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ABSTRACT

A cluster-voting scheme is described which takes the output from
two speaker diarisation systems and produces a new output which
aims to have a lower speaker diarisation error rate (DER) than ei-
ther input. The scheme works in two stages, firstly producing a set
of possible outputs which minimise a distance metric based on the
DER and secondly voting between these alternatives to give the
final output. Decisions where the inputs agree are always passed
to the output and those where the inputs differ are re-evaluated in
the final voting stage. Results are presented on the 6-show RT-03
Broadcast News evaluation data, showing the DER can be reduced
by 1.64% and 2.56% absolute using this method when combining
the best two Cambridge University and the best two MIT Lincoln
Laboratory diarisation systems respectively.

1. INTRODUCTION

Speaker diarisation is the task of automatically segmenting au-
dio data and providing speaker labels for the resulting regions of
audio. This has many applications such as enabling speakers to
be tracked through debates, allowing speaker-based indexing of
databases, aiding speaker adaptation in speech recognition and im-
proving readability of transcripts. The speaker labels produced are
‘relative’ (such as ‘spkr1’) in that they show which segments of
audio were spoken by the same speaker, anddo notattempt to give
a true identity (such as ‘David Koppel’) of the speaker.

The Rich Transcription diarisation evaluations[1, 2] provide a
framework to analyse the performance of such systems on Broad-
cast News (BN) data. A Diarisation Error Rate (DER) is defined
which considers the sum of the missed, false alarm and speaker-
error rates after an optimal one-to-one mapping of reference and
hypothesis speakers has been performed. (This mapping is neces-
sary to associate the ‘relative’ speaker labels from the hypothesis
to the ‘true’ speaker labels in the reference, and is chosen to max-
imise the sum over all reference speakers of the time that is jointly
attributed to both the reference and the corresponding mapped hy-
pothesis speaker. See [2] for more details).

In general the error tends to be dominated by the speaker-error
components, and in particular, since the DER is time-weighted,
decisions about the predominant speakers can have a very large ef-
fect. Therefore it is desirable to be able to ‘check’ such decisions,
perhaps by combining information from different sources.

Several methods of combining aspects of different diarisation
systems have been tried, for example the ’hybridization’ or ’piped’
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CLIPS/LIA systems of [3, 4] and the ‘Plug and Play’ CUED/MIT-
LL system of [5] which both combine components of different sys-
tems together. A more integrated merging method is described
in [4], whilst [3] describes a way of using the 2002 NIST speaker
segmentation error metric to find regions in two inputs which agree
and then uses these to train potentially more accurate speaker mod-
els. These systems are interesting but tend to place some restriction
on the systems being combined which we would like to remove.

This paper describes a cluster-voting scheme which takes the
output from any two different diarisation systems as input and tries
to produce a new output which is better than either input. This is
achieved by reproducing the decisions on which the inputs agree
whilst allowing an external judge to decide in the case of conflict.
The paper is arranged as follows, section2 describes the theory
behind the scheme, section3 describes the data used in the experi-
ments, section4 gives the experimental results and conclusions are
offered in section5.

2. THE CLUSTER VOTING SCHEME

The cluster voting scheme is illustrated in Figure1. The process
is divided into two steps. Firstly the inputs are compared and the
non-conflicting parts are passed straight to the output. A Cluster
Voting Metric (CVM) based on the DER is then used on the re-
maining data to find sets of ‘optimal’ speaker labellings under the
CVM and these alternatives are output in the Cluster Voting Out-
put Set (CVOS). The second stage consists of choosing the final
output from the CVOS using an external judge. These stages are
discussed further in sections2.1and 2.2respectively.
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Fig. 1. Cluster Voting Architecture: The cluster voting scheme
sends decisions on which the inputs agree straight to the output (a)
whilst the disagreements are placed in the CVOS and resolved by
an external judge (b).
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2.1. Generating the Cluster Voting Output Set

The stages of the CVOS generation are as follows:

1. Form a common base segmentation from the two inputs,
such that no input speaker changes in any base segment.

2. Resegment the data to ‘tie’ together those base segments
which have the same speaker label in input-1and the same
speaker label in input-2.

3. Pass non-conflicting resegments directly to the final output.

4. Generate independent supergroups of the remaining reseg-
ments.

5. Form sets of speaker labellings which minimise the cluster
voting metric (CVM) for each supergroup.

These steps are explained in more detail below and illustrated in
Figure2.
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Fig. 2. First steps in the CVOS generation. Base seg-
ments are formed which contain no speaker change in either
input. Resegments are formed which tie together those seg-
ments with a single speaker label in input-1 and a single speaker
label in input-2. Here R3={S3/S5} and R5={S6/S9}. Non-
conflicting resegments are passed to the output whilst the oth-
ers are grouped into independent supergroups. Here{A2/B3}
do not overlap with any other speakers and hence form out-
put OP1, whilst {R1/R2/R4}≡{A1/A3/B1/B2} form G1 and
{R5/R6/R7}≡{A4/A5/B4/B5} form G2. This reduces the num-
ber ofall possibleclusterings of the base-segments for this exam-
ple from Bell(9) = 21, 147 to 2× Bell(3) = 10.

Firstly a common base segmentation is made by dividing up
the data as necessary to ensure there is no speaker change for ei-
ther input in any base segment.1 This simplifies the calculation of
overlap time between the different clusterings, since each segment
can be represented by its duration and input speaker-ids alone.2

Resegmentsare then formed by associating groups of base seg-
ments together which have a common speaker label in input-1 and
a common speaker label in input-2. This is effectively the same as
making new speaker labels which are the concatenation of the two
input labels for each segment, and accumulating the durations for
each of thesenewresegment speaker labels. No other restriction
(such as one of temporal adjacency) is used to define the reseg-
ments, and no decision is made about the final speaker label of
their base-segments other than to ensure they will have the same

1Diarisation systems are assumed not to output overlapping speakers.
2For both experiments reported in this paper the two inputs were gen-

erated using different clustering schemes after the Cambridge or MIT-LL
base segmentation respectively, so this stage was not necessary.

speaker-id in the final output. This usually significantly reduces
the number of ‘segments’ to be considered - thus reducing the
computational complexity. For example, this reduces the number
of ‘segments’ from 869 to 162 in Expt. 1 (section4.1) and from
557 to 303 in Expt. 2 (section4.2).

Any resegments which are non-conflicting (in that there is no
base segment which has the same input speaker-id as the reseg-
ment for either input, but which is not itself in the resegment) are
passed directly to the output with a single unique speaker-id for
the resegment. This reduces the complexity further (removing 71
out of 162 resegments in Expt. 1 and 48 out of 303 in Expt. 2).

The speaker-ids of some groups of resegments may be inde-
pendent of other groups. For example, if the clustering has been
done gender dependently, there will never be any overlap between
male and female speaker-ids and thus these two groups can be
treated separately. It is possible to find these independent‘super-
groups’of resegments automatically (see [6] for details) and sub-
sequently processing them separately reduces the computational
complexity further. For the example in Figure2 this reduces the
number of all possible clusterings of resegments from Bell(6)=203
to 2xBell(3)=10.

Finally, sets of speaker labellings are formed which minimise
the Cluster Voting Metric (CVM) for each supergroup. This metric
is the sum of the DERs from the output to both inputs and reduces
to the same as maximising the sum of the overlap between the
output speaker labels and the speaker labels of both inputs under
the optimum one-to-one speaker mappings performed in the DER
calculation, if there is a common input segmentation. When the
difference between the inputs is relatively small, it is possible to
generate all possible speaker labels for the resegments and score
them to find the CVOS exhaustively (see [6] for details), but it is
also possible to generate the CVOS members directly from the op-
timum speaker mapping between the two inputs.

Mapping the inputs leads to a speaker mapping which is ei-
ther ‘good’ (the input-1 speaker is mapped to the input-2 speaker),
‘bad’ (the input-1 speaker is mapped to a different input-2 speaker)
or ‘null’ (either the input-1 or the input-2 speaker is not mapped).
A single unique speaker-id can be assigned to each ‘good’ map-
ping. A ‘bad’ mapping produces two alternatives, namely those
corresponding to the mapped input-1 id or the input-2 id. The
‘null’ mappings are more complicated but usually give rise to two
alternatives. The first is from the mapped input-id which is not
null, whilst the second is either a new (unseen) id or is from the
input-id which is mapped to null, depending on whether the id has
already been seen in that particular member of the CVOS. Further
alternatives also arise if a supergroup contains both input-1 and
input-2 speaker-ids which are not mapped.

The overall CVOS is formed from the outputs from all the su-
pergroups. Further simplifications can be applied when generating
the final CVOS. For example, giving a single speaker-id to the re-
segments in supergroups of less than a critical duration can reduce
the complexity without detrimentally affecting the output, since
the DER is time-weighted and thus supergroups with a small du-
ration seldom impact on the final score. (See [6] for an example).
Alternatively, if the two inputs are very different, one can allow
only the labellings corresponding to the two inputs to be passed
into the CVOS for a given supergroup thus effectively enforcing
an upper-bound on the size of CVOS for each supergroup, hence
preventing complexity problems in the subsequent judging stage.
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2.2. Judging the Cluster Voting Output Set

Once the CVOS has been generated a method of choosing the final
output must be defined. For the two input case, using confidence
scores on the inputs would simply result in the input with the high-
est confidence being output directly (although this method could
be used when there are more than two inputs). Alternative strate-
gies include simple schemes such as assigning the resegments in
a supergroup all the same or all different speaker-ids depending
on the size of the supergroup, or just picking a member of the
CVOS at random, or more mathematically based methods such as
using the Bayes Information Criterion (BIC). Here two BIC-based
schemes are investigated.

2.2.1. Standard BIC Model Selection

The Bayes Information Criterion gives a log likelihood of the data,
L, which is penalised in proportion to the number of parameters in
the model:[7]

BIC = L − 1

2
α#M log N (1)

where#M is the number of free parameters,N the number of data
points andα the tuning parameter. IfK clusters are each modelled
using Gaussian(s) of dimensiond which haveNi frames and a
covarianceSi then maximising (1) is the same as minimising:

BMIN =

"
KX

i=1

Ni log(|Si|)
#

+ αKP log N (2)

whereP = [0.5d(d + 1) + d] for a full covariance Gaussian, or
[2dG + G− 1] for a G-mixture diagonal covariance GMM.

For a given member of a supergroup CVOS, a model is made
for each output speaker-id. The BMIN value for this set of models
given the data segments is then calculated. The final output cho-
sen for the supergroup is the CVOS member which produces the
lowest BMIN. The overall output is then simply the concatenation
of the final outputs from the (independent) supergroups.

2.2.2. Equal Parameter BIC Model Selection

An alternative BIC-based strategy removes the need for the tunable
α parameter by ensuring all the model sets being judged contain
the same number of free parameters[8]. For example, consider
whether to split a parent cluster into two children. A model is built
for the children withMc1 andMc2 free parameters respectively.
The parent model is then built usingMp = Mc1+Mc2 parameters.
The choice between children and parent thus reduces to taking the
one that gives the highest likelihood for the data. Here a model is
built for each speaker-id as before, but the number of parameters
is made proportional to the number of constituent resegments.

3. DATA USED IN EXPERIMENTS

The experiments reported in this paper were conducted on the 6-
show 2003 evaluation data(bneval03)used in the English Broad-
cast News RT-03 Rich Transcription evaluations.[1] It consists of
30 minute extracts from 6 different US news shows broadcast in
February 2001. Two of these are from radio sources, namely VOA
and PRI, whilst four are TV sources, namely NBC, ABC, MNB
and CNN. (see [9] for more details) The diarisation references
were generated using the rules described in [10] using forced align-
ments provided by the LDC and with 0.3s of silence smoothing
applied, and no collars were used during scoring.

4. EXPERIMENTAL RESULTS

4.1. Experiment 1: Using CUED’s Diarisation Systems

The two best diarisation systems from Cambridge University in
December 2003 were used as inputs to the cluster voting. They
both use the CUED RT-03s BN segmentation which is based on a
GMM speech/music classifier, phone recogniser and smooth/clusterer,
followed by a top-down clustering stage using PLP coefficients
and the arithmetic harmonic sphericity distance measure. Input-1
uses a BIC-based stopping criterion, whilst Input-2 uses one based
on node-cost. Further details can be found in [5].

The DERs on thebneval03 data were 25.12% and 27.09%
respectively although Input-2 was the better system for 5 out of the
6 shows. The DER is 24.16%(28.05%) if the best(worst) input is
taken independently for each show. Since the systems were rela-
tively similar, it was possible to exhaustively search all the combi-
nations of the CVOS to find the best and worst possible choice for
each show3 which leads to a DER of 22.79% and 29.44% respec-
tively. These results are given in Table1 along with a summary of
those from using the BIC-based judging schemes. More compre-
hensive results can be found in [6].

The results show that the standard BIC technique can be used
to reduce the DER to 23.76%, a 1.36% absolute improvement over
the best input, whilst the equal-parameter BIC technique can re-
duce the DER to 23.48%, a 1.64% absolute reduction. Further
experiments reported in [6] show there is a reasonable range in
bothα value (where applicable) and parameterisation that give an
improvement over both inputs.

System ABC VOA PRI NBC CNN MNB ALL
Input 1 32.03 20.78 21.40 32.06 37.92 10.74 25.12
Input 2 29.26 19.82 20.48 31.56 37.18 29.34 27.09

Best Input 29.26 19.82 20.48 31.56 37.18 10.74 (24.16)
Worst Input 32.03 20.78 21.40 32.06 37.92 29.34 (28.05)

Best CVOS 26.71 18.43 18.11 29.84 37.18 10.74 (22.79)
Worst CVOS34.58 22.48 23.56 33.78 37.92 29.34 (29.44)

Final Output after Judging
BIC Cov ABC VOA PRI NBC CNN MNB ALL
†St full 30.30 19.94 19.15 32.06 37.92 10.74 24.26
†St diag 30.30 19.94 18.11 31.05 37.92 10.74 23.90
†St 16mix 31.72 20.78 19.15 32.06 37.18 10.74 24.52
†St 128mix 27.66 20.78 19.15 30.83 37.18 10.74 23.76
EP full 32.85 20.48 21.15 32.06 37.18 10.74 25.02
EP diag 33.63 20.78 21.15 32.06 37.18 10.74 25.19
EP 15mix 30.30 19.27 18.11 29.84 37.18 10.74 23.48

Table 1. Example 1 : DERs when using cluster voting on the
CUED diarisation systems. Numbers are presented for the stan-
dard (St) and Equal-parameter (EP) BIC judging schemes using
different covariance representations. Numbers in italics are when
the final output is better than either input. Numbers in brackets
are from combining the separate outputs from each show.†Results
reported for the Standard BIC technique use the optimalα value.

3Although the speaker-ids of the supergroups are independent for both
the inputs and the output of the cluster voting scheme, there is no guarantee
that this is also the case for the true reference speakers, so when scoring
against the reference, the supergroups may no longer be treated indepen-
dently thus dramatically increasing the complexity - from 266 possibilities
to 24,992 in Experiment 1.
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4.2. Experiment 2: Using MIT-LL’s Diarisation Systems

The experiment was repeated using the two-best MIT-LL systems
of February 2004.4 Input-1 is identical to the system described
in [5] except that a single full-covariance Gaussian is used in the
agglomerative clustering stage. Input-2 used the same segmen-
tation and speech/non-speech detection stages, but the clustering
used a system where speakers are represented by their distance to
a set of proxy models.[11] These models were created by adapting
a GMM trained on the entire audio file to each speech segment in
turn. The segments are then represented by a vector of normalised
scores against the proxy models, and the final clustering uses a Eu-
clidean distance and BIC-style stopping criterion.

The inputs scored 21.38% and 20.59% respectively, but the
standards were considerably different for the individual shows.
The scores from taking the best (worst) input per show separately
gave 18.38% (23.59%). The inputs were very different in places,
one supergroup having 39 resegments and thus potentially> 109

members of its CVOS, so supergroups of more than 12 resegments
(generally ˜500 CVOS members) simply passed the two input pos-
sibilities directly to the final CVOS to reduce the complexity. Sim-
ilarly, for complexity reasons, the best (worst) possible scores in
the CVOS have been replaced by the best (worst) show scores seen
in all inhouse experiments on the CVOS, which gave a DER of
16.0% (25.56%).

The results, given in Table2, again show that all the exper-
iments give a lower DER than either input except for the equal-
parameter (EP) BIC technique using a single diagonal covariance
per resegment. The best DER for the EP BIC scheme was 20.33%,
a 0.26% absolute improvement over the best input; whilst the best
DER using the standard BIC scheme was 18.03%, a 2.56% abso-
lute reduction over the best input.

System ABC VOA PRI NBC CNN MNB ALL
Input 1 30.18 22.03 11.99 26.23 32.91 8.99 21.38
Input 2 28.41 16.96 15.35 24.92 22.77 18.83 20.59

Best Input 28.41 16.96 11.99 24.92 22.77 8.99 (18.38)
Worst Input 30.18 22.03 15.35 26.23 32.91 18.83 (23.59)

Best Seen 23.60 16.96 8.96 17.93 22.77 8.54 (16.00)
Worst Seen 35.72 22.27 15.35 33.22 33.62 18.83 (25.56)

Final Output after Judging
BIC Cov ABC VOA PRI NBC CNN MNB ALL
†St full 24.31 19.97 12.75 19.34 22.77 17.50 19.09
†St diag 24.86 19.86 10.81 19.34 22.77 12.84 18.03
†St 16mix 23.60 19.86 11.78 20.37 22.77 12.28 18.10
†St 128mix 26.34 18.21 11.99 24.26 32.91 8.99 19.75
EP full 31.34 17.79 11.54 25.16 33.62 8.99 20.53
EP diag 31.34 18.21 12.06 30.78 33.62 8.99 21.54
EP 16mix 27.01 19.66 10.45 26.88 33.62 8.99 20.33

Table 2. Example 2 : DERs when using cluster voting on the
MIT-LL diarisation systems. Numbers are presented for the stan-
dard (St) and Equal-parameter (EP) BIC judging schemes using
different covariance representations. Numbers in italics are when
the final output is better than either input. Numbers in brackets
are from combining the separate outputs from each show.†Results
reported for the Standard BIC technique use the optimalα value.

4Thanks to Doug Reynolds for providing the MIT-LL system outputs.

5. CONCLUSIONS

This paper has presented a cluster-voting scheme designed to re-
duce the diarisation error rate (DER) by combining information
from two different diarisation systems. Results on the RT-03 BN
evaluation data show the DER can be reduced by 1.64% and 2.56%
absolute over the best input when combining the best two systems
from Cambridge University and the best two systems from MIT
Lincoln Laboratory respectively.
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