequence a different tree is con-
structed, using the corresponding hand configura-
tion. Figure 6 shows the tracking results on an input
sequence of a pointing hand during translation and
rotation. The top row shows the input frames with
the projected model contours superimposed. The
bottom row shows the corresponding pose of the 3D
model. During the rotation there is self-occlusion
as the index finger moves in front of the palm.
For each frame the maximum a-posteriori (MAP)
solution is shown. Figure 7 shows frames from the
sequence of an open hand performing out of image
plane rotation. This sequence contains 160 frames
and shows a hand first rotating approximately 180
degrees and returning to its initial pose (figure 7,
two top rows). This is followed by a 90 degree
rotation (figure 7, two bottom rows), and returning
to its initial position. This motion is difficult to
track as there is little information available when
the palm surface is normal to the image plane.
Figure 8 shows example frames from a sequence of
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frame 0 102 115 121 128 131

302 311 316 344 351 400

Fig. 8. Fast motion and recovery. This figure shows frames from a
sequence tracking 6 DOF. (Top row) The hand is tracked during fast
motion and (bottom row) the tracker is able to successfully recover
after the hand has left the camera view.

509 frames of a pointing hand. The tracker handles
fast motion and is able to recover after the hand
has left the camera view and re-enters the scene.
The computation takes approximately two seconds
per frame on a 1GHz Pentium IV, corresponding
to a speed-up of two orders of magnitude over
exhaustive detection. Note that in all cases the hand
model was automatically initialized in the first frame
of the sequence. Figure 9 shows error plots for the
three sequences. The error is the localization error
measured against manually labelled ground truth
locations of the tip of the thumb and one finger. It
can be observed that the presence of peaks, which
are due to local minima in the likelihood function,
do not cause tracking to fail. The mean RMS error
for the three sequences above is 6.7, 6.6, and 7.9
pixels, respectively.

B. Initialization

Two illustrative experiments demonstrate the al-
gorithm during the initialization phase. In the first
frame of each sequence the posterior term >@? X+ r ��"" B 5 " Ffor each region is proportional to the likelihood
value >@? 5 " B X+ r ��"" F for the first observation 5 " . A tree
with four levels and 8748 templates of a pointing
hand at the leaf level was generated, corresponding
to a search over 972 discrete angles and nine scales,
and a search over translation space at single pixel
resolution. As before, the motion is restricted to a
hemisphere. The search process at different levels
of the tree is illustrated in figure 10. The templates
at the higher levels correspond to larger regions of
parameter space, and are thus less discriminative.
The image regions of the face and the second hand,
for which there is no template, have relatively low
cost as they contain skin colour pixels and edges. As
the search proceeds, these regions are progressively
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Fig. 9. Error performance. This figure shows the error performance
in terms of finger tip localization measured against manually labelled
ground truth. (a) pointing hand sequence of figure 6, (b) rotating
hand sequence of figure 7, (c) pointing hand sequence of figure 8,
where the hand is out of the view in frames 319–352, (d) opening
and closing hand sequence of figure 15.

eliminated, resulting in only few final matches.
Figure 11 gives a more detailed view by showing ex-
amples of templates at different tree levels which are
above (accepted) and below (rejected) the threshold
values z �ì �����í

�����������î� in equation (8). It can be
seen that the templates which are above the thresh-
old at the first level do not present very accurate
matches, however a large number of templates can
be rejected at this stage. At lower tree levels the
accuracy of the match increases.

C. Constructing a tree for articulated motion
As mentioned above, finger joint angles are

highly correlated. Even though the model has 21
DOF for finger articulation, it has been observed
that less parameters are usually sufficient to model
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Accepted Rejected

Level 1

Level 2

Level 3

Fig. 11. Search results at different levels of the tree. This figure shows templates above and below the threshold values ï �Y at levels 1 to
3 of the tree, ranked according to their likelihood values. As the search is refined at each level, the difference between accepted and rejected
templates decreases.

Fig. 10. Automatic initialization. From Top Left: Input image,
next: Images with detection results super-imposed. Each square
represents an image location which contains at least one node with a
likelihood estimate above the threshold value. The intensity indicates
the number of matches, high intensity indicated larger number of
matches. Ambiguity is introduced by the face and the second hand.
Regions are progressively eliminated, the best match is shown on the
bottom right.

articulated hand motion. Using a data glove, 15
sets of joint angles (sizes of data sets: 3000 to
264,000) were captured from three different subjects
carrying out random hand gestures, trying to cover
the possible range of finger motion. It was found
in all cases that 95 percent of the variance was
captured by the first eight principal components, in
ten of the data sets within the first seven, which
largely confirms the results reported in [45] on a
larger data set. The variation along the first four
principal components is illustrated in figure 12. Two
methods to obtain the discrete sets ��� ��� � ���)��! #" �²�³�
O�������ä���ð� have been implemented:ñ Clustering in parameter space: Since the

joint angle data lies within a compact region
in state space, the data points can simply be

(a) (b)

(c) (d)

Fig. 12. Variation along principal components. This figures shows
the variation in hand pose when moving away from the mean pose
into the direction of the (a) first, (b) second, (c) third, and (d) fourth
principal component. The input data set contained 50,000 joint angle
vectors, obtained from a data glove. The subject was moving the
fingers in a random way while trying to cover the possible range of
motion.

clustered using a hierarchical Ê -means algo-
rithm with the distance measure

I ? + " �`+ ° F �B'B ? +s
	aò+7µ F © Û�óÌô4B'B ° .A partition of the state space is given by the
Voronoi diagram defined by these nodes, see
figure 13a.ñ Partitioning the eigenspace: The joint angle
data is projected onto the first Ê principal
components ( Ê õ µ�
 ), and the partitioning
is done in the transformed parameter space.
The centres of these regions are then used
as nodes on one level. Only partitions, which
contain data points need to be considered, see
figure 13b. Multiple resolutions are obtained by
subdividing each partition.
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Fig. 13. Partitioning the state space. This figure illustrates two
methods of partitioning the state space: (a) by clustering the data
points in the original space, and (b) by first projecting the data points
onto the first T principal components and then using a regular grid
to define a partition in the transformed space.

Both techniques are used to build a tree for track-
ing finger articulation. In the first sequence the
subject alternates between four different gestures
(see figure 14). For learning the transition dis-
tributions, a data set of size 7200 was captured
while performing the four gestures a number of
times in random order. In this experiment the tree
is built by hierarchical Ê -means clustering of the
whole training set. The tree has a depth of three,
where the first level contains 300 templates together
with a partitioning of the translation space at aµf~ æèµf~ pixel resolution. The second and third
level each contain 7200 templates (i.e. the whole
data set) and a translation search at �¯æ�� andµ´æ¯µ pixel resolution, respectively. The transition
matrices ß $f� are obtained by histogramming the
data [18], [43]. The tracking results for the tree
constructed by clustering are shown in figure 14.
No global parameters other than translation parallel
to the image plane was estimated in this experiment.
As before, initialization is handled automatically.
Figure 15 shows the results of tracking global hand
motion together with finger articulation. In this case
the opening and closing of the hand is captured by
the first two eigenvectors, thus only two articulation
parameters are estimated. For this sequence the
range of global hand motion is restricted to a smaller
region, but it still has 6 DOF. In total 35,000
templates are used at the leaf level. The resolution
of the translation parameters is 20 pixels at the first
level, 5 pixels on the second level, and 2 pixels at
the leaf level. The out-of-image-plane rotation and
the finger articulation are tracked successfully in this
sequence. The RMS error for this sequence, mea-
sured as localization error against labelled ground
truth, is shown in figure 9d. The mean RMS error

Fig. 14. Tracking articulated hand motion. In this sequence a
number of different finger motions are tracked. The images are shown
with projected contours superimposed (top) and corresponding 3D
avatar models (bottom). The nodes in the tree are found by hierar-
chical clustering of training data in the parameter space. Dynamics
are encoded as transition probabilities between the clusters.

Fig. 15. Tracking a hand opening and closing with rigid body
motion. This sequence is challenging because the hand undergoes
translation and rotation while opening and closing the fingers. 6 DOF
for rigid body motion plus 2 DOF for finger flexion and extension
are tracked successfully.

is 9.3 pixels, this larger error compared to the other
sequences is mainly attributable to the discretization
error introduced by using only two parameters to
model articulated motion. The execution time for
this sequence is about three seconds per frame on a
2.4 GHz P4 computer.

The purpose of the tree structure is efficiency,
thus it is interesting to examine ways of constructing
an optimal tree in terms of run-time. One approach
to analyzing the performance of the method for the
detection case is to interpret the template hierarchy
as a tree of classifiers [3], [40]. A classifier

U ��� �
at each node decides whether or not the current
observation is within the region below that node.
The aim is to design classifiers with high detection
rates with modest false positive rates, minimizing
the computational cost at the following levels. The
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expected run time for a tree below the node ¼ at
level � is given, similar to [3], by the recursion
V àXW ? U ��� � F âN�YW � ? U ��� � F { V à >[Z]\�? U ��� � F â tr Z É¡× �[� � � �V à W ? U r � �_^ " F â��(22)
where W	� ? U F is the run time of classifier

U
, >[Z]\�? U F

is the detection rate of classifier
U

, and \ ±ÕK�K ? ¼ F are
the successors of node ¼ . Minimizing this function
requires simultaneous optimization of the tree struc-
ture as well as the threshold values.

The view of the nodes as classifiers also raises
the question whether chamfer or silhouette template
matching are optimal for classification [40]. It has
been shown that classifiers trained with large sets
of real image data perform better, however there is
a trade-off between computation time and classifi-
cation performance as shown in figure 16. When
used in a classification hierarchy, the detection rate
of a classifier needs to be very high, so as not to
miss any true positives. The false positive rate for
each single pose classifier at a fixed detection rate
of 0.99, is given in the last column of table 16.
Chamfer and Hausdorff matching, while having a
larger false positive rate, are about 10-14 times
faster to evaluate than marginalized templates [40]
and about 40 times faster than the trained linear
classifier [14]. In addition, they only require the
contour points to be stored in memory.

IV. CONCLUSIONS AND FUTURE WORK

In this paper a framework was developed for
tracking articulated hand motion from a video. The
ability of the proposed hierarchical filter to recover
3D motion, even under self-occlusion, was demon-
strated. The combination of hierarchical detection
and Bayesian filtering has a number of benefits, in
particular it specifically addresses the problems of
initialization and recovery. The results in this paper
were obtained using sequential on-line processing,
motivated by applications in the HCI domain. How-
ever, the leaf nodes can be viewed as defining a
discrete state model, thus it is straightforward to
process the sequence using a batch algorithm as
in hidden Markov models to optimize over the
whole sequence [8], [24]. It should be noted that
in contrast to particle filters [12], [21], [17] the
tree-based filter is a deterministic filter, which was
motivated by a number of problem-specific reasons.
First of all, the facts that hand motion can be

fast and that the hand can enter and leave the
camera view in HCI applications call for a method
that provides automatic initialization. The second
important consideration is the fact that the time
required for projecting the model is approximately
three orders of magnitude higher than evaluating the
likelihood function. This makes the sampling step in
a particle filter costly and the off-line generation of
templates attractive. The ideas of tree-based filtering
and particle filtering can also be combined by using
the posterior distribution estimated with the tree-
based filter as an importance distribution for a
particle filter in a way similar to [30]. The range
of allowed hand motion is currently limited by the
number of templates that need to be stored. This
currently poses a main obstacle for extending this
method to a full range hand tracker. There is a trade-
off between generating templates online and storing
them offline for fast access, i.e. memory usage vs.
speed. The proposed method is to be used when
speed is at a premium and memory is not. With
better hardware acceleration model projection will
be faster, while at the same time memory will also
increase. One can expect, for example, that current
systems using a PC cluster to store large data bases
of templates [35] will become much more compact.
In fact, storing one million shape templates requires
about 2 gigabytes, and keeping them in memory is
a viable option on current PCs. Additionally faster
online generation of templates as well as learning a
relevant set of representative templates will allow a
reduction of the memory requirement.
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