
The State Based Mixture of Experts HMM

with Applications to the

Recognition of Spontaneous Speech

Andreas Tuerk

Emmanuel College

and

Cambridge University Engineering Department

September 2001

Dissertation submitted to the University of Cambridge

for the degree of Doctor of Philosophy



i

Abstract

Although the performance of speech recognition systems has increased substantially over the

last decades, there still remain a number of tasks which pose considerable problems for current

state-of-the-art techniques. One of these tasks is the recognition of spontaneous speech which

differs from read or planned speech in that its underlying dynamics change frequently over time.

The negative effect of changes in acoustic background condition on recognition performance can

also be observed in other situations as, for instance, in the case of speech that is corrupted by

non-stationary noise.

This thesis is concerned with the development of an acoustic model for speech recognition

which automatically detects changes in the background condition of a signal and compensates

for the model-data mismatch by combining the information of several expert models. These

experts are specialised on the different acoustic conditions under consideration and their influ-

ence on the recognition process is determined by how well their associated condition matches

the signal. This approach gives rise to the state based mixture of experts hidden Markov model

(SBME-HMM) which is studied in this thesis both theoretically and in a number of recognition

experiments. In principle, the SBME-HMM can be applied to distinguish implicitly between an

arbitrary set of discrete acoustic conditions. Since, however, the main focus in this thesis is the

application of the SBME-HMM to spontaneous speech the only conditions considered here will

correspond to speech at different speaking rates.

The SBME-HMM is an extension of the standard HMM which uses an additional hidden vari-

able � whose states are meant to correspond to the different acoustic conditions in the speech

signal. The decision whether an acoustic condition is present is implemented in the SBME-HMM

via a so-called indicating feature which is a continuous feature that contains information about

the state of the hidden variable � . This information is expressed in the SBME-HMM by a pos-

terior probability distribution over the states of � given the indicating feature. The theoretical

development of the SBME-HMM in this thesis concerns both the estimation of the model pa-

rameters with the EM algorithm and its application in speech recognition. Special attention is

given to the estimation of the posterior probability distributions over the states of the hidden

variable � which are modelled by softmax functions with polynomial exponents. It is shown

that training these functions with the EM algorithm leads to an optimisation problem which can

be linked to the cross-entropy error function. Although there are no closed form reestimation

formulae for the softmax parameters they can be estimated robustly with an iterative scheme

like the Newton-Raphson algorithm with line search and back-tracking. This is due to the con-

vexity of the cross-entropy error surface which is asserted by proving the positive definiteness of

the Hessian of the cross-entropy error with respect to the softmax parameters. In addition, this

thesis addresses the problem of initialising the SBME-HMM and develops two different meth-

ods, namely the median split initialisation (MSI) and the relabelled training initialisation (RTI)

which can initialise indicating features whose output probability density functions (pdf’s) are

either Gamma densities or Gaussian mixtures. For recognition three different types of model

topology are proposed that either use the state of the hidden variable � explicitly in the recogni-
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tion process or which sum over all the states of � and thereby reduce the model topology to that

of a standard HMM.

The indicating feature in the SBME-HMM is the main source of information about the state

of � . To ensure that the latter model the acoustic conditions of interest and that the indicating

feature distinguishes well between the different states of � it is necessary to find an indicating

feature that is highly correlated with the acoustic conditions under consideration. Since this

thesis applies the SBME-HMM to the recognition of spontaneous speech a number of indicating

features are derived whose usefulness is evaluated in classification experiments on fast and slow

instances of phones. Two of these features which show good classification performance are later

used in recognition experiments.

The performance of the SBME-HMM’s for different combinations of initialisation, model

topology and indicating features is evaluated on the 1997 Broadcast News task which contains

a substantial proportion of spontaneous speech. The SBME-HMM’s in the recognition experi-

ments are used to rescore cross-word triphone lattices and hidden variables � with both 2 and 3

states are explored. The recognition experiments with a binary hidden variable show small but

consistent improvements over a standard HMM with a comparable number of parameters giv-

ing in one particular experiment a statistically significant overall improvement of 2.8% relative.

For a variable � with 3 states no additional improvements over the SBME-HMM’s with a binary

hidden variable can be observed. On the contrary, the high number of model parameters and

the fast saturation of the training likelihoods with the EM algorithm lead to a small performance

degradation.
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Introduction

1.1 Problem statement

The scope and quality of automatic speech recognition (ASR) systems has increased considerably

over the last decades, moving from isolated word recognition with small vocabularies (Fanty and

Cole, 1991) to large vocabulary continuous speech recognition (LVCSR) systems. The latter now

also include automatic segmentation and speaker adaptation (Woodland et al., 1998; Wood-

land et al., 1999) and have been successfully applied to difficult tasks like the transcription of

broadcast news (Pallett et al., 1998; Pallett et al., 1999).

In spite of these big advances, there still remain various types of data on which recognition

performance is less than satisfactory. Spontaneous speech, for instance, still poses a considerable

problem with error rates that are almost twice as high as on planned speech. This decrease

in performance is, among other things, a result of the fact that fast and slow speech exhibit

different acoustic and dynamic characteristics which the common models cannot capture all at

once. The approach that has been taken to deal with this problem is to train expert models

which are appropriate for only one of the conditions, i.e. fast or slow speech, and apply them in

the recognition process whenever fast or slow speech is assumed to be present.

This method, of switching between different acoustic models depending on the type of

speech to be recognised, is not restricted to spontaneous speech and has been applied to a num-

ber of situations where the use of expert models seems more appropriate than the use of one

generic model. Gender dependent models are, for instance, employed in many speech recogni-

tion systems to recognise male and female speech. Likewise, wide and narrow band models are

applied to recognise studio quality and telephone data.

Prior to selecting the expert model the recogniser has to determine which type of acoustic

condition is present, e.g. whether a male or female, or whether a fast or slow speaker has to

be recognised. In the case of spontaneous speech, for instance, several estimators of the rate

of speech (ROS) have been proposed (see chapter 4 for an in-depth discussion) which indicate

whether a slow or fast model is appropriate for recognition. The decision which model has to be

selected is usually taken for a whole segment of speech which contains several words.

Summarising the previous discussion, the complete model selection process therefore in-

1
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volves the following stages

� Find acoustically homogeneous segments, e.g. segments which only contain either fast or

slow speech, or either male or female speech.

� Determine the acoustic condition present in each segment, e.g. whether it was spoken fast

or slow or whether it was corrupted by a certain type of background noise.

� Recognise the segment with the expert model appropriate for the acoustic condition, e.g.

with a male or female acoustic model or a model that has been trained on the type of

background noise detected.

This general frame-work for model selection has a number of disadvantages. First, the segment

boundaries have to be placed at word boundaries, in order for the recogniser to be able to hy-

pothesis the correct word sequence. While this makes sense if the changes in acoustic condition

are correlated with word boundaries, as in the case of speaker changes (Gish and Schmidt, 1994;

Siegler et al., 1997; Hain et al., 1998), it is less reasonable if such changes can occur at arbitrary

points in time, as, for instance, in the case of background noise.

Even if the segment boundaries did not have to coincide with word boundaries, segmentation

would still be problematic if the changes that need to be detected occur very frequently. In this

case, the duration of the segments can be very small and small absolute errors in the placement

of the segment boundaries can result in large errors relative to the segment duration. The use of

such subword level acoustic segments is, for instance, suggested by a result in (Mirghafori et al.,

1995a). This study which evaluated the effects of speaking rate on recognition performance

revealed that the duration of phones has a marked influence on their acoustics. As a result, it

seems reasonable to group phones into segments such that all the phones in a segment are all

long or short in comparison to their average duration. This will, in general, not only produce

segments whose boundaries are located within words but also segments that are shorter than

a word because durational variation can, for example, be linked to syllable stress which can

change several times within a word.

The second disadvantage of the model selection procedure above is that a “hard” decision

has to be made as to which acoustic condition is present for a certain segment. Sometimes,

however, a “soft” decision seems more appropriate. If, for instance, a speaker speaks neither fast

nor slow but somewhere in-between, this speaker’s segments should not be forced into either

the slow or fast class, instead they should be labelled according to the extent to which they are

fast or slow. In order to implement such a scheme, one needs to replace the binary label of

presence or absence of an acoustic condition with a continuous label which encodes the quality

of the match between an acoustic condition and a signal.

The disadvantage of the third stage of the model selection process above is, again, that

a hard decision has to be made. This time, it is the decision which model is to be used for

recognition. In borderline cases where speech cannot be assigned clearly to one of a number

of classes, rather than picking one model and ignoring the rest, it seems more sensible to use



Introduction 3

all the available models and combine their outputs according to how well their corresponding

acoustic conditions match the signal.

Summarising the above discussion one arrives at the following desiderata for a model selec-

tion method.

� Replace the concept of a segment which has constant background condition with a contin-

uous measure for the quality of the match between the acoustic conditions and the signal.

� Replace the hard model selection with model combination based on the quality of the

match between the acoustic signal and the model’s corresponding acoustic condition.

In the second of these objectives the quality of match measure determines the influence of a

model on the overall system output and can therefore be regarded as the model’s continuous

activation level in the recognition process. With this interpretation the hard and soft model

selection procedures can now be illustrated by the graph in figure 1.1.

model 2

model 1

active
model

model 1

model 2

model 3 model 3

level

soft decision

activation

level

level

hard decision

activation

activation

signal signal

time

segment boundaries

Figure 1.1 Soft vs. hard model selection.

1.2 Contribution of this thesis

This thesis addresses the problem of realising the soft model selection approach in an HMM

frame-work with a particular focus on the recognition of spontaneous speech. For this pur-

pose, a new model, which will be called a state based mixture of experts hidden Markov model
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(SBME-HMM), will be proposed which is an extension of the standard HMM and whose theo-

retical properties will be studied both with respect to parameter estimation and recognition. In

particular, the EM algorithm will be applied to reestimate the model parameters and it will be

shown under which conditions there exist solutions to the maximisation step of this algorithm.

This thesis will also investigate different methods to derive measures for the quality of the match

between acoustic conditions and signals. Since the main interest in this work is the development

of a good recognition system for spontaneous speech, these methods are guided by considera-

tions concerning the design of the model rather than high correlation with other speaking rate

measures. The measures developed will therefore be optimised with regard to how well they

distinguish between the different expert models that will be used for recognition. Finally, the

results derived will be combined to evaluate the performance of the proposed model on a large

vocabulary speech recognition task with a substantial proportion of spontaneous speech.

1.3 Outline

This thesis is organised in 8 chapters and 3 appendices. The second chapter gives an introduction

to the theory of hidden Markov models and presents their application to speech recognition.

This chapter also discusses two common feature extraction methods and introduces much of the

notation that will be used throughout this thesis.

The third chapter reviews some of the models that were developed to either model hidden

dynamics in the speech process more accurately or are conceptually related to these models.

As it happens, these models implement different soft model selection schemes some of whose

features will later also be used in the development of the state based mixture of experts HMM.

Chapter 4 discusses several of the measures of speaking rate that have been proposed in the

literature and relates them to the problem of recognising spontaneous speech.

Chapter 5 introduces the SBME-HMM and compares it to the models in chapter 3. The

SBME-HMM uses an additional hidden variable whose states are meant to correspond to the

different dynamics of interest. Since this thesis is concerned with spontaneous speech, here,

the states will refer to fast and slow instances of phonetic units. The SBME-HMM also uses

an additional feature which will be called an indicating feature and from which the activation

of the various models, as depicted in figure 1.1, will be inferred. Chapter 5 also contains a

comparison between polynomial softmax functions and other models that are used to model

posterior probabilities. In addition, this chapter discusses the problem of initialising an SBME-

HMM and two different methods will be proposed. Furthermore, 3 different model topologies

will be discussed which will be evaluated later together with the initialisation methods in a

number of recognition experiments.

Chapter 6 investigates the problem of deriving good indicating features. As mentioned be-

fore, the aim here is to develop features that discriminate well between the different expert mod-

els and consequently chapter 6 conducts classification experiments on speech segments which

are supposed to correspond to sections where one particular expert model has the highest acti-

vation level.



Introduction 5

Chapter 7 describes recognition experiments that were carried out to evaluate the perfor-

mance of the SBME-HMM’s and compares them to standard HMM’s with a similar number of

parameters. Here the different initialisation methods introduced in chapter 5 will be investi-

gated as well the different model topologies proposed there.

Chapter 8 reviews the work that has been done in this thesis and proposes new avenues for

future research in connection with the SBME-HMM’s.

Appendix A gives a list of all the phones which were used in the classification experiments in

chapter 6 and lists the sizes of their training and test sets.

Appendix B develops some of the theory of Gamma densities which is relevant to the work

in this thesis.

Finally, appendix C gives the exact statements and proofs of the existence and uniqueness

results for solutions to the softmax parameter estimation problem.



2

Fundamentals of speech recognition

This section reviews some the basic concepts of speech recognition systems and introduces no-

tation and terminology that will be used throughout this thesis.

2.1 System Overview

The way in which a speech recogniser processes an acoustic signal can be broken down into a

number of stages. Figure 2.1 identifies several of the key components that most state-of-the-art

recognition systems have in common.

First, the signal is transformed into a sequence of feature vectors
����� � � 	������
	�� � � which are

meant to capture the information relevant to the distinction between different sounds, like the

transfer function of the vocal tract or certain elements of the short-time spectrum of the signal.

In the next step, the quality of a word hypothesis
�

given the sequence of features
�

is

determined. In figure 2.1 this hypothesis is “hello world”. The quality is evaluated by combining

two sources of information. The first source is a measure of the quality of the match between the

features � 2 and the acoustic models of the recogniser, while the second determines the probability

of observing the word sequence
�

without referring to any acoustic information. In figure 2.1,

both numbers are multiplied to give the likelihood of observing
�

and
�

simultaneously. In

practice, however, these numbers are usually scaled to control the influence of the language

model on the overall likelihood score.

The various components of the speech recogniser in figure 2.1 will be discussed in greater

detail in the following sections. Section 2.2 considers some of the issues involved in the correct

choice of the phonetic units in figure 2.1. Section 2.3 will introduce two of the most common

approaches to feature extraction and, finally, section 2.4 discusses the structure of the acoustic

models which are indicated in figure 2.1 by Gaussian-shaped curves.

2.2 Phonetic units

The link between the acoustic models and the words of the recognition dictionary is imple-

mented via phonetic units which correspond to certain parts of a word sequence. In figure 2.1,

6
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Figure 2.1 Recognition system overview.

for instance, the beginning of the word “hello” is made up of two phonetic units namely “h”

and “el” while the word “world” has only one phonetic unit whose associated model is meant to

capture the whole word.

There are two problems one has to consider when choosing the phonetic units of a speech

recogniser. First, there has to be enough training data to train the acoustic models correspond-

ing to the units robustly. Second, the units should exhibit little variability in order for the

corresponding models to be discriminative. These two problems are, obviously, at odds. While

the first problem can be resolved by defining few phonetic units that have a short time span

the second problem is alleviated by defining a large number of phonetic units with a wide time

span. In practice, one has to find a trade-off between model robustness and discrimination. This

is typically achieved by replacing phonetic units which correspond to complete words or even

word sequences by subword phonetic units that take the surrounding context into consideration.

While such units are not as discriminative as complete words, the dependency on the context

ensures that their variability is kept within reasonable bounds and that coarticulation effects

are reflected in the model. Consider, for instance, the phone “ay” in the following phonetic

transcriptions

horizon hh axr ay z ax n
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horrified hh ao r ax f ay d

where the phonetic symbols and their values are defined in appendix A. Clearly the two instances

of the phone “ay” sound rather different and it is therefore sensible to distinguish between “ay”

in the context of “axr” and “z” and “ay” in the context of “f” and “d”. This gives rise to a subword

unit called a triphone, which will be denoted as follows

(left context)-(central phone)+(right context)

The two instances of phone “ay” above would therefore be denoted by “axr-ay+z” and “f-ay+d”,

respectively. This frame-work can easily be extended to include contexts of different types and

length. A subword unit that considers two predecessors and two successors is, for instance,

called a quinphone. Subword units which span word boundaries are referred to as cross-word

units. The models that were used in the experiments in section 7 are, for example, cross-word

triphones.

2.3 Feature Extraction

This section will give a brief overview over two feature extraction methods which together with

some of their variants have become common practice in most speech recognition systems. The

methods discussed are perceptual linear prediction (PLP) and mel-frequency cepstral coefficients

(MFCC). Since both draw upon the properties of the human auditory system, some of the rele-

vant psychoacoustical results will be presented in the next section.

2.3.1 Psychoacoustical motivation

The scales which are used to measure the frequency and intensity of a sound are usually Hertz

and dB. Although these are useful scales from a physical point of view they are less appropriate

when measuring the perception of sound. This section will discuss some of the discrepancies of

these two approaches and introduce some of the elements of psychoacoustical research which

are relevant to feature extraction in speech recognition.

2.3.1.1 Auditory filters

In 1940 Fletcher conducted an experiment (Fletcher, 1940) to determine the influence of noise

on the perception of a pure sinusoid. The centre frequency of the noise was identical to the

frequency of the masked signal and the bandwidth of the noise was varied. The subjects were

asked to determine the minimal intensity level of the sinusoid at which the sinusoid could be

distinguished from the noise. The experiment showed that up to a certain noise bandwidth the

minimal intensity had to be increased, but beyond this bandwidth the minimal intensity level

remained constant. Since this indicated that noise outside a certain frequency band is removed

in the auditory process, Fletcher assumed that the pure sinusoid was perceived after having been

filtered by a bandpass filter whose centre frequency is the frequency of the sinusoid. This filter

has been called an auditory filter and its bandwidth is the critical bandwidth.
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The shape of the auditory filter depends on its central frequency. For high frequencies, for

instance, the critical band is wider than for low frequencies. The exact shape of the auditory

filter has been the subject of a number of studies. In (Patterson, 1976), Patterson developed

the “notched noise method” to show that the frequency response of an auditory filter is close

to a triangle. This method, which assumed that the auditory filters are symmetric was later

generalised to avoid this assumption (Patterson and Nimmo-Smith, 1980). The results of this

study show that the auditory filters are reasonably symmetric for moderate sound levels but

become increasingly asymmetric for higher levels, the low frequency side becoming flatter than

the high frequency side.

The existence of auditory filters motivates the introduction of filter banks into the processing

of an acoustic signal. Such filter banks are defined by selecting a number of representative

frequencies together with approximations to their auditory filters. The intensity of an acoustic

signal in a particular critical band is then calculated by taking the sum of the power spectrum of

the signal weighted by the frequency response of the corresponding filter. An example of such a

filter bank is given in figure 2.3. The output of the filter bank represents an approximation to the

excitation of the basilar membrane at a set of chosen frequencies. How a set of representative

frequencies can be chosen will be the topic of the next section which will also explain the form

of the filter bank in figure 2.3 in greater detail.

2.3.1.2 Frequency perception

A human listener perceives frequency on a scale that is different from the linear Hertz scale.

This means that a person listening to a test tone which is twice as high on the Hertz scale than a

reference tone, will not necessarily perceive the test tone to be twice as high. This phenomenon

lead to the introduction of perceptive frequency scales like the Bark (Zwicker, 1961) and the

Mel (Fant, 1973) scale. The Bark scale has been derived by segmenting the frequency scale so

that each segment corresponds to one critical band and the segments do not overlap and span

the complete frequency axis. An approximation to the relationship between Bark � and Hertz �
has been proposed in (Schroeder, 1977), and is given by the following expression

� " � & ������� " �	� p�
=n�n
��� "W" �	� p�
=n�n
� & � � p &���� �#& (2.1)

Unlike the Bark scale, the Mel scale has been defined by directly measuring the perceived pitch

of a tone (Stevens and Volkmann, 1940). Test subjects were asked to adjust the frequency of a

tone until it was perceived to be a certain factor higher or lower than the original. According to

(Merwe and du Preez, 1991), the relationship between Hertz and the Mel frequency
u

can be

approximated as follows

u " � & ��

�
�
�����
� � � " p	� �	�
� n�n & (2.2)

The values on the Mel scale differ from the values on the Bark scale by several orders of mag-

nitude, but if scaled properly they look very similar, as can be seen from figure 2.2. This figure

shows the curves defined by (2.1) (solid line) and (2.2) (dotted line), where the latter has been

scaled so that both curves have the same maximum at the right hand side of the graph. Both
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Figure 2.2 The relationship between the Hertz scale and the Bark (solid line) and Mel (dotted line) scales.

curves show that the sensitivity to frequency changes decreases with increasing frequency. The

varying sensitivity to frequency changes has been incorporated in the processing of acoustical

signals by warping the Hertz scale onto a non-linear perceptive scale. This is done by transform-

ing the Fourier transform � " � & of the signal to the Fourier transform on the perceptive scale

� " w < � &W& where
w " � & is the map from the perceptual scale onto the Hertz scale. As mentioned

in the previous section, the signal is also often processed by a filter bank whose filters are located

at representative frequencies. Due to the varying sensitivity of the human auditory system, these

frequencies are usually chosen to have a constant distance on the perceptive scale. One can re-

alise such filter banks by either warping the signal onto the perceptive scale and applying the

filter at equal distances or by warping the filter bank and keeping the original signal unchanged.

Figure 2.3 gives an example of a warped filter bank. Here the centre frequencies of adjacent

filters have a constant distance on the Bark scale where the filter bandwidths are also constant.

In addition, the shape of the filters have been chosen to be triangular which is in accordance

with the experimental evidence discussed in the last section.

2.3.1.3 Loudness perception

The relationship between sound intensity and perceived loudness can be determined by requir-

ing test persons to adjust the intensity of a reference tone until it corresponds to the perceived

loudness of a test tone. The reference tone is usually a pure sinusoid at 1000Hz. In this case

the loudness level of the test tone is measured in “phons” which is equal to the dB level of the
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Figure 2.3 Overlapping filter bank on the Bark scale. The distance between adjacent filter centres is constant

on the bark scale.

adjusted reference tone. If this procedure is repeated for various frequencies of a sinusoidal test

sound, an equal loudness contour is generated (Fletcher and Munson, 1933). Experiments as

in (Robinson and Dadson, 1956) show that the relationship between sound intensity and per-

ceived loudness varies non-linearly with frequency. Typically, a medium frequency tone will be

perceived as loud as a low or high-frequency tone even though its intensity is lower. This is a

result of the fact that the human ear is most sensitive to medium frequency signals in a range of

approximately 500-5000Hz.

The problem of defining a perceptive loudness scale and its relation to the dB scale has also

been addressed by Stevens in (Stevens, 1936; Stevens, 1957). He suggested that the perceived

loudness
,

is related to the intensity � of the sound by the following relationship

, � 6 � ��� � (2.3)

where 6 is a constant that depends on the test person. As a consequence of this loudness power

law, an increase in intensity of around 10 dB corresponds to a two-fold increase in the perceived

loudness.

2.3.2 Perceptual linear prediction

Perceptual linear prediction (PLP) (Hermansky, 1990) attempts to incorporate the differences

between physical and perceived signal properties, which were discussed in section 2.3.1, into
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the feature extraction stage. This is done by first mapping the signal onto a representation that

encodes the excitation of the human auditory system at certain frequencies. In a second stage

this representation is then approximated by the spectrum of an all-pole model.

To start with the short-time Fourier transform of the signal is calculated, for instance, with a

Hamming window which is given by

x "�� & �on � ��� � n � � ��� ��� " 
 � � � "�� s p &W& (2.4)

where
�

is the size of the window and
�

is the sample index. The power spectrum of the

signal is then passed through a filter bank similar to the one in figure 2.3. The main difference

to this filter bank is that the individual filters in (Hermansky, 1990) are approximations to the

asymmetric masking curve of Schroeder (Schroeder, 1977) and do therefore not have triangular

shape.

To accommodate for the difference between perceived and dB loudness at different frequen-

cies the output of the filter bank is preemphasised by a simulated equal-loudness curve which

encodes the relationship between frequency and loudness sensitivity. An example of such a

function has been given in (Makhoul and Cosell, 1976). Finally, the preemphasised signal is

transformed according to the intensity-loudness law mentioned in section 2.3.1 by exponentia-

tion with
n �
	�	 .

The output from the previous stage which can be interpreted as an approximation to the

excitation of the human auditory system to a particular sound is finally approximated by the

spectrum of an all-pole model (Makhoul, 1975) whose coefficients are the PLP features.

2.3.3 Mel-frequency cepstral coefficients

Mel-frequency cepstral coefficients are the real cepstrum of a frequency warped version of the

original signal where the real cepstrum of a signal � is defined as follows


 " � & � ���
� " ���
� $ � " � & $ & (2.5)

Here � is, again, the Fourier-transform. The real cepstrum differs from the complex cepstrum

in that the logarithm of the absolute value of the Fourier-transform is calculated instead of the

logarithm of the Fourier-transform itself.

The advantage of using the cepstrum as a representation for signal � is that it transforms

convolution into addition, i.e.

 " � ��� � � & ��
 " � � & ��
 " � � & . This means that channel and

excitation can be easily separated since the variation of the source is usually much slower than

that of the excitation and their cepstra are therefore well separated. In this case the so-called

process of liftering, which is filtering in the cepstral domain, can either remove the excitation or

the channel from the signal representation. This is very useful if the quality of the signal has been

corrupted by channel noise as might, for instance, be present when a low quality microphone is

used for recording.

Initially the calculation of the Mel-frequency cepstral coefficients (MFCC) proceeds in a sim-

ilar manner as PLP. First the spectrum of the windowed signal is calculated and the Hertz scale is
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mapped onto a perceptual scale. In contrast to PLP, however, the calculation of MFCC’s uses the

Mel-frequency scale
u

which is approximately related to the frequency in Hertz by the function

in (2.2). Now the warped spectrum is sent through a filter bank whose filters are placed at

equal distances on the Mel scale and with increasing bandwidth. This can also be achieved by

warping the filter bank and processing the unwarped spectrum. In this case the filter bank is

similar to the one depicted in figure 2.3. One can see that the width of the filter increases with

increasing frequency and that the frequency response of the filters is triangular. This agrees with

the results about auditory filters mentioned in section 2.3.1. The final stage of the calculation of

the MFCC’s is the derivation of the cepstral coefficients which are given by a cosine transform of

the logarithm of the filterbank outputs.

2.3.4 Derivatives

The feature extraction methods discussed in section 2.3.2 and 2.3.3 gather information that is

relevant at a particular point in time but do not account for temporal changes in the speech

process. In order to determine how fast a speaker speaks it might, for instance, be interesting to

measure the speed at which the vocal tract of a speaker changes. For this reason, first and second

order derivatives of the sequence of feature vectors are often appended to the original feature.

Calculating the derivatives directly by taking the difference between adjacent observations can

result in a noisy estimator. One, therefore, usually approximates the sequence of features
�

by a second degree polynomial prior to calculating the derivative. Fitting such a polynomial

according to the minimum squares principle results in the following estimate for the derivative.

���� C ��� " � 2�� � s � 2
�
� &


 ���� C ��� � (2.6)

Here


	 � p

is the size of the window where the polynomial is fitted to the data. For many

applications it is sufficient to have
	 � 


and this will be the case in all the experiments that

will be described in chapters 6 and 7. Equation (2.6) can easily be adapted to calculate the

second order derivatives of the feature sequence
�

, one only has to substitute � 2 by the first

order derivative.

2.4 The hidden Markov model

This section will discuss one possible choice of acoustic models in the recognition system in

figure 2.1. Other models have also been investigated (Bourlard and Morgan, 1994; Robinson

and Fallside, 1991) but hidden Markov models represent the current state-of-the-art.

A Hidden Markov Model models a stochastic process whose realisation at time 5 is the feature

vector �#2 . An HMM represents the sequence
� �t� � � 	������3	�� � � with two distinct components.

The first component is responsible for modelling the temporal evolution of the process and

the second is a model of the stationary aspects of the process. The temporal evolution of the

stochastic process is represented by a sequence of states
�� �t� � � 	������
	�� � � in the HMM which
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follow a Markov chain. The fact that only sequence
�

is observed but not the sequence of states�� explains why these models are called “hidden” Markov models.

2.4.1 Markov models

A Markov process is defined by a set of states
��p 	������ 	 d � , which are manifestations of the variable� , and by transitions between these states. Each transition has a certain probability associated

with it, which depends on some of the states that have already been visited. If the transition

probability is only dependent on the current state, the Markov process is said to satisfy the first

order Markov property. These are the most common Markov processes in speech recognition.

The probability of moving from state � to  in such a process depends only on the pair of states

� 	  and will be denoted by �;�D� � . Since the numbers �;�D� � are probabilities, they satisfy

n�� ���D� � ��p
(2.7)

and sum to
p

for each � , i.e.

�
� ���D� � � p

(2.8)

In addition to the transition probabilities, a Markov model also needs a set of initial state proba-

bilities � � to completely determine the probability of observing a particular state sequence
�� . For

a first order Markov process this probability is then given by

w " ��'& � � @��
�
�
�

�
2OC � � @BAB� @ A�� � (2.9)

A typical Markov model of the HMM of a phonetic unit is given in figure 2.4. Here the

S 1 2 3 E

Figure 2.4 Typical Markov model of a phonetic unit.

different states of the Markov process are denoted by
p 	 
 	 	 , d and � and the transitions between

states � and  are indicated by an arrow pointing from � to  . The Markov process in figure 2.4

therefore exhibits a left-to-right topology which is common in speech recognition HMM’s. The

reason for this is that the states in this Markov process are assumed to correspond to successive

points in time. A left-to-right topology therefore ensures that the process moves forward.
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The
d

and � states in figure 2.4, which are called the start and exit state, respectively, have

a special meaning. They are used to concatenate the HMM’s of the different phonetic units to

form models that correspond to complete word hypothesis.

2.4.2 Output probabilities

The stationary component of an HMM is a probability density function (pdf) that models the

likelihood of observing feature � given that the Markov process is in state � . These output

probabilities are denoted by
!
" �%$ � & . Usually, not all the states in an HMM have output pdf’s

associated with them, those that do are called emitting states. The start and exit states in the

HMM in figure 2.4, for instance, are non-emitting states. As mentioned previously, their only

purpose is to connect different HMM’s together and they are therefore not associated with a

particular observation in the observation sequence
�

.

There are many possible choices for output pdf’s in an HMM. In principle, any non-negative

function whose integral is
p

over the feature space is a potential candidate. The most common

choice, however, are Gaussian mixture models (GMM’s) which are given by

��
� C �

x ��� " �;	�� � 	�� � & (2.10)

where � " �;	�� � 	�� � & is the normal or Gaussian distribution with mean � � and covariance matrix
� � , i.e.

� " �;	�� � 	�� � & �
p

� " 
 � & L $	� � $�
 �
�
� <�
 ����� F b����

�
� <�
 ����� F (2.11)

where $	� � $ is the determinant of � � , x � is the weight of the
�

-th component in the mixture and�
is the dimension of � . The x � are positive and satisfy

��
� C �

x � �qp
(2.12)

The advantage of Gaussian mixture models over other output pdf’s is that they can approxi-

mate almost any function with arbitrary precision while, at the same time, their parameters

can easily be estimated with the EM algorithm. For some special cases, however, other output

pdf’s are more appropriate. In chapter 5.5.1, for instance, it will be seen that for a particular

one-dimensional feature
�
, Gamma densities are a more natural choice than GMM’s. Gamma

densities have a zero likelihood for negative values of
�

and for
��� n

are given by

� c[ "]\ & � c �
�

 ����� (2.13)

Here
[ "]\ & is the Gamma function and � and

\
are the two parameters of the Gamma density

that determine its mean and variance, i.e.

� � \
� �

� � \
� � (2.14)
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In Speech Recognition, Gamma densities have also been used in the context of duration mod-

elling (Levinson, 1986) where they have been employed to model the probability of remaining

in one state of an HMM for a certain amount of time. Although Gamma densities can, in princi-

ple, be approximated by GMM’s their asymmetric structure means that a GMM may need many

more parameters to model the density than the two parameters
\

and � of the Gamma density.

In the following, the set of model parameters will always be denoted by / . For an HMM with

GMM’s as output pdf’s / is therefore given by

/ ����� 	 � x �� 	�� �� 	�� �� k ��� d 	  ���� " � &W��� (2.15)

where
�

is the matrix of transition probabilities and � " � & is the set of components of state � . The

weight x �� belongs to the  -th component of state � and similar interpretations apply to the other

objects � �� and � �� .
Combining the dynamic and stationary components of an HMM, the likelihood of observation

sequence
�

and state sequence
�� can now be calculated as follows.

, - " � 	 ��'& � � @�� !#" �'��$ �#� &
�
�
2OC �

� @ A
�
�Q� @BA !
" � 2 $ � 2 & (2.16)

Here, the likelihood
,

was indexed by / to emphasis the dependency of this value on the model

parameters. If this dependency is not important, the index / will be dropped.

2.5 The HMM/ANN frame-work

Both the standard HMM structure, as described above, and the HMM/ANN frame-work use a

Markov process to model the temporal evolution of the speech process. In contrast to the stan-

dard HMM, however, the HMM/ANN school of thought replaces the output probability density

functions
!#" �)$ � & with posterior probabilities * " � $ ��& of observing state � given observation � . This

can be done in a number of ways which are discussed in (Bourlard and Morgan, 1994; Bourlard

et al., 1995; Bourlard and Morgan, 1997). The simplest approach uses Bayes theorem to derive

a scaled version of the posterior * " � $ ��& , i.e.

* " � $ ��&* " � &
� !#" �%$ � &!#" ��& (2.17)

The scaled probabilities on the left-hand side of this equation can now be used instead of the

output pdf’s
!#" �%$ � & because

!#" ��& , which is the state independent output pdf of � , does not change

with state � and does therefore not contribute any information to the recognition process.

Although both models have, in principle, the same modelling power, it is usually argued that

the state probabilities * " � $ ��& have the advantage that they result in a model that discriminates

better between different states � .
The reason why these models are mentioned here is that in chapter 5 a model will be pro-

posed that also uses posteriors similar to * " � $ ��& . There, however, the state � and feature � will

have a different meaning.
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2.6 Recognition

An automatic speech recogniser searches for the most likely sequence of words given a sequence

of features
�

. Since direct optimisation of
w " �x $ � & is difficult, Bayes theorem is usually applied

to give

w " �x $ � & � w " � $ �xy& w " �xy&w " � & (2.18)

Optimising the right-hand side of (2.18) with respect to
�x is equivalent to optimising the fol-

lowing product

w " � $ �x & w " �xy& (2.19)

because
w " � & does not depend on the word sequence

�x . The recognition problem in a standard

HMM therefore usually takes the form of optimising the expression (2.19), which is the same as

in figure 2.1.

The first term in (2.19) represents the likelihood of the observation sequence
�

under the

acoustic model, which will from now on be denoted by
, " � $ �xy& , while the second term repre-

sents the language model of the recogniser. The latter is usually represented by a product of

conditional word probabilities, i.e.

w " �xy& �
��
� C �

* " x � $ x � �
� 	������3	�x � & (2.20)

To decrease the complexity of the model the history of the conditional probability in (2.20),* " x � $ x � �
�
	������ 	�x_� & , is restricted to a small number of words, say * " x � $ x � �

� 	������
	�x � �
� & . Such

a language model is called a word
� ��p

-gram model. Calculating the language model prob-

ability of the word sequence
�x , therefore, involves looking up the individual conditional word

probabilities * " x � $ x � �
� 	������3	�x � �

� & and multiplying them together. Compared to this proce-

dure, the calculation of the acoustic likelihood
w " � $ �xy& in (2.18) is more complicated and an

efficient method to calculate its value is mandatory. This will be subject of the next section.

2.6.1 Forward Backward Algorithm

Given an observation sequence
�

and a sequence of words
�x the acoustic likelihood of

�
in

(2.19) is calculated by summing over the acoustic likelihoods of all state sequences that are

possible for word sequence
�x , i.e.

, - " � $ �xy& � �
�@�� ��

, - " � 	 ��'& (2.21)

Here
�� � �x denotes the fact that

�� is a state sequence that can be generated by word sequence�x . Direct evaluation of the sum in (2.21) is computationally too expensive, because the number

of terms is of the order of
d �

, where
d

is the number of possible states at any given time and �
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is the length of the observation sequence. However, taking advantage of the underlying lattice

structure of the problem an algorithm of reasonable complexity can be derived. Firstly, define

132 " � & � ,.- " � 2� 	�� 2 � � & (2.22)

4 2 " � & � ,.- " � �2�� � $ � 2 � � & (2.23)

where
� 2� ��� � � 	������ 	��#2Q� is the observation sequence truncated at time 5 and

� �2�� � ��� �#2�� � 	������
	�� � �
is the observation sequence starting at 5 �op

. The sequences 1 and 4 are called the forward and

backward sequences, respectively, and their definition implies the following

,.- " � 	�� 2 � � & � 132 " � & 4 2 " � & (2.24)

The overall likelihood of observation sequence
�

and the probability of observing state � at time

5 , which will be denoted by 8 2 " � & , can be derived from the 1 ’s and 4 ’s as follows

�
�@
,.- " � 	 ��'& � �

� 1 2 " � & 4 2 " � & 8�2 " � & � 1 2 " � & 4 2 " � &� � 132 " � & 4 2 " � & (2.25)

Here the sum ranges over all states � which are possible at time 5 . For the special cases 5 � �
and 5 �qp

, this reduces to the following equations

�
�@
,.- " � 	 ���& � �

� ����� ��1 � " � & (2.26)

�
�@
,.- " � 	 ���& � �

� ��� !#" � � $ � & 4 � " � & (2.27)

where ���D� � is the transition probability from state � to the exit state � of the HMM. This shows

that only one of the sequences 1 and 4 is necessary to calculate the likelihood of
�

and
�� .

However, since the 8 2 " � & have to be derived for each time instant 5 in the training algorithm,

efficient calculation of both sequences is important. The key to this is the following relation

between the 1 ’s and 4 ’s of two successive time instants.

1 2�� � "  & � �
� 1 2 " � &B���D� � !#" �#2�� � $  & (2.28)

4 2 " � & � �
� 4 2�� � "  &B���D� � !#" �#2�� � $  & (2.29)

These formulae can now be used to calculate the forward and backward sequences iteratively

by the following algorithm.

1. Initialise 1 by setting 1 � " � & � ��� !#" � � $ � & and 4 by setting 4 � " � & �qp
.

2. Given 1 2 " � & and 4 2�� � "  & for all � and  calculate 1 2�� � "  & and 4 2 " � & from (2.28) and (2.29),

respectively.

This algorithm involves only

 � d multiplications, as compared to the brute force approach which

needed operations that were of the order of
d �

, and constitutes therefore a major reduction in

the complexity of the calculation.
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2.6.2 Viterbi algorithm

Unlike the forward backward algorithm, the Viterbi algorithm searches for the most likely se-

quence of states
���� , i.e.

�� � ����� �����
	
�@ ,.- " � 	 ���& (2.30)

and hypothesises the word sequence
�x that generated the sequence

�� � .
The problem of finding

���� in (2.30) can be solved by dynamic programming which can be

implemented in the current situation by the following recursive algorithm.

1. Initialise m � "  & � !#" � � $  & for all permissible states  at frame number one.

2. Once m 2 "  & has been calculated for all possible states at time 5 define m 2�� � " � & to be

m 2�� � "  & � ���
	�
� � IUT ���C � m 2
" � &B� �D� � !#" � 2�� ��$  & (2.31)

Furthermore define the back pointer for state  at time 5 �op
to be

� 2�� � "  & ����� �����
	��� � I?T ���C � m 2
" � &B���D� � !#" �#2�� � $  & (2.32)

3. The likelihood of the most likely state sequence in (2.30) is
���
	 � m � "  & , where the max-

imum is taken over all legal end states  . Following the back pointers for
��� �����
	 � m � "  &

back to time 5 �qp
, one obtains the most likely state sequence

�� � .
Comparing (2.28) and (2.31) one can see that the Viterbi algorithm simply substitutes the sum

in (2.28) by a maximisation over all possible states at time 5 . This further reduces the amount of

computation and makes the Viterbi algorithm therefore a useful tool in the recognition process.

The forward-backward algorithm can easily be modified to work with logarithmic likelihoods in

which case the products are replaced by sums. One may consult standard texts such as (Deller

et al., 1993; Rabiner and Juang, 1993) for the details.

2.7 Parameter Estimation and the EM Algorithm

2.7.1 General Discussion

The problem of parameter estimation consists in finding the model that best explains the training

data. This is typically done by maximising a certain optimality criterion such as the likelihood

of the training data under the current model. This so-called maximum likelihood (ML) criterion

is one of the most common in statistical data modelling and also plays an important role in

speech recognition. Due to the special nature of HMM’s the problem of maximising the training

data likelihood is not tackled directly but via the so-called expectation maximisation algorithm

(Dempster et al., 1977). This algorithm takes into consideration that the state sequence
�� of

the HMM is not observed in the training phase and maximises an auxiliary function which is

based on the expected values of the hidden variable � . This explains the name expectation
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maximisation because in the first stage of the algorithm the expected values of the hidden states

are calculated while in the second stage the model parameters are estimated by maximising the

optimality criterion encoded in the auxiliary function. By increasing the value of this function,

each iteration of the EM algorithm is also guaranteed to increase the likelihood of the training

data. Successive applications of the EM algorithm therefore result in a sequence of models

whose fit to the training data increases.

2.7.2 The auxiliary function and its optimisation

In the speech recognition literature (see, for instance, (Baum et al., 1970; Levinson, 1986)), the

auxiliary function of the EM algorithm is usually defined by

Y " / 	 Z/ & � �
�@
,.- " � 	 ���& ���
� ,��- " � 	 ���& (2.33)

where / and Z/ are the old and the new sets of model parameters, respectively. This definition

differs from the one given in (Dempster et al., 1977) which uses
,_- " ���$ � & instead of

, " � 	 ���& and

is therefore the sum of the likelihoods
,��- " � 	 ���& for different state sequences

�� weighted by the

probability of observing
�� . Since both definitions differ only by a normalising factor the two

optimisation problems are equivalent. The auxiliary function is also related to the Kullback-

Leibler distance which is, for instance, discussed in (Kullback and Leibler, 1951) and (Cover and

Thomas, 1991).

The model parameters are usually determined by calculating the partial derivatives of the

auxiliary function with respect to the model parameters and finding a set of parameters for

which these derivatives are zero. This ensures that the model corresponds to a local extremum

or a saddle-point of the auxiliary function. Since one is only interested in local maxima it also

has to be checked that the second order derivatives at such a point in the parameter space are

negative definite. Such issues have, for instance, been addressed in (Baum et al., 1970) and

(Liporace, 1982).

Setting the gradient of the auxiliary function with respect to Z/ to zero, for an HMM whose

output pdf’s are single Gaussians, one can find the following estimation formulae for the differ-

ent HMM parameters.

Z���D� � � � �
�
2OC � 8�2 � �

" � &�� � � �
�
2OC � 132 � �

" � &B����� � !#" �
27$  & 4 2 "  & (2.34)

Z� � � � �
�
2OC � 8�2

" � &�� � � �
�
2OC � 8;2

" � &B�#2 (2.35)

Z�M� � � �
�
2OC � 8�2

" � &�� � � �
�
2OC � 8;2

" � & " �#23s Z� �N& " �
2 s Z� �B& v (2.36)

where � 	  � � . These parameter estimation formulae also have an intuitive appeal since the

values 8;2 " � & " � 2 8�2 " � &W& � � can be interpreted as the posterior probability of observing state � at

time 5 given that it was observed anywhere during the sequence
�

.
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The extension of the above parameter estimation formulae to the case of output pdf’s that

are modelled by GMM’s with more than one component is straight-forward. One only has to

replace the probability of observing state � by the probability of observing state � and component

 . The reestimation formula for the weights x �� is then given by

Zx �� �
� �
�
2OC � 8 2

" � & � � � �
�
2OC � 8 2

" � 	  & (2.37)

For Gamma output pdf’s of a one-dimensional feature
�
, the reestimation formulae take on a

different form. In this case, they are given by

\ �
�=� � � 2 8�2 " � & � 2� 2 8�2 " � & (2.38)

[ v "]\ � &[ "]\ �N& s ���
� �=� � � 2 8�2 " � & ���
� � 2� 2 8�2 " � & (2.39)

Unfortunately, these are no closed form reestimation formulae for the parameters
\

and � . De-

noting the right hand side of (2.38) by � � and the right hand side of (2.39) by m � and substituting

(2.38) into (2.39) one arrives at

^ "]\ � &
s ���
� \ � � m �Es ���
� � � (2.40)

where
^ "]\ & � [3v "]\ & � [ "]\ & is the digamma function. Since the digamma function can be calcu-

lated efficiently (Abramovitz and Stegun, 1965), the Newton algorithm can be used to find a
\ �

such that equation (2.40) is satisfied. Here one iteration of the Newton algorithm is given by

\ < S � � F� � \ < S�F� s ^ "]\ < S�F� &3s ���
� \ < S�F� � ���
� � �Es m �^ v "]\ < S�F� &
s �
c�� V��I

(2.41)

Finally, the
\ � that has been estimated in this way can be substituted into (2.38) to obtain � � .

The complete derivation of the above equations can be found in appendix B.

2.8 Other Optimisation Criteria

In the context of HMM’s, maximum likelihood estimation is usually criticised for training an

output pdf
!#" �)$ � & without reference to the output pdf’s of other states. Since the ultimate goal

in training models is to find pdf’s that focus on distinguishing between different states the ig-

norance of other output pdf’s might result in suboptimal models. To overcome this problem

a number of alternatives to the ML parameter estimation for HMM’s has been proposed (Bahl

et al., 1986; Bahl et al., 1993; Juang and Katagiri, 1992; McDermott and Katagiri, 1994; Rain-

ton and Sagayama, 1992) which address the problem of maximising discrimination between

states by optimising other objective functions than the auxiliary function of the EM algorithm.

The most commonly used of these is the MMI approach in (Bahl et al., 1986) which has, for in-

stance, been implemented in an LVCSR frame-work in (Valtchev et al., 1997). Here the objective
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function is given by.

� " / & �
��
� C �

���
� ,.- " � � $ �x � & w " �x � &
�

�� � >�� ,.- " � � $ �xy& w " �x & (2.42)

where the
� � are the

�
training utterances,

�x � is the word sequence that corresponds to the
� -th utterance and

w " �xy& is the language model probability of word sequence
�x . In this equa-

tion
�x � � � refers to all the word sequences that are possible for observation sequence

� � and,.- " � � $ �x � & w " �x � & � � �� � >�� , - " � � $ �x & w " �x & can therefore be interpreted as the posterior probabil-

ity that the model / assigns to the correct word sequence x � .
It is interesting to note that similar word based posterior probabilities have also been used

successfully in recognition (Mangu et al., 1999; Evermann and Woodland, 2000) where they

have been shown to improve recognition performance.

Ideally, the posterior probabilities that the model assigns to the different word hypothesis

should be one for the correct hypothesis and zero for all the others. The elements on the right

hand side of 2.42 can therefore be written as a sum themselves, i.e.

���
� ,.- " � � $ �x � & w " �x � &
�

�� � > � ,.- " � � $ �xy& w " �x &
� �

�� � >��
* ��

���
� ,.- " � � $ �xy& w " �x &
�

�� � > � ,.- " � � $ �x & w " �x & (2.43)

where * �� are the ideal posterior probabilities mentioned above. Rewriting equation (2.43) yet

again, one arrives at

���
� ,.- " � � $ �x � & w " �x � &
�

�� � > � ,.- " � � $ �x & w " �xy&
� s �

�� � >��
* ��

���
� * ��9;:=<?> ��� �� F
	 < �� FH��
���� � 9;:=<?>�� � �� F�	 < �� F
(2.44)

The expression on the right hand side of this equation is commonly known as the cross-entropy

error between the true posteriors * �� and the estimated ones. The objective function in (2.42) is

therefore the negative of the sum of the cross-entropy errors for all the training utterances and

maximising the former is therefore equivalent to minimising the sum of the cross-entropy errors.

This error function will be encountered again in chapter 5 in connection with the so-called

softmax functions where it will be derived directly from the EM algorithm. Both the softmax

parameter training and the optimisation of equation (2.42) do, unfortunately, not lead to closed

form solutions. However, in the case of the softmax functions it is possible to show under certain

conditions that there exist unique optimal solutions to the parameter estimation problem. This

topic will be further explored in chapter 5 and appendix C.
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Hidden mode modelling and soft model selection

It is generally accepted that the standard HMM in the last section does not contain sufficient

structure to model all the hidden dynamics that can occur in a speech signal. The HMM is,

for instance, restricted by the assumption that successive frames are conditionally independent

given the state which is clearly not the case for speech. Especially for spontaneous speech which

exhibits a higher number of coarticulation effects this assumption contradicts empirical evi-

dence. Another restriction of the standard HMM is that its hidden state � models only temporal

segments of phones. While these segments contain the most relevant information in determin-

ing the proper word hypothesis, other hidden states of the speech signal, like the level and kind

of background noise or the speaking rate of an utterance, are also important, and a failure to

model such hidden states can result in significant performance degradation.

To show the effect of spontaneous speech on recognition performance, in (Weintraub et al.,

1996) three different types of data sets were collected. For the first data set Weintraub et al.

recorded spontaneous conversations on an assigned topic. For the other two data sets the pre-

viously recorded conversations were transcribed and the same speakers were asked to read the

transcripts once as if they were having a conversation and another time as if they were dictating

to a computer. Recognition experiments on these different types of data showed that the recog-

nition performance on spontaneous speech was by far the worst with an error rate of 52.6%. For

the read conversational speech the error rate decreased to 37.6% and the read dictation gave

the best performance with an error rate of 28.8%. This shows clearly that speech recognition

is very sensitive to variation in speaking style. Weintraub et.al. are not the only ones to point

out the adverse effect of spontaneous speech on recognition performance. This has also been

observed in (Siegler and Stern, 1995; Mirghafori et al., 1995a) and generally in many of the

DARPA speech recognition evaluations that were conducted over the last years. Also in con-

nection with the so-called Lombard reflex, which means that speakers change their vocal effort

under the influence of noise, the negative effect of variations in speaking style has been observed

(Junqua, 1993).

This chapter will discuss some of the models that have either been directly motivated by the

problem of hidden states, other than the ones relating to phone segments, or are conceptually

related to such models. The extension to the standard HMM in section 3.1 explicitly refers to

23
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the speaking rate of the speech signal, while the models discussed in section 3.2 were developed

to cope with the presence of background noise or to combine several sources of information

pertinent to the speech process. The model in section 3.3, on the other hand, does not directly

derive from speech recognition but represents a rather general frame-work in which the output

of a number of pattern recognition systems is combined. An application of this model within

the HMM frame-work will be also discussed in this section. The model in section 3.4 is , again,

an attempt to model the speech process more accurately and it presents a unifying frame-work

under which most of the models in the previous sections can be subsumed. Section 3.5, finally,

mentions a number of other models that are also related to either the problem of modelling

spontaneous speech or to some of the other models discussed previously.

The term “mode”, which is sometimes used exclusively to refer to speaking rate, will be used

more casually in this chapter and will refer to any variable in the speech process other than the

one expressed by the hidden states of the standard HMM.

3.1 Hidden mode models for HMM’s

One of the first models to explicitly account for the variability in spontaneous speech was pro-

posed in (Ostendorf et al., 1996). Here two sources of information, in addition to the usual

observation sequence
�

, are used to infer the speaking rate at each point in time. The likelihood

function of the model has the following form

, " � 	 ���	 �� 	 ��%	 �x $ � 	 � & � , " � 	 �� $ ���	 ��0&G* " ��%$ �x 	 ��%&G* " ��+$ � 	 � &G* " �x & (3.1)

where
�x is the word sequence,

�
� is a sequence of states of the hidden mode and

�� is a sequence

of pronunciations associated with each word in
�x . Finally, � and

�
are sequences of language

and acoustic features, respectively, that are related to the state of the hidden mode. Since the

hidden mode is assumed to change its state only at word boundaries, the sequences
�

� , � and
�

have the same length as the word and pronunciation sequences
�x and

�� . The factorisation of

the joint likelihood
,M- " � 	 ���	 �� 	 ��%	 �x $ � 	 � & in (3.1) can therefore be realised on a word by word

basis, i.e.

, " � 	 ��'	��;	 �0	�xJ$ e#	 � & � , " � 	 �� $ ��	 �%&G* " �%$ x 	 �%&G* " �E$ e#	 � &G* " x & (3.2)

In (Ostendorf et al., 1996), the first term on the right hand side of equation (3.2) is modelled

by an HMM whose output probabilities are dependent on the state � and the state of the hidden

mode � . The second term in (3.2) is modelled by introducing mode dependent pronunciation

probabilities. Finally * " �+$ e
	 � & has to be a probability distribution over the states of the hidden

mode and (Ostendorf et al., 1996) suggests the use of decision trees for this task (Breiman et al.,

1984).

The mode dependent pronunciation probabilities in (Ostendorf et al., 1996) are derived for a

set of pronunciation transformation rules. This avoids the need to estimate the probabilities for

each pronunciations in the dictionary and makes the model more robust. This approach has been
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further pursued in (Finke and Waibel, 1997). Evaluating their system on the 1996 Switchboard

and Callhome database, they initially reported relatively small improvements. However, retrain-

ing their models based on their improved alignments gave them an overall relative improvement

of about 15%.

In (Ostendorf et al., 1996), no recognition experiments with mode dependent acoustic mod-

els are reported. Instead, Ostendorf et al. address the problem of distribution clustering with a

phonetic tree that includes questions which are relevant to the state of the hidden mode. These

studies are motivated by the fact that modelling the acoustic features dependent on the mode

will increase the number of parameters considerably. In order to obtain a robust model it is

therefore necessary to apply some kind of parameter sharing and since distributions for differ-

ent speaking modes should be kept distinct this suggests including features that are related to

the hidden mode into the clustering process. The questions investigated in (Ostendorf et al.,

1996) are related to the lexical stress of a phone and the position of the phone within the word.

The experiments in (Ostendorf et al., 1996) compare the performance of a standard context de-

pending clustering scheme with the performance of a model that is derived from these additional

cues. Ostendorf et.al. give an example of such a tree which illustrates that questions about the

mode are asked early in the tree which indicates their relevance to the clustering process. The

recognition experiments, however, result in marginal improvements.

The method of using higher level context in phonetic decision tree clustering has become

known as tagged clustering and has first been introduced in the context of speech synthesis

(Donovan, 1996). Later it has also been used in speech recognition (Paul, 1997; Reichl and

Chou, 1999; Shafran and Ostendorf, 2000). In (Shafran and Ostendorf, 2000), which builds

on the work in (Ostendorf et al., 1996), syllabic information in the decision tree clustering was

found to generalise better than wide phonetic context.

Since the sequences � ,
�

and
�x in (3.1) have all the same length, the calculation of the fea-

tures e and
�

has to be carried out for each hypothesis
�x separately which limits the application

of the model in (3.1) to an n-best rescoring frame-work.

Since the hidden mode in this model is meant to relate to speaking rate,
�

will be an acoustic

feature that contains information about the “velocity” of the sequence of observation vectors
�

,

like the first or second order derivatives, and e might be a feature that models the context of

a word x in the word sequence
�x and therefore contains information about the probability of

speaking word x fast or slow.

Together, the features e and
�

provide information about observing a fast or slow speaking

rate which is represented by the probability of observing a particular state of the hidden mode,

i.e. by the posterior * " �E$ e#	 � & . Finally, this probability is used in the model (3.2) to weight the

pronunciation probability * " �%$ x 	 �%& and the acoustic likelihood
, " � 	 ��;$ �%& .

Although this possibility is not pursued further, it has been suggested in (Ostendorf et al.,

1996) that the training data could be labelled manually with the states of the hidden mode if the

size of the task is reasonably small. It is, however, doubtful if this procedure will result in a good

model, because although one might be interested in a particular hidden mode, like speaking

rate, the use of such a mode might be severely limited by the correlation to the features e and
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�
. If the correlation of these features to the hidden mode is weak, the posterior * " �E$ e#	 � & will

always be close to
n � � , in which case the discrimination between mode dependent acoustic or

pronunciation models becomes marginal. While one will usually try to avoid such features, one

cannot always ensure that e and
�

have the highest correlation with the hidden mode one had

in mind initially. It seems therefore more sensible to allow the model to learn the hidden mode

that has the highest correlation with the features e and
�
, and therefore results in the highest

possible discrimination. This point of view is also supported by the experiments in chapter 7.

The reason why (3.1) models only the conditional likelihood
, " � 	 ��'	 �� 	 ��0	 �x $ � 	 � & rather than

the full joint likelihood
, " � 	 ���	 �� 	 ��%	 �x 	 � 	 � & is due to the assumption that the features e and

�
are only relevant to the distinction between the states of the hidden mode and do not carry

any additional information relevant to the sequence of states
�� . Modelling the joint likelihood, " � 	 � & does therefore not add any discrimination to the model and can be omitted. The model

in (3.1) is therefore just a factorisation of the joint likelihood
, " � 	 ���	 ��;	 �� 	 �xy	 � 	 � & where non-

discriminant information has been ignored. Other factorisations of this joint likelihood are also

possible and in addition to (3.1), the following model has been proposed in (Ostendorf et al.,

1996)

, " � 	 ���	 ��;	 ��0	 �x 	 � $ � & � , " � 	 ��)$ ��;	 ��)&G* " ��0$ �xy	 ��%&G* " � $ ��0&G* " ��+$ � &G* " �x & (3.3)

This can again be regarded as a factorisation of the joint likelihood with the assumption that

feature � does not add any discriminant information apart from the one relevant to the state of

the hidden mode. In principal, every factorisation of the joint likelihood gives rise to a hidden

mode model.

It is not clear a priori which of the many possible factorisations of the joint likelihood of the

observation sequence
�

and the hidden variables is most appropriate. One will have to decide

on a case-per-case basis which one to use. The general framework of factorising joint likelihoods

will be discussed in section 3.4.

3.2 Subband and Multi-Stream based models

Another way to model additional hidden variables in a speech recognition frame-work has been

explored by the group at IDIAP. This work was motivated by the model-data mismatch due to

the presence of noise in the speech signal. The idea of this approach is that different subbands

of the speech signal are affected by noise in different ways and that it is therefore desirable to

find the frequency bands that contain the most reliable information. The correct combination

of subbands that will be used for speech recognition can therefore be interpreted as a hidden

variable in the recognition process. In these subband models the observation vector � is consid-

ered to be made up of sub-observations � � which correspond to the sub-bands. Subband models

which use only the subbands themselves without recombining them, have first been proposed

in (Dupont and Bourlard, 1996; Bourlard et al., 1996) and have recently been extended to in-

clude the so-called full combination approach in (Hagen et al., 1998; Morris, 1998; Morris et al.,

2000). Both methods are usually formulated within the HMM/ANN frame-work and therefore
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calculate the posterior probabilities of observing a hidden state � � � given a feature vector �
rather than the posterior of observing � given � � � . The full combination approach calculates

the posterior probability * " � � � $ ��& in the following way

* " � � � $ ��& � �
� * " eW��$ ��& w " � � � $ eQ�'	���& (3.4)

Here, e�� represents both a combination of the basic subbands of � and the statement that these

subbands are reliable. The posterior probability
w " � � � $ e ��	���& is therefore usually calculated by

using ��� � which is the restriction of the full observation � to the subbands corresponding to e � .
In (3.4) the posteriors

w " � � � $ e � 	���& are weighted by the posterior probability * " e � $ ��& that the

subbands in eW� are reliable, given � . The sum over all these weighted posteriors finally yields

the overall probability of observing � � � given � . If the posteriors * " e � $ ��& are good predictors

of the reliability of the subbands e7� , then the decomposition of * " � � � $ ��& in (3.4) means that

only the subbands of � which are useful for recognition will enter the recognition process. While

the full combination approach is clearly the correct way to express * " � � � $ ��& as a sum of thew " � � � $ eQ�'	���& it has the disadvantage that the number of possible combinations of
�

subbands

is

 � and therefore the number of parameters in (3.4) increases exponentially with the number

of subbands. As pointed out in (Hagen et al., 1998), this explosion in the size of the parameter

space can be reduced if the subbands are conditionally independent. In this case the posteriorw " � � � $ ��� � & can be derived from the posteriors
w " � � � $ �
��& where � � is a single subband, i.e.

w " � � � $ ��� � & � w SW�
���f C � w f � (3.5)

w SW� � � f ��� � w " � � � $ � f &w � � � � �
� " � � � & (3.6)

The posteriors * " e��;$ ��& in (3.4) are either assumed to be constant or they are modelled with

neural networks. In order to train these neural networks a minimum squared error approach is

used. This is, however, inconsistent with the EM training paradigm and can furthermore lead to

suboptimal solutions due to the nature of error surface of the neural network parameters. An

example which illustrates this problem will be given in section 5.3.

Subband models have been shown to be successful in the case of speech that is corrupted

by band-limited noise (Morris et al., 2000). For more general noise conditions, however, the

performance of the subband models has not surpassed the performance of a standard HMM/ANN

system that uses the full observation � .
Subband models are conceptually equivalent to multi-stream models, the only difference

being that multi-stream models use observations from different sources as opposed to splitting

one source into several subsources. Multi-stream processing has, for instance, been used to

combine acoustic and visual information like the movement of the lips (Dupont and Luettin,

1998) to increase recognition performance.
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3.3 Mixtures of experts

The models in the last two sections implicitly combined or selected a number of different models

to recognise speech. Mixture of experts (ME) models, represent a frame-work which addresses

the problem of model selection or combination in the more general context of pattern recog-

nition. The reason for mentioning ME models in this chapter is not only their relationship to

the models in the previous sections but also the fact that softmax functions, which will play an

important role in chapter 5, have been extensively used in this area.

Mixtures of experts systems, which have first been introduced in (Jacobs et al., 1991), com-

bine the output of several expert networks with a gating network which determines the “relia-

bility” of each expert and regulates its influence on the overall network output. The basic ME

concept is visualised in figure 3.1. Here � � is the output of the � -th expert and � � is, according
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Figure 3.1 Mixture of experts.

to the gating network, the “reliability” of expert � given the input. The total output of the ME
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network is then given by

� "�� & � �
� � � "�� & �0� "�� & (3.7)

where
�

is the system input.

The sub-band and multi-stream models in the last section as well as the hidden mode models

in section 3.1 can be regarded as mixtures of experts. In the first case, the probability of the

hidden mode * " �E$ e#	 � & can be interpreted as a gating function that determines the influence of

the mode specific experts * " �%$ x 	 �%& and
!
" �%$ �0	���& on the overall system output. In section 3.2

the experts are the models * " � $ e � 	���& that are used for recognising the combination of subbands

or streams e�� and the probability of e�� being a good source of information * " e7��$ ��& is the gating

function.

In the ME systems in (Jacobs et al., 1991), the outputs of the gating network are calculated

with the following formula

� � "�� & � 

f I <�� F

� � 

f � <�� F (3.8)

where m � "�� & is the linear combination of the input
�

received by the output unit � of the gating

network. The definition of the � � "�� & (3.8) implies that they are strictly positive, smaller than
p

and that the sum over all the � � "�� & ’s is equal to
p
. The function that transforms the m � "�� & into the

gating outputs � � "�� & (3.8) has been called a softmax function (Bridle, 1989), because it imple-

ments a “soft” decision boundary as its values range continuously from
n

to
p
. Softmax functions

also appear in the theory of generalised linear models where they are known as multinomial

logit-functions (McCullagh and Nelder, 1989).

The ME models in (Jacobs et al., 1991) were trained by optimising the following error func-

tion

s ���
� �
�

�
� � � "�� & 
 � ��� ����� <��

F
���
I <�� F � � (3.9)

where
�

is a training data point with associated output � "�� & and the first sum in (3.9) extends

over all training data points
�
. It is argued in (Jacobs et al., 1991) that optimising this error

function will adapt the best fitting expert fastest in the early stages of the training as compared to

a simple mean squared error function on the overall network output which, supposedly, adapts

the best fitting expert the slowest.

The performance of the ME model in figure 3.1 trained by optimising the error function (3.9)

was evaluated in (Jacobs et al., 1991) on a speaker independent four-class vowel discrimination

problem (Peterson and Barney, 1952). The experiments showed that the use of the gating net-

work produced experts which focused on one particular decision problem in the classification

task. The overall performance of the mixture of experts in (Jacobs et al., 1991) was found to

be comparable with that of an MLP, however, the number of training iterations, using a gradient

descent approach, was greatly reduced.
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The ME architecture has also been combined with HMM’s (Bengio and Frasconi, 1995). Here

the ME was used to find the relationship between an input sequence and an output sequence,

and consequently this type of HMM has been called an input-output HMM (IOHMM). The struc-

ture of this model is given in figure 3.2, where
� 2 and �#2 are the input and output of the system at

time 5 . Again, every expert and gating network processes the input
� 2 . The � -th gating network

dt

ot
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Figure 3.2 The input-output HMM.

in figure 3.2, which is modelled by an MLP, is meant to give the probability of observing the

hidden states of the HMM, given that the process was in state � at time 5 s p
. In contrast to figure

3.1, the � � in figure 3.2 are therefore probability distributions over all the possible hidden states

in the system. Since the sequence of states in the IOHMM is assumed to follow a first order

Markov process the gating output needs to be fed back into the gates via the delay loop in figure

3.2. As in a standard HMM, the probability of observing state  at time 5 is therefore given by
�
� � � "  &G* 2 � �

" � & (3.10)

where * 2 � �
" � & is the probability of observing state � at time 5 s p

and, applying a slight change

in notation, � � "  & is now the probability of being in state  , given that the process was in state
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� in the previous time instant. The IOHMM network can be easily modified to produce output

probabilities rather than output vectors. In this case the output pdf
!
" � $ � 2�	�� 2N& is dependent on

the system output ��2 . Typically, �=2 will be used as the mean of the density if
!#" � & is assumed to

be Gaussian. Bengio and Frasconi outlined a training algorithm in (Bengio and Frasconi, 1995)

and they tested the IOHMM architecture on the Tomita grammars (Tomita, 1982) which have

been used to compare the accuracy of inference methods based on recurrent networks. These

results showed improved generalisability as compared to results reported previously (Watrous

and Kuhn, 1992). However, in some of the experiments the percentage of models that converged

successfully to the correct solution was very small at 10% - 15%. This hints at a problem in the

MLP gating networks which do not necessarily converge to the correct solution.

Another application of the ME frame-work to the modelling of time series has been proposed

in (Ghahramani and Hinton, 1996). The switching state-space model in this article is also an

extension of the HMM frame-work since it makes use of a number of sequences of continuous

state vectors in addition to the discrete state variable of the HMM. Each sequence of continuous

state vectors is processed by an expert network and the state of the discrete variable is used to

switch between these outputs, hence the name.

Both the IOHMM and the switching state space model replace the optimisation of the rather

unconventional error function (3.9) with the EM algorithm which can be applied in this case

since both models contain hidden variables.

The gating network in the initial concept of a mixture of experts lacked the ability to model

non-linear decision boundaries, because each output node was linearly connected to the input

nodes. To overcome this restriction, various extensions to the original model have been pro-

posed. As in (Bengio and Frasconi, 1995; Ghahramani and Hinton, 1996), Nowlan and Hinton

(Nowlan and Hinton, 1991) replaced the linear combination of the system inputs for a node in

the gating network with the output of an MLP. While this increases the number of possible de-

cision boundaries it results in a less satisfactory training algorithm due to the existence of local

minima in the MLP error surface.

Another extension to the initial gating concept was proposed in (Jordan and Jacobs, 1992).

Here each node in the network was itself the output of the nodes connected to it from the

previous layer weighted by the output of another gating network. This architecture is depicted

in figure 3.3. The overall output of this network is therefore given by

� "�� & � �
� � � "�� & � � � � � "�� & � � � "�� & (3.11)

where
�

is, again, the system input.

Networks of the type in figure 3.3 are the building blocks of the hierarchical mixtures of

experts (HME’s), where the overall output � can again be fed into a hierarchical mixture of

experts. In general, the branching factor does not have to be two and arbitrary connections

between nodes in successive layers are possible.

Just as for an MLP, adding a gating network in a hidden layer increases the number of possi-

ble decision boundaries by moving from a linear decision boundary with a single layer to convex
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Figure 3.3 Hierarchical mixture of experts.

decision boundaries with one hidden layer, and so on. Although as in (Nowlan and Hinton,

1991), this architecture allows for arbitrarily complicated decision boundaries, it again suffers

from the presence of local minima in the error surface (Waterhouse and Robinson, 1994). It

will later be shown that it is not necessary to sacrifice global convergence in order to model non-

linear decision boundaries. Using the concept of polynomial softmax functions, which moves the

non-linear components of the model from the ME outputs to the ME inputs, it will be demon-

strated in section 5 and appendix C that both the modelling of complex decision boundaries and

robust convergence can be achieved at the same time.

The problem of training an HME with the EM algorithm was investigated in (Jordan and

Jacobs, 1994; Jordan and Xu, 1995). Here the expert networks in the HME were considered to

be single Gaussians whose means are linearly related to the system input. In (Jordan and Xu,

1995) Jordan and Xu derived convergence results for the EM algorithm applied to the training

of an HME. The reestimation procedure for the gating networks in this paper is a generalised

EM algorithm because instead of maximising the auxiliary function this method only guarantees

an increase. This is achieved by applying a single step of the Newton algorithm with a fixed
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learning rate and is therefore similar to the one step Newton algorithm discussed in section 5.4.

The first theorem in (Jordan and Xu, 1995) states that the difference between parameter sets in

successive EM iterations can be derived by applying a positive definite linear transformation to

the gradient of the log likelihood. A consequence of this result is that the search direction of the

EM algorithm has a positive projection onto the gradient of the log probability of the training

data which exhibits the relationship between EM and a gradient ascent approach. The second

theorem in (Jordan and Xu, 1995) gives an upper bound on the difference between a local

maximum of the log likelihood and the log likelihood of a parameter set that has been trained

with one EM iteration, given the difference between the log likelihood of the local maximum and

the untrained parameter set. These results involve a scaling factor which can attain arbitrarily

high values and the result in (Jordan and Xu, 1995) is therefore of limited use from a practical

point of view. However, it is worth pointing out, that their proof contains some remarks about

the Hessian of softmax functions which will later be commented in appendix C.

It should be noted, that the results in (Jordan and Xu, 1995) only concern the convergence

to local rather than global maxima of the log likelihood surface. This restriction is necessary

because of the output pdf of the ME model for which the log likelihood surface can have multiple

local maxima and is, in general, unbounded. Focusing exclusively on softmax functions rather

than on the full ME model it will be shown in appendix C that convergence to a global optimum

can be achieved in most practical situations. The convergence results in (Jordan and Xu, 1995),

were later also formulated for Gaussian mixture models in (Xu and Jordan, 1996).

Hierarchical mixture of experts have also been applied in speech recognition in the context

of HMM/ANN models (Zhao et al., 1995; Waterhouse, 1997). In (Zhao et al., 1995), Zhao

et.al. use an HME in a similar manner as a phonetic decision tree. Here the HME implements

a soft partition of the input space and for each region that is thus derived an expert is trained

that calculates the probabilities of observing the hidden states of the HMM for features that lie

in this region. The concept of a probabilistic decision tree using HME’s was also discussed in

(Jordan et al., 1997). Zhao et.al. report improvements on the Wall Street Journal database when

combining their HME system with a conventional HMM. To improve robustness, in (Waterhouse,

1997), Waterhouse extended the HME training algorithm by combining it with the evidence

frame-work (MacKay, 1992) and conducts recognition experiments on the Wall Street Journal

database comparing HME’s to recurrent networks (Robinson, 1994) and MLP’s in the ABBOT

speech recognition system. Hinton (Hinton and Brown, 2001) recently employed HME’s to learn

a number of small models that specialised in detecting a single feature in the speech signal.

3.4 Dynamic Bayesian Networks

The models discussed in this chapter so far exhibit a great deal of overlap and it is therefore

not surprising that they can all be derived from a single unifying frame-work. This frame-work

is the theory of Bayesian networks, also called belief networks, which has been applied to the

modelling of time varying processes giving rise to the concept of the dynamic Bayesian network.

As already pointed out earlier, the factorisation of the joint probability distributions in section
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3.1 is just one of many possibilities. Dynamic Bayesian networks which were developed in

(Dean and Kanazawa, 1988; Zweig, 1998; Zweig and Russell, 1998a; Zweig and Russell, 1998b;

Stephenson et al., 2000) discuss the factorisation of time dependent processes from a general

point of view.

The motivation for studying Bayesian networks is that modelling a joint distribution of vari-

ables is often not feasible both in terms of the size of the resulting models and the time and

training data that is needed to estimate such a model. It is therefore desirable to restrict the

model to the dependencies between the variables that are truly relevant. Consider, for instance,

the problem of modelling the joint probability of the following variables.

variable a the driver of a car is short sighted

variable b the driver of a car is drunk

variable c the driver of a car causes an accident

In this example, one can safely assume that variables � and
!

are independent and therefore the

following holds

* " � 	 ! & � * " �0&G* "]! & (3.12)

Consequently, the joint probability * " � 	 ! 	�e & can be factorised as follows

* " � 	 ! 	�e
& � * " e'$ � 	 ! &G* " �%&G* "]! & (3.13)

Assuming that the variables � and
!

can take three values, only 6 probabilities have to be esti-

mated in (3.12) as compared to 9 probabilities in the unfactorised joint probability * " �0	 ! & . This

decrease in model complexity also speeds up the calculation of the probabilities which proves

the points mentioned above.

Bayesian networks express the dependency between a set of variables
� � in the form of a di-

rected graph, which for the previous example is given in figure 3.4 (a) at the end of this chapter.

As can be seen from this figure, the variables are represented by nodes and the dependency of

variable e on � and
!

is expressed by arrows which lead from
!

and e to � . In its most general

form a Bayesian network can be any directed graph and the parents of a node are the variables

that this node depends on. The probability of observing
� � given all the other variables in the

model can therefore be written as follows

* "�� ��$ � � 	������3	 � �
�
� 	 � � � � 	������ 	 � � & � * "�� �W$ Parents

"�� � &W& (3.14)

Using this convention, the dependencies between the variables in an HMM can therefore be

realised by the graph in figure 3.4 (b). This figure also shows the dependencies between the

variables in the IOHMM model 3.4 (c) from section 3.3 and the Bayesian network corresponding

to the factorisation of the likelihood function in section 3.1, figure 3.4 (d). Because of their

ability to model dependencies between model parameters on a very general level, Bayesian

networks have also been used to overcome the independence assumption that is inherent in

standard HMM’s (Gravier et al., 1998; Bilmes, 1998; Bilmes, 1999).
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If the graph of a Bayesian network has a tree structure the algorithms for inference are

very similar to the forward-backward algorithm of HMM’s. If the Bayesian network is not tree-

structured, however, inference is NP-hard (Cooper, 1990; Dagum and Luby, 1993). This problem

can be alleviated if the same Bayesian network is used repeatedly. In this case, one can transform

the Bayesian network, via a change of variables, into an equivalent network (Lauritzen and

Spiegelhalter, 1988; Jensen et al., 1990) which is tree-structured and is called a clique tree.

This preprocessing step needs to be done only once and will therefore result in a more efficient

model.

A dynamic Bayesian network is a special type of Bayesian network which models a time vary-

ing process. Here a Bayesian network is replicated for each time slice 5 and connections between

the nodes in different time slices are added. If the first-order Markov property is satisfied, such a

network can be completely described by two successive time slices and the connections between

the variables in each of their Bayesian networks. The addition of connections between variables

in different time slices will usually result in a non-tree structure of the generated network, even

if the Bayesian networks in each time slice are tree-structured. In order to make the application

of general Bayesian networks feasible for speech recognition, it is therefore necessary to apply

the preprocessing step that was mentioned earlier. However, since utterances of different length

result in different dynamic Bayesian networks their reusability is severely limited. This prob-

lem can be overcome to a certain extent by the splicing method which is introduced in (Zweig,

1998), but the NP complexity of inference in a general DBN remains at the very heart of the

model.

Dynamic Bayesian networks have, for instance, been used in a speech recognition system to

model an articulatory variable in the speech process (Stephenson et al., 2000) which is treated

as an additional hidden variable.

3.5 Other related work

This section will review some of the approaches which are not directly related to the models in

the last sections but which have also been explored in an attempt to deal with hidden dynamics

in speech.

The models in the previous sections all tried to include information about hidden dynamic

changes into the recognition process by choosing implicitly between a number of expert models.

Another model which implements this soft model selection concept has been proposed in (Iyer

et al., 1998). In this paper each HMM in the acoustic model set has two separate branches, one

for slow speech and one for fast speech which intersect only at the start and end nodes of the

HMM. This ensures, when using a Viterbi decoder, that only one of the speaking rate dependent

models is chosen for the complete duration of the phone. The model in (Iyer et al., 1998) can

be linked to the theory of trajectory models which has been developed in (Siu et al., 1998; Gish

and Ng, 1993; Gish and Ng, 1996) and has been shown to give moderate improvements if states

belonging to different branches are shared. The main difference between this type of model

selection and the ones discussed in the previous section is the absence of a gating network. In
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(Iyer et al., 1998), the decision which model is to be chosen is entirely dependent on the match

between the features and the expert models themselves.

An extension to the model in (Iyer et al., 1998) has been proposed in (Tuerk and Young,

1999), where output pdf’s were associated with the transitions between states in an effort to

implicitly rescore the hypothesis derived with the model in (Iyer et al., 1998). Although the

overall improvement was marginal a positive effect on spontaneous speech could be observed.

In contrast to the models, which implement an implicit, soft model selection, other schemes

have been proposed which perform model selection explicitly by choosing what is believed to be

the most appropriate model at each point in time for recognition. If speaking rate is the hidden

dynamic of interest, this is typically done by using a speaking rate measure on which the selec-

tion of the model is based. If the measure indicates a high speaking rate, a fast model is chosen

and a slow model is selected if the speaking rate measure is low. The changes to the recognition

setup in response to the speaking rates usually affect both acoustic models and pronunciation

probabilities. In (Zheng et al., 2000) and (Mirghafori et al., 1995b; Mirghafori et al., 1996), for

instance, acoustic models are trained for fast and slow speech and in (Mirghafori et al., 1995b;

Mirghafori et al., 1996) the exit transitions in the states of the HMM’s are increased for fast

speech. Zheng et.al., on the other hand, introduce skip topologies in (Zheng et al., 2000) for

fast speech models which allows a phoneme to be skipped completely in the transcription of a

word. In (Liu et al., 1998), Liu et.al. also investigate skip topologies and create special acoustic

models for non-speech events like laughter. In addition, they use compound words, like “gonna”

and “wanna”, in their recognition dictionary. In (Pfau and Ruske, 1998a), Pfau and Ruske ad-

dress the problem of data sparsity in the training of speaking rate dependent models. This is

motivated by the fact that training fast and slow acoustic models results in training sets for each

model that are half the size of the complete training set and the speaking rate dependent models

therefore do not always generalise well. Pfau and Ruske investigate different training schemes,

i.e. maximum likelihood and maximum a posteriori estimation in addition to vocal tract length

normalisation (Eide and Gish, 1996; Zhan and Westphal, 1997; Lee and Rose, 1996). They

report improvements over their baseline systems for all training methods, VTLN giving the best

improvements followed by MAP and ML.

Another model that attempts to capture the dynamics of conversational speech has been pro-

posed in (Bridle et al., 1998; Richards and Bridle, 1999; Picone et al., 1999). This model, which

has been called a hidden dynamic model (HDM), is rather different from the ones mentioned

so far, in that it neither implicitly nor explicitly performs model selection. Instead the HDM at-

tempts to model the speech production process by smoothing a sequence of target vectors which

are representative of the phonetic units in a hidden state space. This results in a trajectory which

is then mapped into the acoustic signal space with an MLP. This approach is related to the work

in (Blackburn and Young, 1995) which also included information about the speech production

process into the recognition model. Since the HDM assumes constant target vectors for the du-

ration of the phonetic units this model is also related to segmental models as discussed in (Gales

and Young, 1993a; Gales and Young, 1993b).
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Speaking rate measures

Some of the models discussed in the previous section made use of a second feature, in addition

to the standard observations � , which was used to infer the state of the hidden mode. This chap-

ter will review some of the features that have been proposed in connection with spontaneous

speech. Since the main task, in this case, is to distinguish between fast and slow speech, these

features are measures of speaking rate.

Section 4.1 discusses various measures that can be derived if a transcription of the speech

signal is available. Section 4.2, on the other hand, introduces measures which can be directly

calculated from the acoustic signal.

4.1 Transcription based measures

There are a number of speaking rate measures which can be derived from a transcription of a

speech signal containing start and end times of words or phones. Most of these measures count

certain phonetic units and compare them to the length of the segment in which they occurred.

This relationship is usually expressed by the ratio between the number of phonetic units
�

and

the duration of the segment, i.e.
�

duration of segment
(4.1)

If the duration is measured in seconds this gives the number of phonetic units per second. The

phonetic units most commonly used in the literature are phones, syllables and words. Since the

number of phones that occur in a syllable is limited as is the number of phones and syllables

that occur in a word, it is clear that these three speaking rate measures are all correlated to a

certain extent (Pfitzinger, 1998).

The measure in (4.1) not only depends on the type of phonetic units but also on the type

of the segments. The segments usually correspond to the complete speech material of a single

speaker, an utterances, words or phones. Some techniques also use windows around each time

instant to define a concept of local speaking rate (Pfitzinger, 1996; Pfitzinger, 1998).

In (Mirghafori et al., 1996) Mirghafori et.al. proposed an ROS measure which differs some-

what from the definition in (4.1). Here the number of phones per second was replaced by a

38
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measure of the average phone based speaking rate over the segment. This has been called the

mean rate (MR) measure and has been defined by

� � rate �� (4.2)

where the rate of each phone is defined by

rate � �
p

duration � (4.3)

In order to measure the speaking rate of a word, in (Zheng et al., 2000) a relative measure

is proposed which relates the duration of a word to the durational statistics of the word which

are derived from some training set. This measure is defined by

�
�
" � & � ��

�
C+L � � * �

"(� & (4.4)

where * � "(� & is the probability that word x has a duration of
�

frames. The number
�

�
" � & is

therefore the probability that word x has a duration of more than
�

frames. Since the word

based statistics * � "(� & are difficult to obtain, Zheng et.al. suggest the use of the durational statis-

tics of the phones that make up word x . Under the assumption that the durational statistics of

these phones are independent the durational statistics of word x are then given by the convolu-

tion of the statistics of the phones. In (Zheng et al., 2000) this measure is used to decide which

of a number of speaking rate dependent models should be chosen for recognition.

While all the above measures are equally sensible ROS measures their ultimate usefulness

has to be determined by either applying them in a speech recogniser or by comparing them

with what an individual perceives as speaking rate. In (Pfitzinger, 1998), Pfitzinger reports

experiments that were performed to determine the relationship between perceptive speaking

rate and local phone and syllable rate. For this purpose, test subjects were asked to rank a

number of test stimuli according to their perceived speaking rate. The results showed that local

syllable rate has a higher correlation with perceived speaking rate than does the phone rate.

Combining both ROS measures linearly gave the best correlation.

One of the disadvantages of phone rate as an ROS measure is that it does not take the overall

structure of the segment for which it is calculated into consideration. Sentences, for instance,

which contain many unstressed vowels and unvoiced stops will have a much higher phone rate

than sentences with many stressed vowels and fricatives, since the latter have on average a

higher duration. To remove this dependency of the ROS measure on the surrounding context

measures have been proposed that compare the observed phone duration to the phone duration

predicted by a model (Anastasakos et al., 1995; Monkowski et al., 1995; Suaudeau and Andre-

Obrecht, 1994; Jones and Woodland, 1993). Here parametric models, like Gamma or Gaussian

densities can be used to describe the durational statistics of individual phones (Burhstein, 1995;

Levinson, 1986).
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4.2 Signal based measures

Since the purpose of speech recognition is to recognise the correct sequence of words in the

absence of a manual transcription, the measures discussed in the last section cannot be directly

used in a realistic speech recognition task. In (Mirghafori et al., 1996) it was suggested that

an intermediate recognition pass could be used to generate a rough transcription of the speech

signal from which the speaking rate could be inferred with the methods in the last section.

However, it has been pointed out in the same paper that this approach has two disadvantages.

The first is the high computational cost of a recognition pass and the second is that the recogniser

output is not correct which is especially true for segments containing spontaneous speech. The

speaking rate estimate for such segments will therefore be less reliable. The experiments in

(Mirghafori et al., 1996) evaluated the correlation between phone rate and the mean of rates

measure for manual and automatic transcription and found that phone rates have a substantially

higher correlation. This implies that phone rate is less susceptible to recognition errors than the

MR measure.

In order to avoid having to use a recogniser just for calculating the speaking rate, the group

at ICSI later proposed the enrate measure (Morgan et al., 1997). This measure, whose name

refers to energy rate, attempts to quantify the temporal variation of the energy envelope of the

signal. The rational behind this approach is that regions where the signal has high amplitude

occur more frequently in fast speech and the rate of the change in the spectral envelope should

therefore be related to speaking rate.

The enrate measure is derived by first half-wave rectifying the signal, i.e. setting the parts

where the signal amplitude is negative to zero and the subsequent application of a low-pass filter.

This results in an approximation to the energy envelope which can be substantially downsampled

due to its high degree of smoothness. Now the short term spectrum of this approximation is

calculated and the first moment of the spectrum is determined which, finally, gives the enrate

measure. If the value of enrate is high, this means that the short term spectrum of the energy

envelope is concentrated at high frequencies and changes in the shape of the envelope therefore

occur more often.

Although the correlation with phone or syllable rate from manually transcribed data has

been reported to be relatively weak in (Morgan et al., 1997), recognition experiments on the

WallStreet Journal task (Pallett et al., 1994) revealed small performance improvements due to

the use of fast and slow models depending on the value of the enrate measure.

To improve correlation with manually determined phone rates, in (Morgan and Fossler-

Lussier, 1998) the enrate measure was combined with other measures like peak counting on

the original and a filter bank derived version of the signal, to produce the mrate measure. This

resulted in an increase in the correlation coefficient from 0.41, which was previously reported

for the enrate measure, to 0.67 for the mrate measure. In (Morgan and Fossler-Lussier, 1998)

also classification experiments where performed on fast, medium and slow instances of phones

which evaluated the usefulness of mrate as a discriminative feature. These experiments are sim-

ilar to the ones carried out in (Tuerk and Young, 1999) and the experiments described in chapter
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6.

In contrast to (Morgan et al., 1997) and (Morgan and Fossler-Lussier, 1998), the methods

developed in (Verhasselt and Martens, 1996; Pfitzinger et al., 1996; Pfau and Ruske, 1998b)

calculate an ROS measure via an estimate of the number of phonetic units present in a given

segment. In (Verhasselt and Martens, 1996) an MLP is investigated which is trained to recognise

phone boundaries. The output of this MLP is the probability for observing a boundary at a

certain point in time. Summing over all the probabilities for all the frames therefore gives

a probabilistic measure of the phone rate. This measure has also been applied in a number of

recognition experiments where it was used to determine whether fast, medium and slow acoustic

and duration models should be used to recognise an utterance. The experiments reported in

(Verhasselt and Martens, 1996) showed small improvements in phone error rate on the TIMIT

corpus and furthermore that the gains based on the true phone rate and the estimated phone

rate were almost identical.

In (Pfau and Ruske, 1998b) an ROS measure is calculated via an estimate of the number

of vowels in a segment. This estimate is derived from the modified loudness which is the half

wave rectified difference between the loudness in low frequency bands (Bark 3 to Bark 15) and

the loudness in high frequency bands (Bark 20 to Bark 22). The reason for using the modified

loudness is that the energy of vowels is mainly concentrated in low frequency bands as opposed

to consonants whose energy is concentrated in high frequency bands. For vowels the modified

loudness is therefore positive and its maxima occur in the vowel centres. Low-pass filtering the

modified loudness ensures a one-to-one relationship between vowels and maxima and counting

the number of peaks in the smoothed modified loudness therefore gives an estimate of the

number of vowels present in a segment. Dividing this number by the duration of the segment,

as in (4.1), one can therefore obtain an estimate of the phone rate of a speech segment. This

estimate has been also combined with the zero-crossing rate in (Pfau and Ruske, 1998b) which

was reported to result in a performance improvement of the German Verbmobil database.

The method developed in (Pfitzinger et al., 1996) is similar to the one in (Pfau and Ruske,

1998b), although in (Pfitzinger et al., 1996) the speaking rate is calculated from an estimate of

the number of syllables rather than from an estimate of the number of vowels. Since, however,

the syllable nucleus is usually a vowel these measures ought to be strongly correlated. Although

(Pfitzinger et al., 1996) refers to the modified loudness as a good source of information about

the location of syllable nuclei, it is not used in the derivation of the estimate of the syllable

rate. Instead the signal is passed through a band pass filter in (Pfitzinger et al., 1996) to remove

frequencies that do not contribute to the information about the presence of syllables. Then the

logarithmic short-term spectrum is calculated and low-pass filtered to increase smoothness. This

results in an energy contour whose peaks are considered to be potential syllables. In a post-

processing step the syllables are then determined by applying a threshold to the amplitude and

averaging over a window to remove multiple peaks that correspond to the same syllable. The

accuracy of this syllable estimate was evaluated in (Pfitzinger et al., 1996) by comparing its

output to a syllable level transcription which was derived manually.

The signal based ROS measures discussed in this section attempt either directly or indirectly
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to estimate the phone or syllable rate of a speech segment and therefore suffer from the same

problem that was mentioned at the end of section 4.1, namely the lack of contextual information.

Since the identity of the phonetic unit has to be known if the expected duration is to be included

in the calculation of an ROS measure, this means that relative phone rates cannot be calculated

without the use of a recogniser and can therefore not be included into a purely signal based

calculation of the ROS measure.

Chapter 6 will discuss a number of features which are also in some sense measures of speak-

ing rate. There, however, a high correlation with phone rate or any other ROS measure derived

from a manual transcription will not be an issue. Instead the usefulness of these features will be

evaluated in classification experiments which attempt to distinguish between what are assumed

to be different states of the hidden mode.



5

The state based Mixture of Experts HMM

Chapter 3 discussed some of the models that were proposed to deal with hidden dynamics in

speech signals. Combining some of their features and avoiding some of their inherent disad-

vantages, this chapter will propose a new model for this task and will discuss its theoretical

properties.

After reviewing some of the problems that were encountered in the models in chapter 3,

section 5.1 sets out by introducing the basic structure of the state based mixture of experts

HMM (SBME-HMM) and will compare the dependencies between its variables to that of similar

models. This section will also, more formally, introduce the concept of softmax functions and

specify their use in the SBME-HMM.

Section 5.2 will develop the parameter estimation theory of the SBME-HMM by applying

the EM algorithm. Reestimation formulae for the different components of the system will be

presented and the link between the ones derived for the softmax functions and the cross-entropy

error will be investigated. Furthermore, it will be shown that a variant of the forward backward

algorithm of the standard HMM can be developed for the SBME-HMM.

Section 5.3 presents a brief digression into the topic of modelling posterior probabilities that

depend on some continuous input. Here, neural networks and Gaussian mixture models will be

compared to softmax functions and the advantages and disadvantages of the different models

will be examined.

Section 5.4 is concerned with details of the implementation of the SBME-HMM parameter es-

timation and highlights a computationally expensive but exact solution to the softmax parameter

estimation problem as well as an approximate but computationally less demanding method.

Section 5.5 develops two different initialisation techniques that are based on mode specific

labelling of the training data and the division of the indicating feature space into areas of equal

volume.

Finally, section 5.6 discusses the use of the SBME-HMM in recognition and proposes three

different model topologies that are appropriate for this task.

43
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5.1 Basics properties of the SBME-HMM

Before developing a new model in this section it is worth remembering some of the problems of

the models in chapter 3 which one would like to avoid.

The hidden mode model in section 3.1, for instance, had the disadvantage that the featurese and
�

had to be determined for each word hypothesis
�x separately. While this is unavoidable

for a feature like e that is based on the language model, it is less obvious why this should be

necessary for an acoustic feature like
�
. Since the main focus of the model that will be proposed

in this chapter is to describe acoustic variability it would be advantageous if the feature
�

could

be calculated directly from the acoustics.

The subband models in section 3.2 proposed a neural network as a model for the posterior

probabilities that a certain combination of subbands of the acoustic signal was reliable. Here,

the objective of the training algorithm was to minimise the mean squared error (MSE) of the

model for the estimated posterior probabilities. This approach has the disadvantage that MSE

optimisation is not consistent with the ML frame-work. Furthermore, neural networks that are

trained to optimise this criterion can often result in suboptimal solutions because the MSE error

surface contains local minima. The other gating networks in chapter 3 were also shown to

either exhibit local minima in their error surfaces, as the HME, or to be not general enough to

model arbitrary decision boundaries, as the softmax function with linear inputs. To avoid these

problems one would like to find a model for the posterior probabilities of the hidden mode that

is general enough to allow for complex decision boundaries but which, at the same time, can

also be guaranteed to have local minima free error surfaces.

The theory of Dynamic Bayesian networks, as introduced in section 3.4, represented the uni-

fying frame-work for modelling the correlation between a set of variables in a dynamics process.

It was mentioned there that in its most general form DBN’s suffer from an NP-hard inference

problem. In order to yield a tractable reestimation and recognition theory it is mandatory to

avoid such high computational cost and a model that is closer to the standard HMM is therefore

desirable. It would be especially advantageous if a variant of the forward-backward algorithm

could be used to estimate the model likelihoods.

Summarising the previous discussion one arrives at the following constraints that should be

satisfied by a new hidden mode model.

� The acoustic features
�

can be calculated without referring to the word hypothesis
�x .

� All the model parameters can be trained within the EM paradigm and in such a way that

the maximisation step in the EM algorithm has a unique solution. Furthermore, the models

for the mode probabilities should be capable of dealing with arbitrary decision boundaries.

� The model is a natural extension of the HMM frame-work and a variant of the forward-

backward algorithm can be used to estimate the model likelihoods.

The first point above can be satisfied by allowing state changes of the hidden mode to occur

on a frame-by-frame basis. This removes the necessity to consider the word hypothesis
�x when

calculating the features
�
.
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It will be shown in section 5.2 and appendix C that for a special type of gating function

the uniqueness of solutions in the parameter optimisation problem can be established under

relatively general assumptions. And since the other model components are Gaussian mixture

models and transition probabilities this will guarantee that the maximisation step in the EM

algorithm has exactly one global maximum.

The third point in the list above can be satisfied by restricting the dependency between the

variables of the model to result in a tree-structure of the graph. This guarantees an efficient

inference algorithm and therefore an efficient expectation step in the EM algorithm.

Like the model in section 3.1, the model that is proposed here uses, in addition to the or-

dinary observation sequence
�

, an observation sequence
�

which consists of features that are

correlated with the states of the hidden mode � . Since the hidden mode can change its state

every frame, the sequences
�

and
�

have the same length and the features
� 2 do not have to be

derived with regard to the word hypothesis
�x . Based on the additional information contained

in
� 2 about the state of the hidden variable � the joint likelihood of the observation sequences

�
and

�
and the sequences of hidden variables

�� and
�

� will be calculated as follows

, " � 	 � 	 ���	 ��%& � � @ � !#" � � $ � � 	 � � &
�
�
2OC �

�;@ A
�
�Q� @NA !#" �
27$ � 2Q	 �#2W&G* " �#27$ � 2W	�� 2Q& !#"(� 27$ � 2Q& (5.1)

Here, ���D� � are the usual transition probabilities for moving from state � � � to state � �  and!#" �%$ �'	 �%& is the output probability of observation � and state � , this time, dependent on the state

of the hidden variable � . The posterior probability of observing a particular state of the hidden

variable � is denoted by * " �E$ � 	��'& and
!#"(� $ ��& is the output probability of feature

�
given state � .

Since
�

gives an indication as to which state the hidden variable � is in, this feature will be called

an indicating feature.

The model in (5.1) implements a particular factorisation of the joint likelihood of observing�;	 � and � given � , i.e.

!#" �;	 � 	 �+$ ��& � !#" �%$ �'	 �%&G* " �E$ � 	���& !#"(� $ �'& (5.2)

This factorisation is only valid if
!#" �%$ ��	 �%	 � & � !#" �%$ �'	 �%& or, in other words, if the dependency

of � on
�

can be completely modelled by the hidden variable � . The hidden mode probability* " �+$ � 	��'& can be interpreted as the output of a gating network and (5.2) therefore implements an

ME model for each hidden state � . For this reason the model in (5.1) will be called a state based

mixture of experts HMM (SBME-HMM).

The dependencies between the different variables in this model are illustrated in the DBN

structure in figure 5.1 (a). There is a certain resemblance between this DBN and the one cor-

responding to an IOHMM as depicted in figure 3.4 (c). This graphic shows, that in an IOHMM

the input
� 2 is used to infer the state of the variable � 2 and the hidden state at time 5 and the

input
� 2 is used to infer ��2 . The DBN in figure 5.1 (a), on the other hand, shows that in an

SBME-HMM the feature
� 2 is used to infer the state of ��2 and that only �=2 is used to infer �=2 . The

part of the SBME-HMM below the state �=2 is therefore like the DBN of an IOHMM where ��2 in

the SBME-HMM corresponds to �#2 in the IOHMM and the connection between adjacent ��2 has
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(a) DBN for SBME-HMM
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(b) DBN for factorial HMM

Figure 5.1 DBN’s representing the conditional dependencies in an SBME-HMM and a factorial HMM.

bee removed as well as the connection between
� 2 and �=2 . These last two variables are assumed

to be independent in an SBME-HMM once the state of ��2 is known.

The SBME-HMM DBN structure also resembles the DBN of a factorial HMM (Ghahramani

and Jordan, 1997; Logan and Moreno, 1998) which is shown, for a special case, in figure 5.1

(b). In general, there can be more than two hidden variables at each time instant 5 . The main

difference in this case is that the � 2 are dependent on their predecessor in a factorial HMM and

that the dependency of ��2 on � 2 is modelled directly and not via
� 2 and the hidden variable ��2 .

However, the dependency of ��2 on its predecessor can, in principle, also be included into the

SBME-HMM structure.

Before proceeding any further, it is necessary to answer the question why the particular

factorisation of the joint likelihood in (5.2) should be better than any other factorisation. For

example, one could also factorise
!#" �;	 � 	 �+$ ��& in the following form

!#" �;	 � 	 �+$ ��& � !#" �%$ �'	 �%& !
"(� $ �'	 �%&G* " �E$ �'& (5.3)

which has the same modelling power as the factorisation in (5.2). There are two main reasons

for choosing (5.2) over (5.3). First, the main information that is contained in the joint likelihood!#"(� 	 �%& relates to the distinction between the states of the hidden variable � and is therefore the

posterior probability * " �E$ � 	��'& . The output probability
!#"(� $ ��& on the other hand will add little

discriminatory information about the state � since feature � is the prime source of information in

this case. It will therefore be possible to share
!
"(� $ ��& over many states of � and therefore feature�

will not give an important contribution in the recognition process. This shows that the main

focus rests on the posterior * " �E$ � 	���& and justifies in itself the factorisation in (5.2).

However, one might argue that the hidden mode probabilities can also be estimated by us-

ing (5.3) and applying Bayes formula subsequently. And indeed the model in (5.3) has the
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advantage that it represents just a special case of a standard HMM and therefore all the usual al-

gorithms can be applied to estimate the model parameters. This has, however, the disadvantage

that the training paradigm of such a model is not discriminatory in nature and can therefore

result in suboptimal solutions for the posterior * " �E$ � 	���& . This will be shown in section 5.3.2.

In (5.2), the posterior * " �E$ � 	���& is defined for every possible state of the variable � and is a

function of feature
�
. Since this feature will be continuous in the following, the posterior * " �E$ � 	���&

can be modelled by a set of r different functions in the continuous variable
�
, where r is the

number of discrete states of � . In order to satisfy the restrictions of a probability distribution,

these functions have to take values between
n

and
p

and their sum has to be
p

for each feature�
. Softmax functions, which have already been briefly mentioned in section 3.3, recommend

themselves for this task. For a particular state of � and the r states of � they are given by

d P�� @ "(� & �
���� ���


����
T � < � Fp � � � � �SXC � 
 � V�T � < � F k p �

�
� rts p

p
p � � � � �SXC � 
 � V�T � < � F k �

� r (5.4)

and * " �E$ � 	��'& will therefore be modelled by

* " �E$ � 	���& � d P�� @ "(� & (5.5)

In equation (5.4) the � P�� @ "(� & are linear combinations of functions 	 fP�� @ "(� & , i.e.

��P�� @ "(� & � 9 ��
f C �

e P�� @f 	 fP�� @ "(� & (5.6)

Furthermore the e P � @f are independent of each other, and the 	 fP�� @ "(� & are independent of all the

softmax parameters e P � @f . For polynomial exponents the 	 fP�� @ are given by

	 fP � @ "(� & � � f
(5.7)

and the ��P � @ "(� & are therefore

��P�� @ "(� & � 9 ��
f C �

e P�� @f � f
(5.8)

Here
, � �qp

is the number of parameters in the polynomial and m can be a multi-index if the

dimension of
�

is greater than one. Since only polynomial exponents � P � @ "(� & will be considered

in this chapter, 	 fP�� @ "(� & will always be here denoted by
� f

. It should, however, be borne in mind

that the results developed later can be applied to more general functions 	 P � @ "(� & as well. The

softmax parameters e P � @f for one particular state � � � will be denoted by

j � ��� e P�� �f k'm �on 	������ 	 , P �
�qp 	������
	�r s p � (5.9)

Note that the definition of the softmax functions in (5.4) differs slightly from the definition

given in section 3.3. In (5.4) both the nominator and denominator have been divided by one of
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the exponentials in the sum of the denominator. This is necessary to ensure a unique solution in

the parameter estimation problem.

Using (5.4) directly to calculate the softmax functions can result in numerical instability

because both the nominator and denominator in (5.4) can have very high values. In order to

decrease the influence of numerical errors it is therefore sensible to divide both the denominator

and nominator in (5.4) by the nominator, which results in the following set of equations

d P�� @ "(� & �
���� ���

p
p �


 � ���
T � < � F � � � � �SXC � � S �CEP 
 � V�T � < � F � � �

T � < � F k p �
�
� rts p

p
p � ��� � �S�C � 
 � V�T � < � F k �

� r (5.10)

It is interesting to note that the softmax functions in (5.4) have a form similar to the hy-

pothesis posteriors in the MMI criterion (2.42) which was briefly introduced in section 2.8. For

this reason, the training of the SBME-HMM can also be regarded as a within-state discrimina-

tive training. In contrast to (2.42), however, the exponents of the softmax functions depend

linearly on the model parameters which, as will be seen later, is an important prerequisite for a

satisfactory reestimation theory.

5.2 Parameter Estimation

The first step in the implementation of the EM algorithm is the derivation of the auxiliary func-

tion. For the SBME-HMM in the last section this function is given by

Y " / 	#Z/ & � �
�@W� �P

,.- " � 	 � 	 ���	 ��%& ���
� , �- " � 	 � 	 ���	 ��%& (5.11)

Here the sum has to be extended over all possible sequences of states of the hidden variables �
and � . In order to maximise the auxiliary function with respect to the model parameters, one

has to calculate its partial derivatives and find a set of parameters where they vanish. There are

four different types of parameters in an SBME-HMM which are associated with the following

objects.

� transitions between states �
� output pdf’s

!#" �%$ ��	 �)& for feature �
� output pdf’s

!#"(� $ ��& for feature
�

� posterior probabilities * " �+$ � 	��'& of observing the states of the hidden variable �

In the following, � �D� S and
� � will denote an arbitrary parameter of

!#" �)$ � 	760& and
!#"(� $ � & , respectively,����� � and e S
� �f will, as usual, denote transition probabilities and softmax parameters. With this
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notation the derivatives of the auxiliary function (5.11) are given by

�
� ����� � Y " / 	 Z/ & � �

�
�

�
2OC �

, - " � 	 � 	�� 2 � � 	�� 2�� � �  &
�

� ���D� � ���
� ����� � (5.12)

�
� � ��� S

Y " / 	#Z/ & � �
�
2OC �

, - " � 	 � 	�� 2 � � 	 �
2 � 60& �
� � �D� S

���
� !
" �#2 $ � 	760& (5.13)

�
� � � Y " / 	#Z/ & � �

�
2OC �

, - " � 	 � 	�� 2 � � &
�

� � � ���
� !#"(� 27$ � & (5.14)

�
� e S
� �f

Y " / 	 Z/ & � �
�
2OC �

��
S�C �

, - " � 	 � 	�� 2 � � 	 �#2 � 60& �
� e S � �f

���
� * " 6 $ � 2W	 � & (5.15)

In order to simplify notation, the following definitions will be used

8�2 " � & � , " � 	 � 	�� 2 � � & � � �
, " � 	 � 	�� 2 � � & (5.16)

8�2 " � 	760& � , " � 	 � 	�� 2 � � 	 �#2 � 60& � � ��� S
, " � 	 � 	�� 2 � � 	�� 2 � 60& (5.17)

8�2 " 6 $ � & � , " � 	 � 	 �#2 � 6 $ � 2 � � & � � S
, " � 	 � 	 �#2 � 6 $ � 2 � � & (5.18)

The derivatives in (5.12) and (5.14) are the same as for the standard HMM and the reestimation

formulae in both cases are therefore identical. Equation (5.13) differs from the corresponding

derivative for the standard HMM in that the state likelihood 8 2 " � & has been replaced by the

joint state likelihood 8 2 " � 	760& . Exchanging these likelihoods in the reestimation formulae for the

standard HMM therefore gives the reestimation formulae for the parameters of the output pdf!#" �%$ �'	 �%& . If
!#" �%$ � 	760& is, for example, modelled by a single Gaussian the mean and variance of this

Gaussian are estimated as follows

� �D� S � � � 2OC � 8�2 " � 	760&B�
2
� � 2OC � 8 2 " � 	760& (5.19)

� �D� S � � � 2OC � 8�2 " � 	760& " � ��� S s �#2 & " � �D� S s �
2Q& v
� � 2OC � 8�2 " � 	760& (5.20)

So far, the derivations of the reestimation procedures have been straight forward. The main com-

plication in the estimation of the model parameters arises due to the existence of the posteriors* " �+$ � 	��'& . First the derivative in (5.15) will be written in a form which reveals its information

theoretic background, i.e.

�
� e S
� �f

Y " / 	=Z/ & � �
�
2OC � 8�2

" � &
��
S�C � 8�2

" 6 $ � &
�

� e S
� �f
���
� * " 6 $ � 2W	 � &

� s
�
�
2OC � 8 2

" � &
��
S�C � 8 2

" 6 $ � &
�

� e S
� �f
���
� 8�2 " 6 $ � &* " 6 $ � 2W	 � & (5.21)

The latter equation holds because 8%2 " 6 $ � & is independent of e S � �f . Ignoring the derivative �
�
� V�T I� , the

sum over 6 in (5.21) is the Kullback-Leibler (KL) distance between the estimated probabilities
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8�2 " 6 $ � & and the model probabilities * " 6 $ � 2W	 � & . Therefore, the expression in (5.21) is the partial

derivative of the negative cross-entropy error function (Bishop, 1995) that is weighted by the

state probabilities 8 2 " � & . To emphasis the dependency on the softmax parameters j � , this error

function will be denoted by

� " � 	Q8
	 j � & �
�
�
2OC � 8 2

" � &
��
S�C � 8 2

" 6 $ � & ���
� 8�2 " 6 $ � &* " 6 $ � 2W	 � & (5.22)

Due to the minus sign in (5.21), maximising the auxiliary function with respect to the param-

eters of the posteriors * " �E$ � 	���& amounts to minimising the weighted cross-entropy error (5.22)

between the estimated and the model posteriors. Substituting the definition of the softmax func-

tions for the * " �+$ � 	��'& and taking the derivative with respect to one of the softmax parameterse P�� @f requires the derivatives of the logarithm of the softmax functions which are given by

�
� e P�� @f

���
� d S
� @ "(� & � �
� e P�� @f

�
� S
� @ "(� & s ���
�

� p	� � � ��
S�C � 
 �

VWT � < � F � �
�

��� ��
� f s d S
� @ "(� & � f k �

� 6
s d P�� @ "(� & � f k ���� 6 (5.23)

Substituting this into equation (5.21) therefore yields

�
� e P�� @f

Y " / 	#Z/ & �
�
�
2OC � 8;2

" � &
��
S�C �

" 8;2 " 6 $ � & s d S � @ "(� 2W&W& � f2 (5.24)

Since the
d � depend non-linearly on the parameters e P�� @f , setting equation (5.24) to zero results

in a set of non-linear equations in the e P�� @f from which the softmax parameters cannot be derived

in closed form. In order to solve these equations, an iterative scheme like the Newton-Raphson

algorithm will have to be employed.

A priori, the solution of the equations �
�
� �
T �

�
Y " / 	#Z/ & ��n

only guarantees that the correspond-

ing set of parameters is associated with a local extremum or a saddle point of the auxiliary

function. To ensure that this point is a local maximum, it is necessary to evaluate the second

order derivatives of the auxiliary function. This will be done in appendix C where it will also

be shown that the Hessian of the cross-entropy error function with respect to the softmax pa-

rameters is always a positive definite matrix. This ensures that the cross-entropy error function

is convex which is equivalent to the auxiliary function being concave. As an immediate conse-

quence of the concavity of
Y " / 	'Z/ & one can rule out the existence of suboptimal local extrema

and, with a proper training algorithm, the softmax functions will therefore always converge to

the correct solution no matter how they are initialised. The relevant statements, asserting the

existence of unique solutions, together with their proofs can be found in appendix C.
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In order to arrive at a practicable reestimation procedure, the 8 ’s which appeared in this

section’s formulae will have to be calculated efficiently. Since the following equations hold

8�2 " � & � ��
S�C � 8;2

" � 	760& (5.25)

8�2 " 6 $ � & � 8�2 " � 	760&8 2 " � & (5.26)

it is only necessary to calculate 8%2 " � 	760& . This can be done with a modified forward-backward

algorithm which takes the existence of the additional hidden variable � into account. Here the

forward and backward sequences are defined as follows

1 2 " � 	760& � , " � 2� 	�� 2 � � 	 � 2 � 60& (5.27)

4 2 " � 	760& � , " � �2�� � $ � 2 � � 	 �#2 � 60& (5.28)

and consequently 8 2 " � 	760& is the product of 1 and 4 , divided by the sum of these products i.e.

8�2 " � 	760& � 132 " � 	760& 4 2 " � 	760& � � �D� S 132
" � 	760& 4 2 " � 	760& (5.29)

The values of the forward and backward sequences can now be recursively calculated via the

following expressions

1 2�� � "  	 m & � �
�D� S 1 2

" � 	760&B���D� � !#" �#2�� � $  	 m &G* " m $ � 2�� � 	  & !#"(� 2�� � $  & (5.30)

4 2�� � "  	 m & � �
��� f 4

2�� � "  	 m &B� ��� � !#" � 2�� ��$  	 m &G* " m $ � 2�� ��	  & !#"(� 2�� ��$  & (5.31)

Using this method to derive the forward-backward sequences and hence the joint state likeli-

hoods results in an efficient algorithm which can be carried out with low computational cost.

5.3 Excursion: Modelling posterior probabilities

It has already been pointed out that there are a number of ways to model posterior probabilities.

This section will try to show why polynomial softmax functions should be chosen for this task

by comparing their performance on a number of artificially generated data to that of more

commonly used techniques.

5.3.1 Neural networks

Due to their flexible structure, neural networks are a very versatile model. In principle, neural

networks can approximate arbitrary functions as long as their topology and activation units

are chosen properly. This flexibility can also be exploited to model posterior probabilities of

class membership given a continuous variable. Each of the outputs of such a network is then

interpreted as the probability of belonging to one of the classes. In order to give a proper
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probability distribution the network outputs have to sum to one for each input. To satisfy this

requirement, the activation units of the output layer are usually chosen to be softmax functions.

Figure 5.2(a) shows an example of a two-class problem which is normally used to motivate

the introduction of neural networks with two or more hidden layers. Here, the plane is divided
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(a) Two-class problem

−2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

max 

min 

(b) Estimated 8th degree polynomial

Figure 5.2 Exponential polynomial of softmax functions trained on two-dimensional two-class problem.

into three regions. The innermost and outermost region belong to class
p

while the middle

region belongs to class


. The boundaries that separate the regions each consist of

�
non-

rectangular straight lines. Training two softmax functions with an eighth degree polynomial on

data generated from these two classes gives the polynomial whose contour plot is shown in figure

5.2(b). The contour plot of the corresponding softmax function is visually indistinguishable from

the graph in figure 5.2(a) and has therefore been omitted. One can see that the polynomial in

figure 5.2(b) results in a good approximation of the class posteriors because one of the contour

lines in this figure closely resembles the decision boundary of the classification problem in figure

5.2(a). This contour line corresponds to the set of points where the polynomial vanishes and the

value of the softmax functions on these points is therefore
n � � . The local minima and maxima

depicted in figure 5.2(b) correspond to values of the softmax functions that are either close to
n

or
p
. In this example, the polynomial was initialised, without referring to the training data, as

follows

� � � �?2 "(� � 	 � � & � � � � � � (5.32)

This initialisation corresponds to a hyperplane which passes through
" n 	 n 	 n & and whose normal

vector is
" p 	 p 	 s p & . As a result, the contour plot of this function consists of a set of parallel

straight lines. Compared to the estimated polynomial, the initial guess is therefore far away from

the final solution which indicates the great robustness of the polynomial parameter estimation

problem.
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Figure 5.3, on the other hand, shows the problems that can occur if one chooses a neural

network with sigmoids as activation functions to model the class posteriors. In this example a
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Figure 5.3 Suboptimal approximations of the class posteriors in figure 5.2(a) by a neural network with two

hidden layers. The blue lines correspond to the weights and biases of the input layer while the remaining lines

show the approximated decision boundary.

neural network with 8 units in the first, 2 units in the second and 2 units in the output layer

was used to approximate the class posteriors of the classification problem in figure 5.2(a). In

addition, each of the network layers had a bias unit and the complete network was trained on

the same training data as in the previous example. The network was initialised 100 times using

the Nguyen-Widrow initialisation (Nguyen and Widrow, 1990) which is a random initialisation

technique that attempts to distribute the network weights evenly over the whole network struc-

ture. Figure 5.3 shows some of the solutions that were obtained for this model by optimising the

MSE criterion with the Levenberg-Marquardt algorithm (Hagan and Menhaj, 1994). The blue

lines that are shown in this figure correspond to the weights that connect the input layer with

the first hidden layer. For a perfect approximation these lines should coincide with the decision

boundary of the classification problem. One can see from figure 5.3 that this was only achieved

in the example in the top left graph of this figure. All other approximations show suboptimal

solutions which correspond to local minima of the MSE error function. While the approximation

in the bottom left corner is reasonably good, the graphs on the right hand side of figure 5.3 ex-

hibit considerable flaws. For the
p�n�n

differently initialised neural networks the model converged

in 62 cases to an approximation similar to the ones on the left hand side of figure 5.3, only 5 of

which were associated with a global minimum as in the top left graph. Of the remaining models,

18 converged to an approximation similar to the one in the top right graph in figure 5.3 and 12
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models converged to a posterior which was constant over the training interval. The remaining

8 models converged to more exotic suboptimal solutions, as in the bottom right corner of figure

5.3, where parts of the outer or inner decision boundary were not modelled properly.

The failure of the neural network to converge to a proper solution might be acceptable in

a system which uses a small number of models because in this case the convergence of each

model can be checked by manual inspection. For a system with many models, however, the

failure to converge poses a serious problem. In a LVCSR system, for instance, where an SBME-

HMM will use 1000’s of posterior probabilities * " �+$ � 	��'& a more reliable training procedure is

very important.

5.3.2 Mixture models

As mentioned in section 5.1, the SBME-HMM implements just one of many possible factori-

sations of the joint output probability
!#" ��	 � 	 �E$ �'& . An alternative factorisation was also briefly

discussed which was given by

!#" �;	 � 	 �+$ ��& � !#" �%$ �'	 �%& !
"(� $ �'	 �%&G* " �E$ �'& (5.33)

It was claimed in section 5.1 that the factorisation of the SBME-HMM was superior to (5.33)

due to its discriminative nature. This claim will now be substantiated with an example.

Since, for recognition purposes, one is mainly interested in the posteriors * " �+$ � 	��'& the quality

of a model derived by training (5.33) has to be evaluated by comparing the model posterior to

the true posterior. The model posterior * " �E$ � 	���& can be calculated from the components in (5.33)

by applying Bayes formula, i.e.

* " �+$ � 	��'& � !#"(� $ ��	 �)&G* " �E$ �'&
� P !#"(� $ �'	 �%&G* " �E$ �'& (5.34)

To illustrate the two different approaches to estimating the probabilities * " �+$ � 	��'& , a simple two-

dimensional classification problem has been generated in figure 5.4. Here the data points are

separated into a red and a blue class and each of the four red and blue circles in the plane

was generated by sampling a Gaussian distribution with unit variance. In order to derive the

posterior with the model in (5.33) one first has to learn the Gaussian mixtures from which the

training data in figure 5.4 were derived.

Figure 5.5 illustrates the fact that training a Gaussian mixture model with the EM algorithm

might result in a suboptimal solution. Here the models were initialised by disturbing the overall

mean of the training data by a small amount in the
� � and

� � directions. The graphs in the upper

half of figure 5.5 show that in this case the mixture components converge to Gaussians whose

means lie between the centres of the red and blue circles in the plane. The circles themselves are

modelled by the intersections of the Gaussians. As a result, the approximating mixture models,

which can be seen in the lower half of figure 5.5 are relatively far from the true mixture. After

applying Bayes formula to derive the posterior * " �E$ � 	���& the approximation to the true posterior

is therefore relatively poor which can be seen from figure 5.6. The graph in the top left corner of

figure 5.6 shows the true posterior, while the top right graph shows the approximation derived
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Figure 5.4 Training data for a two-dimensional two-class problem.

by training the model in (5.33) with EM and subsequent application of Bayes formula. As a

comparison the lower two graphs in this figure show approximations of the posterior that were

derived by training softmax functions with polynomials of degree two and three, respectively.

The left lower graph shows that already for a polynomial of degree two the approximation is

relatively good. For the approximation with a polynomial of degree three, in the bottom right

graph in figure 5.6, the distinction between the two classes becomes sharper since the slope of

the posterior becomes steeper.

The posterior in the right upper graph in figure 5.6, on the other hand, only distinguishes

well between the two classes in areas of the plane were there were little training data. In

areas where the training data is concentrated the distinction is relatively blurred which is the

result of the artifacts that appear between the centres of the Gaussians. The good quality of the

approximation by softmax functions in figure 5.6 also shows that the number of parameters that

are necessary to model the posterior properly is much smaller for softmax functions than it is

for GMM’s. The Gaussian mixture models in this example used 5 parameters for each Gaussian,

2 for the mean and 3 for a full covariance matrix, and the total number of parameters in this

model was therefore 40. The softmax model with a polynomial of degree two, on the other

hand, used only 6 parameters and the softmax functions with a polynomial of degree 3 used 10

parameters.

The suboptimal solution for the GMM encountered in this example illustrates the same prob-

lem that is inherent in the training of neural networks – the existence of local minima in the

error surface. This phenomenon is not restricted to Gaussian mixture models but will occur in
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Figure 5.5 Suboptimal approximation of the training data by Gaussian mixture models.

mixtures with other components as well. Further details relating to the EM training of mixture

models can be found in (Redner and Walker, 1984) and (Xu and Jordan, 1996). The work in (Xu

and Jordan, 1996) is, essentially, an application of the results in (Jordan and Xu, 1995) to the

special case where the gating networks are constant. In (Redner and Walker, 1984), the authors

remark that the training data likelihood for a mixture model will in general be unbounded. This

can be seen by considering the example of a Gaussian mixture with 2 components. If one of

the mixtures and the mixture weights are kept constant then the likelihood of the training data

under the model can be arbitrarily increased if the mean of the second mixture component is

identical to one of the training data points and its variance tends to zero. This shows that the

points at which the likelihood of the model goes to infinity correspond to invalid model param-

eters. The parameters of a mixture model can therefore not be found by searching for a global

maximum of the training data likelihood under the model. In (Redner and Walker, 1984), the

ML parameter estimation problem is therefore reformulated. Softmax functions clearly avoid

these problems since their error surface is always bounded.
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Figure 5.6 True class posterior and its approximations derived by applying Bayes formula to the GMM’s in

figure 5.5 and by training softmax functions. The left upper graph shows the true posterior while the right

upper graph gives the approximation resulting from Bayes formula. The lower left and right graph show

the approximation of the true posterior by a softmax function with second and third degree polynomial,

respectively.

5.4 Implementation details

Since setting the partial derivatives (5.24) to zero does not lead to closed form reestimation

formulae for the softmax parameters, it is necessary to employ an iterative scheme to find an

approximate solution. The method that will be used in this thesis is the Newton algorithm

with line search and back-tracking which is described in detail in (Press et al., 1997). This is a

variant of the iteratively reweighted least squared (IRLS) algorithm which is used in connection

with generalised linear models (McCullagh and Nelder, 1989; Jordan and Jacobs, 1994). One

iteration of the Newton algorithm with line search is given by

j � � �� � j �� s�� " j �� & g �
� " � 	Q8
	 j �� & � � g � " � 	Q8 	 j �� & (5.35)

where j �� are the softmax parameters after the
�

-th iteration and
g � � " � 	Q8
	 j �� & and

g � " � 	Q8
	 j �� &
are the Hessian and gradient of the error function � " � 	Q8 	 j & . The components of the gradient

are given by equation (5.24) and the Hessian can be derived from equations (C.17) and (C.18) in

appendix C. The scalar �
" j �� & � p

is the positive parameter that determines how far one moves

in the Newton direction
g � � " � 	Q8
	 j �� & � � g � " � 	Q8
	 j �� & . The parameter �

" j �� & is sometimes re-
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ferred to as the learning rate of the algorithm. It is necessary to allow �
" j �� & to be strictly smaller

than one because taking a full Newton step far away from the solution can lead to oscillatory

behaviour in the training algorithm. To illustrate the relationship between learning rate and

error, both values have been plotted for the first 50 iterations in the training of the 8th degree

polynomial in figure 5.2. As can be seen, a full step in the Newton direction in the first iteration
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Figure 5.7 Learning rate and cross-entropy error for the first 50 iterations in the training of the polynomial

in figure 5.2.

reduces the error by about 2 orders of magnitude. A decrease in the learning rate in subsequent

iterations means that the error decreases very slowly but high values of �
" j �� & in later iterations,

again, lead to fast convergence. This variation in the learning rate has been observed in all

situations where the initial parameters were far away from the correct solution.

Equation (5.35) shows that each Newton iteration requires the evaluation of the Hessian

and the gradient of � " � 	Q8
	 j � & for each new parameter set j � . One can see from the derivatives

of � " � 	Q8
	 j & in (5.24), that these evaluations rely on the presence of the complete training

sequence of the
� 2 ’s and their corresponding 8)2 " � 	760& ’s. In order to carry out more than one

Newton iteration (5.35), it is therefore necessary to store both the sequences
� 2 and 8;2 " � 	760&

for each � and 6 . Alternatively, if one restricts the Newton algorithm to just one iteration, the

statistics of the gradient and Hessian of � " � 	Q8 	 j & can be directly accumulated from the training

data, and the sequences
� 2 and 8 2 can be discarded. However, in this case the learning rate has

to be fixed a priori because a line-search with back-tracking would need to evaluate the gradient

of the error function repeatedly which again makes use of the complete training data. The two

different training schemes can be summarised as follows.

One step Newton algorithm Use the forward-backward algorithm to calculate the state likeli-

hoods 8;2 " � 	760& and accumulate the statistics of the gradient and Hessian of � " � 	Q8
	 j �Q& for

all the parameter sets j � by using equation (5.24) and equations (C.17) and (C.18) in ap-
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pendix C. Choose a learning rate �
" j �N& for each parameter set j � and apply the Newton

iteration (5.35) with the accumulated values.

Full Newton algorithm Use the forward-backward algorithm to calculate the state likelihoods8;2 " � 	760& and buffer the sequences 8 2 " � 	760& and
� 2 for each combination of states � 	76 . Cal-

culate the gradient and Hessian of � " � 	Q8
	 j � & repeatedly from these buffers and apply

Newton iteration (5.35) until convergence.

The advantage of the first scheme is that it uses relatively little storage since only the gradient

and Hessian of � " � 	Q8
	 j �Q& have to be stored for each state � � � . The application of just one

Newton step (5.35), on the other hand, will result in slow convergence of the model and will

require many forward-backward evaluations even though the parameters of the other model

components might already be stationary. In addition, the learning rate has to be chosen by hand

because evaluations of the error function to find the optimal learning rate are not possible in

this case.

The disadvantage of the second method is that it uses considerably more storage since it has

to store all the likelihoods 8)2 " � 	760& and the training data
� 2 for each time instant and for all states� � � and �

� 6 . However, since the complete data are present during the model update the

Newton iterations (5.35) can be applied until the model parameters converge.

In this work, the second method has been implemented. In order to restrict the size of the

data buffers and to speed up the calculation of error values, gradients and Hessians, these buffers

can be restricted to a certain size, which has been done in some of the experiments described in

chapter 7. In addition, only data points which had a likelihood 8 2 " � & beyond a certain threshold

were stored in the buffer and for each of these the 802 " � 	760& were stored in likelihood buffers for

each of the states of variable � . Since there are usually several training utterances the likelihoods8�2 " � 	760& are normalised by the overall likelihood of the training utterance. Figure 5.8 shows an

example of such buffers that contain the
� 2 ’s and normalised 8 2 " � 	760& ’s. In this example the feature�

is one dimensional, the hidden variable � has 3 states and the maximal buffer size has been

restricted to 2000 data points. Experiments in chapter 7 will show that it is, in fact, possible to

limit the size of the buffers for such low dimensional features without observing performance

degradation due to undertrained system parameters. For higher dimensional features, however,

the application of a likelihood threshold is more appropriate.

The normalised likelihood of the first state 8%2 " � 	 p & is plotted in the top graph of figure 5.8

against the corresponding feature
� 2 . These data are represented by blue circles. The red line in

this graph shows a softmax function with linear exponents that has been trained on these data.

The middle and bottom graph in figure 5.8 contain the same information for the second and third

state of the hidden variable � , respectively. Figure 5.8 shows that the normalised likelihoods8 2 " � 	760& are mainly concentrated around 0 and 1 and that the training algorithm converges to a

set of softmax functions that model the distribution of the training data reasonably well.
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Figure 5.8 Example of likelihood buffers and approximating softmax functions. The hidden variable � has

3 states and the feature
�

is one-dimensional. The contents of the buffers are visualised by the circles in this

figure and the approximating softmax functions, which have linear exponents, are indicated by the continuous

lines.

5.5 Initialisation

Initialisation of the model parameters can be carried out in a number of ways. Two different ap-

proaches will be investigated in this thesis. Both initialise some parts of the model by estimating

their parameters on the training data, while the remaining parts of the model are either set to

predefined values or to values that are estimated from the trained components.

5.5.1 Relabelled training initialisation

The initialisation method discussed in this section describes a method to estimate the output

pdf’s
!#" �%$ �%	��'& , starting from the output pdf’s

!#" �)$ �0	���& of a standard HMM, by training the latter

on a particular transcription of the training data. The
!#" �%$ �%	��'& will subsequently be used to

estimate the
!#"(� $ �'& output pdf’s. This method will be called relabelled training initialisation

(RTI).

A standard HMM is usually trained on a phonetic transcription of the training data. If, in

addition to the sequence of phonetic labels, also the sequence of states of the hidden variable �

is known then this information can be used to train � -state dependent HMM’s. This can be done

by adding the state of � to the phonetic label of the training data transcription. This process is

illustrated in figure 5.1. Here the word “often” has been transcribed phonetically with a sequence
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sil-ao+f ao-f+ax f-ax+n ax-n+ae
� � � �

�
�qp

�
� 


�
� 	 �

� 

� � � �

sil-ao+f v1 ao-f+ax v2 f-ax+n v3 ax-n+ae v2

Table 5.1 Adding � -state information to a phonetic transcription of the word “often”.

of triphones. The second row in figure 5.1 shows which of the states of � is present during each

phonetic unit and the last row shows the resulting transcription which adds information about

the � state to the phonetic labels. The acoustic models of the � -state dependent labels in figure

5.1 can be initialised with the acoustic models of the corresponding � -state independent labels.

Training these models on the � -state dependent transcription will result in estimates for the!#" �%$ �%	��'& .
The process depicted in figure 5.1 makes two assumptions. The first is that the state of the

variable � does not change within a phonetic unit. The second assumes the existence of a method

to explicitly determine the state of � at each point in time. Both assumptions are only valid to

a certain degree which explains why the RTI method should only be used as an initialisation

scheme.

Given the output probabilities
!
" �%$ �0	���& for the different states of � it is sometimes possible to

find good estimates for the output probability
!
"(� $ ��& . This depends on the relationship between �

and
�
. In section 6, for instance,

�
will be derived by a linear transform from � and by calculating

the squared Euclidean norm of some subvectors of � . In both cases a reasonable estimate of what!#"(� $ �'& should be can be derived. These will be discussed in the following.

If
�

is the squared Euclidean length of a higher dimensional vector which is distributed

according to a Gaussian distribution with mean � and covariance matrix � �
diag

"
�

� & then

according to the theory of non-central �
�

functions in (Kendall and Stuart, 1973a), it is possible

to approximate
!#"(� $ �'& with a Gamma distribution. The parameters of this approximation are

given by

� � � � /

�

� "�� � 
 / & (5.36)

\ � "�� � / & �


 "�� � 
 / & (5.37)

where / is the so-called displacement parameter which is defined as by

/ � � � �
� � v (5.38)

Figure 5.9 illustrates the quality of this approximation. Here the top graph shows the empirically

determined distribution of the squared Euclidean norm, which is represented by the dashed

line and the approximation with a Gamma density which is represented by the solid line. In

this experiment a 13 dimensional Gaussian was chosen with a mean of length about 1 and
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Figure 5.9 Approximation of non-central ��� function by Gamma density.

variance �
� � �

. This Gaussian was sampled and the squared Euclidean length of the samples

was calculated to derive the dashed distribution. As can be seen, the Gamma density that was

estimated with (5.36) and (5.37) based on the Gaussian model parameters fits the empirically

derived distribution very well. The reason why the dashed distribution looks rather “spiky” is

due to the relatively small sample size of the Gaussian distribution in this example. For larger

sample sizes the dashed distribution becomes much smoother and the approximating Gamma

and the true distribution become visually almost indistinguishable.

The theory developed above can now be used to initialise
!
"(� $ ��& in the following way. Sup-

pose the
!#" �%$ �%	��'& are known for the r different states of � . Then, assuming that the � states are

not biased, i.e. * " �
� 6 $ ��& � p � r , the overall distribution of � given � is given by

��
S�C �

p
r !
" �%$ �

� 6 	��'& (5.39)

If the
!#" �)$ �

� 6 	��'& are GMM’s, the distribution in (5.39) is again a GMM. In order to apply (5.36)

and (5.37) it is therefore necessary to replace the GMM distribution with a single Gaussian

with diagonal covariance � � � � � �
"
�

� & . While this might result in a poor approximation of

the true distribution of � the effect on the resulting Gamma densities is less dramatic. This

is, for example, illustrated by the graph at the bottom of figure 5.9. Here a 13 dimensional

GMM with 12 mixture components and different variances was first approximated by a single

13 dimensional Gaussian with diagonal covariance for which the corresponding Gamma density

was calculated. The true distribution in this graph is the dashed line which was again derived by
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sampling the 13 dimensional GMM and calculating the squared Euclidean norms of the samples.

As can be seen from the bottom graph in figure 5.9 the approximation estimated from the GMM

parameters is relatively accurate.

Next, a simple method that replaces a Gaussian mixture model with a single Gaussian will

be introduced. Since all the GMM’s considered here have diagonal covariances it is sufficient to

study the problem for a one dimensional situation where the GMM is given by

��
�KC � x � �

" �;	�� � 	��M� & (5.40)

Here x � is the weight of the � -th one dimensional Gaussian � " ��	�� � 	�� � & which is given by

� " �;	�� �Q	��M�B& � p
� 
 � �M� 
 �

��� ��� I � ���� I
(5.41)

First the mean of the GMM distribution (5.40) can be derived as follows

� ��
�KC � x � �

" �;	�� � 	��M� &	�
� �
��
�KC � x � � � (5.42)

which is the weighted sum of the means �
� of the components of the GMM and the second order

moment of (5.40) is given by

� � �
��
�KC � x � �

" �;	�� �Q	��M�N&	�
� �
��
�KC � x �

" � �� � �M�]& (5.43)

The total variance of the GMM distribution can now be derived by subtracting the squared

overall mean (5.42) from the second order moment (5.43). Replacing the GMM with a single

Gaussian with mean and variance that have been calculated in this way therefore gives the same

overall mean and variance. In order to ensure that all the individual variances in a diagonal

higher dimensional covariance matrix are the same these have been replaced by their averages.

If the feature
�

is derived from � via a dimensionality reducing linear transform
u

, estimat-

ing
!#"(� $ ��& from the

!#" �%$ �'	 �%& under the assumption of unbiased class distributions * " �
� 6 $ ��& �

p � r is much simpler, since the Gaussian mixture that models the transformed vectors
�

can be

exactly calculated from the Gaussian mixture of the original vector � . The weights of the compo-

nents stay the same and the Gaussian mixture components of the original � have to be replaced

by the Gaussians of the transformation
�

which for the � -th mixture component are given byp
� 
 � � $ u �M� u v $ 
 �

�
� < � ��
 �

I F b < 
 � I 
 b F �
� < � ��
 �

I F
(5.44)

where
�

is the dimension of
�
. If necessary, this transformed mixture model can be further

reduced to a single Gaussian by the same methods as above.

5.5.2 Median split initialisation

It will be seen in section 6 that the method discussed in the previous section suffers from the

problem that the division of the training data into � -state dependent classes can result in an
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uneven distribution of the training data. In particular, one of the classes might be considerably

smaller than the others and the models trained for this � -state label are therefore less reliable.

The method developed in this section tries to overcome this problem by splitting the feature

space of
�

into areas of equal size. This method will be called the median split initialisation

(MSI).

In the following, it will be assumed that
�

is a one-dimensional feature. In this situation one

can find rts p
points � � 	������
	 � � � � on the

�
axis such that

��� I
� �

!#"(� $ �'&	� � � �r (5.45)

In other words, it is possible to divide the
�

axis into r intervals such that the partial integral

of
!#"(� $ ��& over each interval

� � �Q	 � � � ��� is the same. If r ��

the point that divides the

�
axis into

intervals of equal volume is called the median of
!#"(� $ �'& . A method to practically derive the points� � 	������3	 � � � � for an output probability

!#"(� $ ��& which is a Gamma or Gaussian distribution, will

be discussed at the end of this section.

To ensure that the training data are divided evenly between the different states of � one

would ideally need a set of r posterior probabilities which are equal to 1 on one of the intervals� � � 	 � � � ��� and 0 elsewhere. In addition, the union of the intervals where the posteriors do not

vanish should be the complete
�

axis. A similar but slightly less complicated restriction is the

requirement that two of the r softmax functions intersect at each of the points � � 	������ 	 � � �
with a value that is close to

n � � . For the case r ��

this results in the following equation.

d � � @ " � � & � d � � @ " � � & (5.46)

where � � is the median of
!#"(� $ ��& . In terms of the exponential polynomial of the softmax func-

tions
d P�� @ "(� & this means that

� � " � � & �on
(5.47)

has to hold, which can be satisfied by a polynomial of arbitrary degree. It makes sense, however,

to place an additional restriction on the softmax functions. For instance, one might required � � @ "(� & to attain a value e which is close to one at a point � � which is far away from the median,

i.e.
d � � @ " � � & � e . This can, again, be interpreted as a restriction on � � " � � & , i.e.

� � " � � & � ���
��� ep s e	� (5.48)

In order to satisfy both (5.47) and (5.48) the polynomial ��� "(� & has to have at least degree one.

For a set of three softmax functions the requirement that two of them intersect at each of the

points � � 	 � � with a certain value e leads to the following equations

d � � @ " � � & � d � � @ " � ��& � e (5.49)d � � @ " � � & � d
� � @ " � � & � e (5.50)
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Equation (5.49) implies that � � " � � & � � � " � � & has to hold. Substituting this back into (5.49)

therefore leads to the following equation

� � " � � & � � � " � � & �����
� � ep s 
 e � (5.51)

Similarly, equation (5.50) results in the following restrictions

� � " � � & � ���
��� p s 
 e
e � (5.52)

� � " � � & � n
(5.53)

Equations (5.51), (5.52) and (5.53) represent an interpolation problem which can be solved

for linear polynomials � S "(� & . Figure 5.10 gives an example of this complete initialisation proce-

dure. The upper graph in figure 5.10 shows the output probability
!#"(� $ �'& which, in this case, is a
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Figure 5.10 Median split initialisation example. The upper graph shows ��� ��� ���
and the points at which the

integral of ��� ��� ���
is 	�
�� and �

�� , respectively. In the lower graph the softmax functions have been initialised

by solving (5.51), (5.52) and (5.53) with ������� �����
� . The softmax functions are represented by the solid,

dashed and dashed-dotted lines.

Gamma distribution. The first step in the initialisation method is the determination of the points� � and � � which satisfy (5.45). These points and their corresponding likelihoods are indicated

by the straight lines and the circles, respectively. The lower graph in figure 5.10 shows the soft-

max functions that were obtained by solving the interpolation problem given by the equations

(5.51-5.53). Here the value e was set to
n � � �
�
� which is the value of two of the softmax func-

tions at each of the points � � 	 � � . The distance of e from
n � � affects the slope of the softmax
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functions. If one chooses, for instance, a value of e �tn � � � the slopes are less steep and the

maximum of the softmax function in the middle is closer to
n � � . Since one would ideally like

the posteriors to be step functions which assume the values 0 and 1 it is therefore necessary to

choose e reasonably close to
n � � .

For a hidden variable � with more than 3 states finding appropriate softmax functions is

more complicated. Here, in addition to, (5.49) and (5.50) the following equations have to be

satisfied

d S
� @ " � S & ��d S � � � @ " � S & � e (5.54)

for all 6 � 	;	������3	�r s p
. Unfortunately, this results in a set of non-linear equations in the

polynomial parameters for which there is no closed form solution. However, by introducing the

additional restriction that all the values
d f � @ " � S & are equal for m �� 6 	76 � p

it is possible to reduce

the problem to the same form as for r � 	 . For r � 	 this results in an interpolation problem

with r s p
different points � � 	������ 	 � � � � and therefore requires polynomials � S "(� & of degreer�s 
 . Just to give a flavour of what the interpolation constraints look like, here they are derived

for r � �
.

d � � @ " � � & � d � � @ " � � & � e d
� � @ " � � & � d�� � @ " � � & (5.55)d � � @ " � � & � d

� � @ " � � & � e d � � @ " � � & � d�� � @ " � � & (5.56)d
� � @ " � � & � d�� � @ " � � & � e d � � @ " � � & � d � � @ " � � & (5.57)

These equations are the equivalent to (5.49) and (5.50) and they result in the following inter-

polation problem for the exponential polynomials � S "(� & .
� � " � � & � � � " � � & � ���
� 
 ep s 
 e � �

" � � & �on
(5.58)

� � " � � & � � �
" � � & � ���
� 
 ep s 
 e � � " � � & �on

(5.59)

� � " � � & � � � " � � & � ���
� p s 
 e

 e � �

" � � & �on
(5.60)

This shows that for r � �
the exponential polynomials � S have to have at least degree two to

satisfy the above requirements.

Note that the initialisation method developed in this section relies on the fact that
�

is one

dimensional since the first step in the median-split initialisation scheme is the search for the

median. There is no equivalent in the higher dimensional case. In two dimensions and for a

Gaussian with diagonal covariance matrix, for instance, every straight line that passes through

the mean of the Gaussian separates the feature space into areas of equal volume.

5.5.2.1 Estimating the median

The derivation of the points � � 	������3	 � � � � requires the calculation of the partial integrals� � I � �� I !#"(� $ �'&	� � . If
!#"(� $ �'& is modelled by a Gamma distribution these integrals can be derived

from the incomplete Gamma function which is defined as follows.

w "]\ 	 � & � p
[ "]\ &

� �

� 
 �
2 5 c � � � 5 (5.61)



The state based Mixture of Experts HMM 67

This is the partial integral of a Gamma density with � � p
. For � �� p

the partial integrals of!#"(� $ �'& are given by

� c[ "]\ &
� �

� 
 ���
2 5 c � � � 5 �

p
[ "]\ &

� � �

� 
 �
2 5 c � � � 5 � w "]\ 	 � � & (5.62)

According to (Abramovitz and Stegun, 1965), the incomplete Gamma function (5.61) can be

calculated with the help of the following exponential series.

w "]\ 	 � & � � c
[ "]\ & ��

� C �
" s � & �"]\ � � & ��� (5.63)

For the purpose of this work it was found to be sufficient to use the first 50 terms of the series

(5.63) to obtain a good estimate of
w "]\ 	 � & . This approximation to the incomplete Gamma

function can now be used in a Newton search to find the appropriate points. One only has to

remember that the derivative of the incomplete Gamma function is the Gamma function itself.

For Gaussians the median coincides with mean and therefore nothing has to be calculated

for a variable � with 2 states. For variables with more than 2 states the incomplete integrals of

the Gaussians have to be calculated which can, again, be efficiently derived from the so-called

error function erf
"�� & which is given by

erf
"�� & � 


� �
� �

� 
 �
2 � � 5 (5.64)

From this the incomplete integral of a Gaussian with mean � and variance � can be derived by

the following expression

p

 � p �

erf
� � s �

�
� 
 � � (5.65)

According to (Abramovitz and Stegun, 1965), the error function can be approximated for posi-

tive values up to an error smaller than
p � ��� p�n � � by the following formula

erf
"�� & �qp s " � � 5 � � � 5 � � � � 5 � � � � 5

� � � � 5 � & 
 � �
�

(5.66)

where 5 � p � " p � * � & , with * � n �
	 
 � �
� p�p and the coefficients of the polynomial in (5.66) are

given by

� � �on � 

�����


�
�
�

 � � � s n � 
������ �
� � 	 �
� �

�qp � � 
 p �%p 	 � �%p � �_� s p � � � 	 p��

=n 
 �
� � �qp � n � p �'n ��� 

�

Again this approximation has been used in a Newton search to find the points which divide the

space of feature
�

into areas of equal volume. As previously, one has to remember that the

derivative of the incomplete integral is the integrand which, in this case, is the Gaussian.
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5.6 Recognition

The SBME-HMM can be used in a number of ways for recognition. The particular implemen-

tation depends on the treatment of the hidden variable � . If the state of � is not used in the

recognition process, one can sum over all � -states to obtain an output probability of � and
�

that

depends only on � , i.e.

!#" �;	 � $ �'& � ��
S�C �

!#" �;	 � 	 �
� 6 $ �'& (5.67)

This will be called the factorised topology.

The easiest way to include information about the state of � into the recognition process is

by adding this information to the state of � . In this way, one arrives at combined � , � -states

which are represented by a pair of numbers
" � 	760& where the first number � refers to the state

of � while the second number 6 refers to the state of � . The output pdf’s of the � , � -states are

then the probability densities
!#" �%$ �%	��'& . In order to restrict the search space of the � , � -states it is

necessary to define a topology on the pairs of state indices, which amounts to defining transition

probabilities � < �D� S�F < ��� f F . Two such topologies are illustrated in figure 5.11 for a variable � with

two different states. As can be seen, from looking at the � -state indices, the topologies in figure

E

3,22,21,2

S

2,11,1 3,1

(a) Full topology.

S

1,2 2,2 3,2

E

1,1 2,1 3,1

(b) Parallel topology.

Figure 5.11 Model topologies that explicitly use the state of � in the recognition process.

5.11 have been derived from the standard 3-state left-to-right HMM in figure 2.4. The transition

probabilities in these topologies are time-dependent as they depend on the value of feature
�
.

For the topology in figure 5.11(a), for instance, the transition probabilities are given by

� < �D� SXF < ��� f F " 5 & � � �D� � * " m $ � 2 	  & (5.68)

These are true probabilities because taking the sum over all the � < �D� SXF < ��� f F " 5 & with � , 6 and 5 fixed

gives 1. Since transitions between all the states in this models are allowed this topology will be

referee to as the full topology. The transition probabilities for the topology in figure 5.11(b), on
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the other hand, are given by

� < �D� S�F < ��� f F " 5 & �
��� ��
� �D� � * " m $ � 2 	  & k 6 � m

n k 6 �� m
(5.69)

This does not result in a true probability since the sum over all � < �D� S�F < ��� f F " 5 & with fixed � , 6 and 5
is, in this case, equal to * " 6 $ � 2W	  & . It still makes sense to study the topology in figure 5.11(b),

however, because the most likely state sequence in the parallel model will be the most likely

state sequence in the full model with the additional restriction that the state of � does not change

within a phonetic unit. The topology in figure 5.11(b) is therefore useful for hidden variables �

that are assumed to change slowly over time. This topology will be called the parallel topology.

It is the same that was used in the trajectory models in (Iyer et al., 1998) which were mentioned

in section 3.5.

The auxiliary function for the full topology is the same as for the factorised topology since,

in this case, summing over all sequences of ��	 � -states is equivalent to summing over all se-

quences of � -states and all sequences of � -states. The transition probabilities �E�D� � and the � -state

probabilities * " m $ � 2 	  & that have been trained for a factorised topology can therefore be directly

substituted into (5.68) to give the transition probabilities between ��	 � -states in the full topology

model. However, for the parallel topology using the parameters that were trained for a factorised

topology is suboptimal. Although these parameters could be trained for a parallel topology, as

well, this was not done here. Instead, as for the full topology, the parameters that were trained

for a factorised topology were used in (5.69) to obtain the �'	 � -state transition probabilities.
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Indicating Features

The model that was proposed in the previous chapter makes use of a feature
�
, called an indi-

cating feature, that is meant to contain information relating to the state of the hidden variable
� . In order to derive an efficient model it is therefore necessary to find an indicating feature that

distinguishes well between different � -states. This chapter discusses various methods to derive

such a feature and compares them in a number of classification experiments.

In contrast to the signal based speaking rate measures that were discussed in chapter 4 a

high correlation with ROS measures based on a manual transcription, like phone or syllable

rate, is not an issue. Instead of deriving the indicating feature directly from the acoustic signal,

the information contained in the standard feature vector � that relates to temporal changes in

the speech process will be harnessed for the task at hand. Such information is usually present in

the form of first or higher order derivatives and it should therefore be possible to calculate the

indicating feature by applying a suitable transform to � .
Section 6.1 gives a brief introduction to two of the most common linear dimensionality

reduction schemes, namely principle component analysis (PCA) and linear discriminant analysis

(LDA). In addition, a non-linear dimensionality reduction scheme will also be presented which

does not require the estimation of a transform.

Section 6.2 will evaluate the performance of the indicating features derived with the different

dimensionality reduction schemes from section 6.1 in a number of classification experiments.

First section 6.2.1 will address the problem of defining classes that are correlated to what are

assumed to be states of the hidden variable � . These methods will be subsequently applied to

define 2 and 3 class problems for all the phones in the phone set in appendix A. The results

of the experiments for the different dimensionality reduction schemes on the 2 class tasks will

be reported in section 6.2.2, whereas section 6.2.3 discusses the 3 class classification results.

In both cases phone dependent and phone independent LDA and PCA transforms are estimated

which gives rise to model dependent and independent indicating features.

Finally, section 6.3 reviews the experimental work done in this chapter and highlights the

key results.

70
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6.1 Dimensionality Reduction

It was already mentioned in the introduction to this chapter that the standard feature vector �
itself will be used to derive the indicating feature

�
. Since

�
will be employed to distinguish

between different states of the hidden variable � , this approach is similar to the one in subband

and multi-stream models, as discussed in section 3.2, where feature � is also used to infer the

best combination of subbands or streams for recognition. Rather than using � directly, however,

here functions
h " ��& � �

will be investigated that extract all the information in � relevant to the

state of � and put this information into feature
�
.

Ideally, the function
h " ��& � �

should reduce the dimensionality of � as much as possible

and at the same time be easy to calculate. These two objectives motivate the attempt to find a

suitable indicating feature
�

by reducing the dimension of � with an appropriate linear map. Two

such linear dimensionality reduction schemes will be investigated in this section. In addition, a

simple non-linear dimensionality reduction scheme will also be discussed.

6.1.1 Principal component analysis

Principal component analysis (PCA) (Kendall and Stuart, 1973b), which is also known as the

Karhunen-Loeve transform (Papoulis, 1984), attempts to decorrelate the components of a fea-

ture vector. Here
� �t� � � 	������3	�� � � is a sequence of vectors with mean � and the covariance

matrix of these data is therefore given by

� � �
�
2OC �

" �#2 s � & " �#23s � & v (6.1)

The index 5 above is not necessarily a time index but can be any counter on the vectors in
�

. Sim-

ilarly �=2 does not have to be a feature vector in a speech recognition system but can be an arbi-

trary vector. Since here PCA will be primarily applied in the context of speech recognition, how-

ever, a more general notation will not be introduced. In order to decorrelate the components of� one has to find a transformation
w

such that the transformed sequence
w ����� w � � 	������3	 w � � �

has diagonal covariance. In terms of the covariance matrix of
�

(6.1) this means that
w

has to

satisfy the following equation

w � w v � diag
"
�

�� 	������3	 �
�
� & (6.2)

where diag
"
�

�� 	������
	 � �� & is a diagonal matrix with positive diagonal elements �
�� 	������
	 � �� and the

� � are assumed to be ordered according to their absolute value, i.e. �
�� �

�
�

� 	������ 	 � �� . From (6.2)

one can see that the rows of
w

have to be the eigenvectors of � . Here the eigenvector of �
that is associated with the highest eigenvalue is the direction in the feature space in which the

data
�

has the highest variance. Likewise, the eigenvector associated with the second highest

eigenvalue �
�

� is the direction in the orthogonal complement of the first eigenvector along which

the data
�

have the highest variance. Similar interpretations apply to the higher eigenvalues

of � . If one wants to reduce the dimension of � as much as possible while at the same time

retaining most of the information of the complete sequence
�

, it is therefore sensible to project
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� onto the eigenvectors of � with the highest eigenvalues. This amounts to removing rows with

high indices from the PCA transform and directions in the vector space of � where variation is

small.

Figure 6.1 shows the location of the eigenvector of � corresponding to the highest eigenvalue

for two two-dimensional data sets. Here the � 2 are indicated by circles. Figure 6.1(a) shows an
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Figure 6.1 One-dimensional PCA transforms of a single class and two classes. The PCA transforms are the

orthogonal projections onto the straight lines. Each class in 6.1(b) corresponds to one of the ellipsoids in this

figure.

example where the �=2 were sampled from a single Gaussian with mean
" n 	 n & . Projecting the data

set onto the line in figure 6.1(a) will minimise the loss of information because the data set is

concentrated around this line.

While such an orthogonal projection might be effective for a data set which has been sampled

from a single distribution this method can lead to undesirable effects in the case of multi-class

problems. This is, for instance, illustrated in figure 6.1(b) where the data
�

have been sampled

from two distributions with the same variance but with means at
" s 	;	 	�& and

" 	;	 s 	�& . Since the

aim is to distinguish well between the two classes, a projection into one dimension should result

in two well separated distributions. Figure 6.1(b) clearly shows that an orthogonal projection

of
�

onto the straight line in this figure will not result in a good separation of the data. In this

example, the eigenvector that corresponds to the highest eigenvalue of the covariance matrix �
is therefore not ideal. This problem of the PCA dimensionality reduction scheme is due to the

fact that the derivation of the PCA transform does not take class membership into consideration.

Another method that does so will be discussed in the next section.
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6.1.2 Linear Discriminant Analysis

Linear discriminant analysis (LDA) (Duda and Hart, 1973; Fukunaga, 1990) differs from PCA

in that it explicitly refers to the class membership of the data points �;2 in the training set. Here

the objective is to find a linear transform
w

of
�

such that the discrimination between the

transformed data
w �

is maximal between different classes. This problem is formalised with the

help of the between-class and within-class scatter matrices which will be denoted by
d��

andd
� , respectively. For a set of r classes � � 	������3	 � � these matrices are defined by

d
�

� ��
�KC �

d � (6.3)

d � � �

 A ��� I

" �#2 s � �N& " �#23s � �N& v (6.4)

and

d�� � ��
�KC �

� � " � � s � & " � � s � & v (6.5)

where � � is the estimated mean of class � � and � is the overall mean of the training data. Withd��
and

d
� the separability of the classes � � 	������3	 � � can now be measured by the quotient of

the determinants of
d��

and
d
� , i.e.

$ d�� $
$ d � $ (6.6)

This measure is motivated by the fact that the determinant of a matrix is the product of its

eigenvalues. Since
d��

and
d
� are the sums of covariance matrices, whose eigenvalues are

the variances of certain distributions, the determinants of the within and between class scatter

matrices can be interpreted as measures of the variance within and across classes, respectively.

A large value of (6.6) therefore ensures that the means of the classes � � 	������3	 � � are well

separated while at the same time the data within each class are close to the class mean. A

projection that discriminates well between classes will therefore maximise the quotient (6.6).

Transforming the data
�

with
w

results in the following within class and between class scatter

matrices
�d��

and
�d
� , respectively.

�d�� � w v d�� w
(6.7)

�d
�

� w v d
�
w

(6.8)

The LDA transform is therefore the transform
w

which maximises the following expression.

$ w v d�� w $
$ w v d � w $ (6.9)

It can be shown (Wilks, 1962) that the maximisation of (6.9) can be achieved by solving the

following generalised eigenvalue problem

d � * � � / � d � * � (6.10)
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The columns of the LDA transform
w

are then the * � in (6.10) which correspond to the highest

non-zero generalised eigenvalues / � . Since
d��

is the sum of r matrices of rank one or less and

only r s p
means � � and � are linearly independent,

d �
is of rank r s p

or less. Therefore

there are at most r s p
non-zero / ’s and

w
is a projection into a space of dimension at mostr s p

. Figure 6.2 gives an example of an LDA transform which has been calculated for the

same training data as in figure 6.1(b). Here the straight line represents the direction in the
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Figure 6.2 LDA transform of two classes. The LDA transform is the orthogonal projection onto the straight

line.

feature space on which the training data are projected orthogonally. As can be seen the LDA

transform results in two one-dimensional distributions that are much better separated than the

distributions of the one-dimensional PCA transform in figure 6.1(b).

It is interesting to note that LDA transforms have also been used in speech recognition to

project the features � into a more discriminative feature space (Haeb-Umbach and Ney, 1992).

A variant of LDA which is called heteroscedastic discriminative analysis (HDA) has also been

investigated (Schukat-Talamazzini et al., 1995; Gopinath, 1998; Saon et al., 2000). This method

estimates the feature space transformation by optimising an objective function different from

the expression in (6.9). In contrast to (6.9), optimisation of the HDA objective function can be

interpreted as a constrained maximum likelihood estimation problem (Saon et al., 2000) and is

therefore also related to the concept of semi-tied covariances (Gales, 1999). Although deriving

an indicating feature with an HDA trained transform will not be investigated further in this

work, it is interesting to note that, in principle, such a transform could be trained within the ML

paradigm with the same methods that were developed for the HDA case.
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6.1.3 Squared Euclidean Norm

In addition to the two linear dimensionality reduction schemes mentioned in section 6.1.2 and

6.1.1 a non-linear method will also be investigated in this chapter. This method simply calculates

the feature
�

by taking the squared Euclidean norm of subvectors of � . The squared Euclidean

norm of the first or second order derivatives of feature � , for instance, should be a good source of

information relating to speaking rate because the length of these vectors can be interpreted as a

measure for the speed and acceleration of the sequence
�

. This measure also has the advantage

that it can be easily calculated without estimating a linear projection on the training data.

6.2 Classification Experiments

This section describes classification experiments that are intended to evaluate the usefulness

of the different dimensionality reduction methods discussed in the previous section. All the

experiments were carried out on the training set of the 1997 Broadcast News task. The feature

vector � consisted of 13 PLP coefficients together with their first and second order derivatives

which gives a feature vector � with 39 dimensions in total. In the following, the first and second

order derivatives in � will be denoted by
�

and
���

, respectively. The PLP coefficients themselves

will be called static components of � .

6.2.1 Defining Classes

In order to evaluate the quality of the indicating feature
�
, it is necessary to construct training

and test sets which consist of features
� 2 and what is presumed to be the state of � at time 5 . The

state of � will be defined with the help of a forced alignment on the training data of the 1997

Broadcast News task, which will be used to find phone boundaries. Based on this information

the durational statistics of each phone will be collected, which will then be used to split the

occurrences of each phone into classes of approximately equal size. This procedure is illustrated

by the diagram in figure 6.3. Here the result of collecting the durational statistics is indicated by

a list of durations which are measured in frames and the number of times phone “ah” appeared

in the training data with this duration. Phone “ah” is just one example. These statistics are

collected for each phone in the 45 strong phone set in appendix A. The result of defining the

classes for phone “ah”, is illustrated in the bottom left hand corner of figure 6.3. Here every

instance of the phone that has a duration between one and four frames belongs to class one

which is a class of fast phones, while a phone that has a duration of 5 or 6 frames belongs to

class 2 which contains slightly slower phones, etc.

An example of the durational statistics of a phone, in this case the phone “oy”, is given in

figure 6.4 which confirms the assumption in (Levinson, 1986) that the probability distribution

of phone durations can be modelled by a Gamma density. Given the statistics in figure 6.4, the

task of defining r � -states of approximately equal size can now be realised by finding durations� � 	������
	 � � � � such that the sum of the occurrences of the phone that have durations between

two successive
� � ’s are approximately equal. This can be formulated more precisely by requiring
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Figure 6.3 Derivation of � -state labels.

the
� � to satisfy

�

�
I��

�
�

�
I � � *

"(� &�� e � � � 5 � (6.11)

where * "(� & is the number of occurrences of the phone for duration
�
. This is similar to finding

the median in the MSI method in section 5.5.2. Here, however, the variable
�

is discrete.

The simplest approach to finding
� � ’s that satisfy (6.11) is to divide the total number of

occurrences of the phone by the number of classes r which gives the number of elements in

each class. Then one can move along the duration axis in the durational statistics of the phone,

such as in figure 6.4, and define a boundary
� � whenever the sum of the phone occurrences

reaches the class size. In figure 6.4, for example, the total number of occurrences of phone “oy”

in the forced alignment was 3162. The class size for a variable � with two states is therefore

1581. Summing over the occurrences starting from duration 1 this class size is reached for a

duration of
� � �qp 	 . This boundary splits the instances of phone “oy” into one class of size 1599

and another one of size 1563.

In order to ensure relatively equal class sizes across all phones, it is necessary to define

the class boundaries
� � for each phone individually, since the durational statistics can be rather

different for different phones. Consonants, for instance, exhibit much less variation in their

duration than vowels and also tend to be shorter on average.

Given the class of the phone, one now has to associate a feature with it. In principle, this

could be any feature within the phone boundaries. To avoid problems as a result of the imprecise

estimation of phone boundaries in the forced alignment, only the feature
� 2 in the middle of the

phone boundaries was used. The resulting set of labelled data points
"(� 2W	 �)& was then divided

into training and test sets by assigning 20% of the data points for each phone to the test set.

This gave a training set with 1 374 863 data points and a test set with 343 691 data points. The
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Figure 6.4 Statistics of duration of phoneme “oy”.

phone dependent training sets varied between 292 and 115 347 data points while the phone

dependent test sets varied between 72 and 28 836 data points. The exact statistics of these sets

can be found in appendix A.

The quality of the feature
�

was evaluated by building classifiers for each of the phones

separately and applying them to the test set of each phone. This gives a performance metric for

each of the phones which will be combined to obtain an overall performance metric. One can, for

instance, derive an overall metric by simply calculating the mean over the classifier performances

of all phones. However, this does not take into consideration that the classification tasks can be

of different complexity. To illustrate this problem, it is helpful to study again the durational

statistics in figure 6.4. To split the occurrences of phone “oy” into 3 classes, one first has to

calculate the desired class size which, in this case, is 	 p��

 � 	 �qp�n ���
. Moving along the duration

axis one can see that this class size is reached for
� � � p�


and
� � � p � . The corresponding class

sizes are 1299, 1152 and 711, respectively, which is a much more biased distribution than in

the 2 class case. The 3 class classification problem for phone “oy” is therefore simpler than a

3 class problem with equal class sizes. To account for the difference in complexity, the overall

performance metric was calculated as the weighted sum of the individual performances where

each weight reflects the difficulty of the task, i.e.

perftotal
� �

� ���
x � perf

"�� & (6.12)

where
�

represents a phone in the phone set � . Dividing the size of the classes by the total

number of elements in the test set of each phone results in a probability distribution for which

the entropy � "�� & can be calculated. Since the entropy is maximal for an equal distribution, the
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entropy � "�� & was used in the derivation of the weights x � , which were defined by

x � � � "�� &� � b ��� � "�� v & (6.13)

This definition ensures that the weights x � sum to one. The performance metric for the indi-

vidual phone classifiers was chosen to be the percentage of correctly classified data points. The

overall performance metric is therefore an average correct classification rate.

Given test and training sets of pairs
"(� 2W	 �)& of features

� 2 and states of � , the phone classifiers

were built by estimating a single Gaussian with full covariance matrix on each of the states of � .

The Gaussians for all of the classes were then used in the classification experiments to calculate

the likelihood of each test data point under all the Gaussians and the data point was assigned to

the class with the highest likelihood. It is, of course, possible to build better classifiers by using,

for instance, polynomial softmax functions or GMM’s to model the individual distributions. Since

the main emphasis in these experiments was on the development of a useful indicating feature

rather than a good classifier these other possibilities were avoided to give the simplest testing

scenario.

6.2.2 Two-class classification experiments

This section discusses experimental results that were derived for the 3 different dimensionality

reduction schemes introduced in section 6.1. Here the LDA and PCA transforms were both

calculated for each phone separately and for all phones combined. The first method results in

a model dependent indicating feature
�
, because the map

h " ��& � �
with which

�
is calculated

depends on the phone, while the latter method gives a model independent feature. In addition,

PCA transforms were calculated for different parts of the feature vector � , i.e. for the complete

feature, the static components and the first and second order derivatives. These PCA transforms

were then used to reduce the dimension of the respective part of feature � from one up to the

original dimension of this feature part. In contrast to the PCA transforms, LDA transforms were

only calculated for the full feature vector. This was done because restricting the LDA input to a

subvector will, in general, decrease the objective function (6.9) and therefore result in less well

separated classes. If, on the other hand, a subvector of � gave the best separation this would be

reflected in an LDA transform of the full feature vector whose coefficients are zero for certain

indices.

6.2.2.1 Phone independent dimensionality reduction

Table 6.1 gives the results for a two class problem where the dimension of � was reduced with

the PCA transform. The first three columns contain the classification results for a PCA trans-

form of the full feature vector from one dimension up to 39 dimensions. One can clearly see

the monotonic increase in performance which is also illustrated in figure 6.6(a). This figure

furthermore shows that there are 3 different regions over which the increase in performance

has a similar shape. These regions correspond to the static components and the first and second

order derivatives of feature � . This behaviour is a result of the fact that the static components
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full feature vector static
� � �

dim % cor dim % cor dim % cor dim % cor dim % cor dim % cor

1 53.60 14 65.60 27 71.36 1 53.67 1 55.62 1 58.86

2 57.46 15 66.30 28 72.00 2 57.46 2 57.99 2 63.00

3 59.09 16 66.92 29 73.36 3 59.18 3 59.78 3 64.49

4 60.51 17 67.61 30 73.93 4 60.57 4 61.52 4 65.63

5 61.04 18 67.76 31 74.03 5 61.08 5 62.01 5 65.86

6 61.39 19 68.05 32 74.26 6 61.44 6 62.27 6 66.13

7 61.69 20 68.14 33 74.50 7 61.77 7 62.87 7 66.86

8 62.31 21 68.44 34 74.90 8 62.38 8 63.39 8 67.24

9 62.71 22 68.47 35 74.97 9 62.67 9 63.66 9 67.58

10 62.87 23 68.49 36 75.14 10 62.88 10 64.02 10 67.74

11 63.15 24 68.56 37 75.20 11 63.14 11 64.16 11 67.82

12 63.33 25 68.63 38 75.23 12 63.35 12 64.28 12 68.00

13 65.26 26 71.02 39 75.20 13 63.51 13 64.54 13 68.10

Table 6.1 Two-class classification experiments with phone independent PCA transforms of the full feature

vector, its static components and first ( � ) and second order ( ��� ) derivatives.

of � have the highest variance followed by the variance of the first and second order derivatives.

The first rows of the PCA transform will therefore always project into the space of the static

components while the rows in the middle and at the end of the PCA transform project into the

vector-spaces spanned by the first and second order derivatives, respectively. This means that the

PCA transform for feature � is essentially block-diagonal which is also illustrated by figure 6.5.

The fourth, fifth and sixth columns in table 6.1 give the classification results that were obtained

by restricting the vector � prior to calculating the PCA transform to its static components, first

and second order derivatives, respectively. These transforms have been subsequently applied to

the appropriate components of � to obtain the results in this table. These, again, show a steady

increase in classification performance with increasing dimension of the PCA transform.a

Table 6.2, on the other hand, contains the results of the classification experiments using the

squared Euclidean length and the LDA transform. Again, only one LDA transform was calculated

for all the phones. In addition to the overall classification performance, table 6.2 also shows the

classification results for vowels and consonants separately. It is interesting to note that the clas-

sifier performance in this table was higher on vowels than on consonants for
�

,
���

and LDA

parameters. Since vowels are the main source of durational variation, this is a desirable effect.

Especially for the squared Euclidean length of the second order derivatives, the performance

on vowels was relatively high at 62.52%. However, a comparatively poor performance on con-

sonants of 56.72% compensates for this advantage to give the overall performance of 59.46%.

Also for PCA transforms this difference in performance on vowels and consonants was observed.

However, to increase the readability these numbers were left out of table 6.1.
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Figure 6.5 Phone independent PCA transform.

Figure 6.6(b) compares the various dimensionality reduction schemes for dimensions 1 to

13. In contrast to table 6.6(a), here the scale of the � axis which gives the classification perfor-

mance is increased to show the differences between the methods more clearly. Since the squared

Euclidean length and the LDA transform for a two class problem have a constant dimension of

one they are indicated by straight lines. One can see from figure 6.6(b) that the best classifi-

cation performance for more than one dimension is obtained by applying the PCA transform to

the second order derivatives of � . Only in one dimension does the squared length of the second

order derivative give a better classifier. The LDA transform results in a better performance than

a one-dimensional PCA projection of the full vector, static and first order derivatives of � but is

worse than the one-dimensional PCA projection of the second order derivatives. Figure 6.6(b)

also shows that projecting the static components or the full feature vector onto the first 13 di-

mensions with a PCA transform gives essentially the same results. This is again a consequence

of the block structure of the PCA transform illustrated in figure 6.5 which means that the PCA

transform of the static components alone is essentially the first block in the PCA transform of the

full feature vector.

Summarising the experiments with phone independent transforms, one can see that the one-

dimensional projection with the best performance is the squared Euclidean length of the second

order derivatives, which does especially well on vowels, while the PCA projection of the second

order derivatives is the scheme with the best overall performance. Interestingly, calculating a

single LDA transform for all the phones gives rather poor performance.
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squared length LDA

full static
� � �

consonants 54.71 55.16 55.64 56.71 56.77

vowels 52.52 52.92 59.05 62.52 57.35

overall 53.67 54.11 57.25 59.46 57.05

Table 6.2 Two-class classification experiments with phone independent LDA transform and squared Euclidean

norm of the full feature vector, its static components and first ( � ) and second order ( ��� ) derivatives. This

table gives the average percentage of correctly classified data points.

6.2.2.2 Phone dependent dimensionality reduction

Table 6.3 contains the results for the classification experiments where PCA transforms were

calculated for each phone individually. Figure 6.7(a) shows the effect of using phone dependent

full feature vector static
� � �

dim % cor dim % cor dim % cor dim % cor dim % cor dim % cor

1 57.38 14 66.13 27 73.30 1 57.36 1 55.55 1 61.01

2 59.14 15 66.86 28 73.88 2 59.12 2 58.65 2 63.95

3 60.68 16 67.56 29 74.13 3 60.38 3 60.60 3 64.96

4 61.49 17 67.82 30 74.32 4 61.44 4 61.68 4 65.94

5 61.95 18 68.20 31 74.52 5 61.88 5 62.25 5 66.37

6 62.21 19 68.37 32 74.70 6 62.12 6 62.63 6 66.95

7 62.48 20 68.68 33 74.86 7 62.37 7 63.04 7 67.24

8 62.68 21 68.81 34 75.08 8 62.56 8 63.56 8 67.71

9 62.90 22 68.84 35 75.11 9 62.71 9 63.82 9 67.98

10 63.16 23 68.94 36 75.21 10 63.02 10 64.27 10 68.31

11 63.40 24 69.37 37 75.26 11 63.17 11 64.45 11 68.59

12 64.00 25 71.11 38 75.24 12 63.38 12 64.61 12 68.77

13 65.06 26 72.47 39 75.20 13 63.51 13 64.54 13 68.78

Table 6.3 Two-class classification experiments with phone dependent PCA transforms of the full feature vector,

its static components and first ( � ) and second order ( � � ) derivatives.

transforms in comparison to phone independent transforms. The dashed line in this figure is

therefore the same curve as in figure 6.6(a). One can see from figure 6.7(a) that using phone

dependent transforms gives better classification performance for almost all dimensions. It is

therefore possible to reduce the dimensionality of
�

even further than with a phone independent

transform, while still retaining good classification performance. As can be seen from table 6.3

and figure 6.7(a), the differences for phone dependent and phone independent classification

results vanish for the maximal dimensionality of
�
.

The classification results for the first 13 dimensions of all the phone dependent dimensional-
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(b) Classification performance of the various phone

independent dimensionality reduction schemes for

dimensions 1 to 13.

Figure 6.6 Relationship between the two-class classification performance of the phone independent dimen-

sionality reduction schemes and the dimension of the resulting feature. Since
� � � � � and the LDA transform

have a constant dimension of 1 they are indicated by straight lines in figure 6.6(b). The other curves in this

figure correspond to PCA transforms of the full feature vector and its various components.

ity reduction schemes are summarised in figure 6.7(b) which is the equivalent to figure 6.6(b).

Again, transforming the second order derivatives of feature vector � gives the best results of all

the PCA transforms. In this case, the one dimensional projection is even better than the squared

Euclidean length of the second order derivatives which has the same performance as before since

it is a phone independent dimensionality reduction method. However, the biggest difference in

performance between phone dependent and phone independent transforms can be observed for

the LDA transform. While the classification performance for a phone independent LDA transform

was 57.05% in the previous experiments this number increases to 75.29% for phone dependent

LDA transforms which is the same result as for the full 39 dimensional feature vector � . This

shows that it is possible to reduce the dimension of the standard PLP feature � to one without

losing discriminative information for the distinction between fast and slow classes of phones.

This result also illustrates that, in the classification problems considered, LDA transforms are

less robust than PCA transforms to a change from a phone dependent to a phone independent

feature extraction paradigm.
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(a) Comparison between the classification perfor-

mance of a phone dependent and a phone indepen-

dent PCA transform applied to the full feature vector.
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(b) Classification performance of the various phone

dependent dimensionality reduction schemes for di-

mensions 1 to 13.

Figure 6.7 Relationship between the two-class classification performance of the phone dependent dimension-

ality reduction schemes and the dimension of the resulting feature. Since
� � � � � and the LDA transform have

a constant dimension of 1 they are indicated by straight lines in figure 6.7(b). The other curves in this figure

correspond to PCA transforms of the full feature vector and its various components.

6.2.3 Three-class classification results

This section presents classification experiments with 3 classes using, as in the previous section,

PCA and LDA transforms of the 39 dimensional PLP feature vector and the squared length of

some of its subvectors. The classes in these experiments were again derived with the method

described in section 6.2.1 for each of the phones in the phone set in appendix A.

6.2.3.1 Phone independent dimensionality reduction

The first set of experiments used phone independent dimensionality reduction schemes to obtain

the indicating feature. Since the calculation of the PCA transforms is independent of the class

membership of the training data the phone independent as well as the phone dependent PCA

transforms in this section are the same as in section 6.2.2.

The results of the 3 class classification experiments for phone independent PCA transforms

applied to the various components of the 39 dimensional PLP feature are summarised in table

6.4. This table has the same structure as tables 6.1 and 6.3, which means that it gives the

percent of correctly classified frames for 1 to 39 dimensional PCA transforms applied to the

full 39 dimensional feature vector and 1 to 13 dimensional PCA transforms applied to static

components as well as the first and second order derivatives of the PLP feature � . Compared

to table 6.1, the numbers in table 6.4 are considerably smaller due to the higher complexity of

the classification task. As in the previous section, the relationship between performance and
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full feature vector static
� � �

dim % cor dim % cor dim % cor dim % cor dim % cor dim % cor

1 37.06 14 49.31 27 55.70 1 37.46 1 38.04 1 41.51

2 40.48 15 50.17 28 56.70 2 40.72 2 41.06 2 46.71

3 42.09 16 50.79 29 58.34 3 42.34 3 42.92 3 48.72

4 43.67 17 51.46 30 59.14 4 43.92 4 44.54 4 50.13

5 44.04 18 51.75 31 59.44 5 44.37 5 44.82 5 50.58

6 44.60 19 52.02 32 59.71 6 44.82 6 45.46 6 50.83

7 44.92 20 52.10 33 59.91 7 45.25 7 46.07 7 51.96

8 45.55 21 52.37 34 60.29 8 45.84 8 46.60 8 52.43

9 45.85 22 52.39 35 60.46 9 46.22 9 46.86 9 52.72

10 46.15 23 52.57 36 60.62 10 46.47 10 47.43 10 52.94

11 46.54 24 52.62 37 60.70 11 46.90 11 47.53 11 52.94

12 46.98 25 52.66 38 60.86 12 47.37 12 47.68 12 53.65

13 48.93 26 55.42 39 60.85 13 47.61 13 48.04 13 53.75

Table 6.4 Three-class classification experiments with phone independent PCA transforms of the full feature

vector, its static components and first ( � ) and second order ( ��� ) derivatives.

dimensionality of the PCA projection applied to the full feature vector exhibits a distinctive step-

shaped form as can be seen in figure 6.8(a) and is monotonic with increasing dimension of the

projection. This is also the case for PCA transforms specific to the static components, first and

second order derivatives of � .
Table 6.5 gives the classification performance for the squared Euclidean length of various

subvectors of feature � as well as for the phone independent LDA transforms. As previously

the overall performance and the performance on vowels and consonants separately are both

included in this table. Since the classification problem deals with three different classes the

dimension of the LDA transforms is two. This, of course, also holds for the phone dependent

LDA transforms which will be investigated later.

Table 6.5 shows that the performance of the squared Euclidean norm exhibits similar trends

as in the case of the 2 class problems in table 6.2. Again the performance on vowels is better

squared length LDA

full static
� � �

consonants 38.01 38.70 37.46 38.23 44.20

vowels 36.46 37.37 39.72 44.10 44.70

overall 37.27 38.07 38.53 41.02 44.44

Table 6.5 Three-class classification experiments with phone independent LDA transform and squared Eu-

clidean norm of the full feature vector, its static components and first ( � ) and second order ( ��� ) derivatives.

This table gives the average percentage of correctly classified data points.
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than on consonants for the squared length of the first and second order derivatives. This time,

however, the performance of the model independent LDA transform is better than the squared

length of the second order derivatives. This performance improvement can be attributed to the

higher dimension of the LDA transform which, as mentioned above is, in this case, two.

It is interesting to note that, although the overall classification performance of the LDA de-

rived indicating features is considerably higher at 44.44% correctly classified frames as com-

pared to 41.02% for the squared length of the second order derivatives, the difference on vow-

els is much smaller at only 0.6% absolute. The main difference in performance occurs on the

consonants where the squared Euclidean length gives considerably worse results by about 6%

absolute.

The performance of the LDA, PCA and squared length dimensionality reduction methods for

the first 13 PCA dimensions is compared in figure 6.8(b). Again, since the squared Euclidean

length of the second order derivatives has a constant dimension of one as well as the now two

dimensional 3 class LDA transforms, the results for these two dimensionality reduction schemes

is indicated by straight lines which run parallel to the dimension axis in figure 6.8(b). As in figure

6.6(b) in section 6.2.2.2, one can see in figure 6.8(b) that the performance of the PCA transform

that was calculated on the static features only results in more or less the same performance as the

PCA transform of the full feature on its first 13 dimensions. Also the difference in performance

between the first order derivative PCA transforms and the static PCA transforms is about the

same.
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(b) Classification performance of the various phone

independent dimensionality reduction schemes for

dimensions 1 to 13.

Figure 6.8 Relationship between the three-class classification performance of the phone independent dimen-

sionality reduction schemes and the dimension of the resulting feature. Since
� � � � � and the LDA transform

have a constant dimension of 1 and 2, respectively, they are indicated by straight lines in figure 6.8(b). The

other curves in this figure correspond to PCA transforms of the full feature vector and its various components.
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Figure 6.8(b) shows that the best phone independent reduction scheme for a 3 class problem

is the PCA transform of the second order derivatives. In contrast to the 2 class case, here the one

dimensional PCA projection of the second order derivatives gives the best one dimensional fea-

ture with 41.51% correctly classified frames on average, as compared to 41.02% for the squared

length of the second order derivative. The two dimensional PCA projection is also superior to

the phone independent 3 class LDA transform. Here the PCA transform classifies on average

46.71% of the frames correctly, while the LDA transforms leads to a correct classification in

44.2% of the cases. This shows therefore that PCA transforms yield the best phone independent

dimensionality reduction scheme in the case of classification problems with 3 classes.

6.2.3.2 Phone dependent dimensionality reduction

The experiments in this section applied phone dependent transforms to reduce the dimension

of feature � and evaluated their performance on the same 3 class problems as in the previous

section. As mentioned before, the PCA transforms are the same as in the 2 class experiments

in section 6.2.2 since the calculation of these transforms does not take class membership into

consideration. The results for the PCA transforms with varying dimension applied to different

components of the feature vector � are summarised in table 6.6.

full feature vector static
� � �

dim % cor dim % cor dim % cor dim % cor dim % cor dim % cor

1 39.50 14 50.48 27 58.65 1 39.59 1 38.37 1 42.59

2 42.11 15 51.32 28 59.60 2 42.10 2 41.60 2 46.86

3 43.71 16 52.01 29 60.09 3 43.67 3 43.78 3 48.75

4 44.61 17 52.39 30 60.35 4 44.45 4 44.66 4 49.92

5 45.18 18 52.79 31 60.55 5 44.94 5 45.20 5 50.49

6 45.27 19 52.90 32 60.79 6 45.18 6 45.77 6 51.20

7 45.77 20 53.09 33 61.07 7 45.63 7 46.21 7 51.56

8 46.15 21 53.30 34 61.20 8 45.96 8 46.67 8 51.97

9 46.43 22 53.39 35 61.20 9 46.25 9 47.04 9 52.33

10 46.73 23 53.56 36 61.36 10 46.49 10 47.45 10 52.74

11 47.01 24 54.15 37 61.51 11 46.82 11 47.67 11 53.16

12 48.09 25 56.06 38 61.72 12 47.34 12 47.86 12 53.60

13 49.19 26 57.64 39 61.71 13 47.61 13 48.04 13 53.75

Table 6.6 Three-class classification experiments with phone dependent PCA transforms of the full feature

vector, its static components and first ( � ) and second order ( ��� ) derivatives.

Again, the results for phone dependent and phone independent PCA transforms are com-

pared in figure 6.9(a) which shows that, similar to the last section, phone independent PCA

transforms reach the same level of classification performance as phone independent PCA trans-

forms already at lower dimensions of the indicating feature. The differences in classification
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performance between these two approaches are approximately the same for both the 2 and 3

class problems.
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(a) Comparison between the classification perfor-

mance of a phone dependent and a phone indepen-

dent PCA transform applied to the full feature vector.
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(b) Classification performance of the various phone

dependent dimensionality reduction schemes for di-

mensions 1 to 13.

Figure 6.9 Relationship between the three-class classification performance of the phone dependent dimen-

sionality reduction schemes and the dimension of the resulting feature. Since
� � � � � and the LDA transform

have a constant dimension of 1 and 2, respectively, they are indicated by straight lines in figure 6.9(b). The

other curves in this figure correspond to PCA transforms of the full feature vector and its various components.

As previously, figure 6.9(b) compares the classification performance for all the phone de-

pendent dimensionality reduction schemes for the first 13 dimensions. Since both the squared

length of the second order derivatives and the 3 class phone dependent LDA transforms have

fixed dimension their performance is indicated by straight lines parallel to the dimension axis.

Figure 6.9(b) shows, that as for the two class problems, phone dependent LDA outperforms all

the other methods giving a percentage of correctly classified frames of 60.84%. This is almost as

good as using the full feature vector and is a considerably better result than the one obtained by

using the 2 dimensional PCA projection of the second order derivatives which gives an average

error rate of 46.86%. It is interesting to note, that the increase in classification performance

in going from the two dimensional phone independent PCA transforms to the two dimensional

phone dependent PCA transforms only gives a small improvement of 0.15% absolute. It can also

be seen from figure 6.9(b) that the squared Euclidean length of the second order derivatives

performs worse than the one dimensional phone dependent PCA transform of the second order

derivatives. Since the squared length of the second order derivative is an inherently model in-

dependent dimensionality reduction scheme the lower straight line in figure 6.9(b) is located at

the same level as in figure 6.8(b).
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6.3 Summary

This chapter investigated the performance of different dimensionality reduction schemes with

the aim to reduce the full 39 dimensional PLP feature vector to a low dimensional indicating

feature that still retains most of the discriminatory information which relates to the distinction

between fast and slow classes of phones. For this purpose, LDA and PCA transforms where

calculated for all the phones simultaneously which gave rise to phone independent dimension-

ality reduction schemes and for all the phones individually which resulted in phone dependent

dimensionality reduction schemes. In addition to these linear methods, the squared Euclidean

length of the full feature vector as well as of some of its subcomponents was used as an indicat-

ing feature. Since the latter does not depend on any transforms that need to be estimated it is

inherently a phone independent indicating feature.

The usefulness of these different schemes was evaluated by performing classification exper-

iments on two and three class problems which were constructed by splitting the instances of

phones into classes of approximately equal size depending on their durational statistics. The

classifiers were ML classifiers which used a single Gaussian with full covariance for each class.

It should be pointed out that the results derived in this way using PCA transforms are specific to

the particular feature vector used here since PCA transforms are not invariant under rescaling.

The experiments showed that for two classes the squared length of the second order deriva-

tive of feature � gave the best phone independent one dimensional classifier while the PCA

transform of the second order derivatives of feature � gave the best one and two dimensional

phone independent classifier for the 3 class problems. In both cases phone dependent LDA

transforms gave the best phone dependent classification with almost no loss in performance as

compared to the full feature vector � . For this reason, phone dependent LDA transforms will

be used to derive the indicating feature in the recognition experiments in the next chapter. In

addition, the squared length of the second order derivatives will also be used. The difference in

performance between SBME-HMM’s with these two types of indicating features will also high-

light the influence on the model performance that results from choosing a model dependent or

a model independent indicating feature.



7

Recognition Experiments

This section describes a number of recognition experiments that were carried out with the SBME-

HMM whose theory was developed in chapter 5. The models in these experiments used the

topologies presented in section 5.6 and were initialised with the methods in sections 5.5.1 and

5.5.2. The phone dependent LDA transforms which were estimated in the 2 class and 3 class

experiments in sections 6.2.2 and 6.2.3 were used in the derivation of the indicating feature
�

and the squared Euclidean length of the second order derivatives was also studied in the exper-

iments. The output pdf’s
!#"(� $ �'& for these indicating features were therefore modelled by single

Gaussians and Gamma densities, respectively, which can be motivated by the same arguments

as in section 5.5.1. There it was shown that the squared Euclidean length of a random variable

that is distributed according to a Gaussian mixture model can be approximated by a Gamma

density while the linear transform of such a random variable is again distributed according to a

Gaussian mixture. For convenience, the squared Euclidean norm of the second order derivative

will be abbreviated by SLSD in the following.

Section 7.1 briefly outlines the type of evaluation metric that will later be applied in recog-

nition experiments while section 7.2 discusses a significance test which is commonly used to

determine whether differences in the output of various recognition systems are due to chance.

Section 7.3 gives a description of the data base on which the recognition experiments will be

performed and section 7.4 discusses the environment in which the experiments were conducted.

Section 7.5 gives the results of experiments with a binary hidden variable � . After describing

different baseline systems in section 7.5.1, section 7.5.2 evaluates the performance of an SBME-

HMM which has been initialised with the RTI method. Section 7.5.3, on the other hand, presents

results for a system initialised with MSI.

This is followed in section 7.6 by a discussion of experiments with a hidden variable � with

3 states. Again RTI and MSI initialised models are investigated in sections 7.6.1 and 7.6.2 and

the computational cost of the full Newton algorithm with line search and backtracking to update

the softmax parameters without a restriction on the size of the training buffers is analysed.

To conclude, section 7.7 summarises the results presented in this chapter.

89
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7.1 Evaluation metric

The metric that is most commonly used to evaluate the performance of speech recognition sys-

tems is the word error rate. This number is calculated by summing over all the errors in the

recogniser output and dividing by the total number of words that are in the reference transcrip-

tion. Three different types of errors are identified whose definitions are given below.

Insertions An insertion occurs if the hypothesis contains a number of words between two cor-

rectly recognised words which does not correspond to a word in the reference transcrip-

tion.

Deletions A deletion is the opposite of an insertion and occurs if the hypothesis does not contain

a word that appears in the reference transcription.

Substitutions This error occurs if a word of the transcription is replaced by another word in the

hypothesis.

These types of errors are visualised in figure 7.1, where the first line gives the correct word

sequence and the lines below contain the word hypotheses of a speech recogniser. Abbreviating

this    speech

this is peach

this is a speech

this is speech

hyp:

hyp:

hyp:

cor:

deletion

insertion

substitution

Figure 7.1 Types of recognition errors.

the number of insertions, deletions and substitutions by � ,
�

and
d

, respectively, the word error

rate is given by the following expression

p�n�n � �
� d � �
� (7.1)

where
�

is the total number of words in the reference transcription. It is interesting to note that

the expression (7.1) can become larger than 100% if the number of insertions is high.

7.2 Significance tests

In order to determine whether the differences in performance between various recognition sys-

tems are due to chance, statistical significance tests will be performed with the matched pair

sentence segment word error (MPSSWE) test. This test has been proposed in (Gillick and Cox,

1989) and has been implemented as part of the NIST scoring package (Pallett et al., 1990). The

MPSSWE test looks for segments in the hypothesis of two recognition systems whose errors can
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be assumed to be statistically independent. If
� �� and

� �
� are the errors of system

p
and



on

segment � then, because of the choice of the segments, the
� �� s � �

� are independent identically

distributed samples of a distribution which, in this case, is assumed to be a single Gaussian. The

objective of the significance test is now to determine whether the null-hypothesis, that the mean

of this distribution is zero, can be accepted. If this is the case then the differences in performance

of the two systems will not be considered to be statistically significant. If the assumption that

the
� �� s � �� are samples of a Gaussian with zero mean is correct, then it is well known (Lass

and Gottlieb, 1971; Kendall and Stuart, 1973c) that the following value is distributed according

to a Student-t distribution

� � Z�
�
� �

(7.2)

where Z� and
d

are the estimated mean and the unbiased variance estimate of the samples
� �� s � �� , respectively, i.e.

Z� � � ��KC � � �� s � ��
� (7.3)

d � � ��KC � " Z� s "�� �� s � �
� &W& �

"�� s p & (7.4)

where
�

is the total number of samples. Since the Student-t distribution converges to a Gaussian

with zero mean and unit variance for
�����

, the Student-t distribution can be replaced by the

normalised Gaussian for large
�

. Now the probability of observing the value � (7.2) under the

null hypothesis is calculated as follows


 �
�
� � � 
 �

� ��� � � �
(7.5)

This is a two-tailed test since the absolute value of � rather than � itself is considered in (7.5). If

the probability in (7.5) lies below a certain threshold the null-hypothesis will be rejected and the

differences between the two recognition systems will be considered to be statistically significant.

A typical value below which differences are considered to be significant is 0.05. This is, for

instance, the confidence level which is used by NIST in the DARPA evaluations.

7.3 The 1997 Broadcast News task

The recognition experiments in the following sections were conducted on the 1997 Broadcast

News task (Pallett et al., 1998) which consists of non-overlapping training, test and development

test sets. The training set is made up of approximately 100 hours of manually transcribed news

broadcasts and the test set is a collection of 158 variable length excerpts from a number of

American TV and radio broadcasts which have been concatenated into a single file. The test set

has a total duration of about 3 hours and contains 32 834 words. Only the training and test sets

were used in the experiments in this chapter.

The Broadcast News task consists of different types of data which have been divided into 7

categories, denoted by F0,F1, ����� ,F5 and FX, respectively. Table 7.1 gives the definition of these
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so-called F-conditions and the number of words in each of them for the 1997 Broadcast News

test set. According to table 7.1, planned speech is the most prominent condition in the test set

condition description nr. words

F0 planned, low noise broadcast speech 13197

F1 spontaneous broadcast speech 6566

F2 speech over telephone channels 4882

F3 speech in the presence of background music 1571

F4 speech under degraded acoustic conditions 3350

F5 speech from non-native speakers 669

FX all other speech 2599

total 32 834

Table 7.1 Definition and size of F-conditions in the 1997 Broadcast News task.

which constitutes approximately 40% of the test set. This is followed by spontaneous speech

with a share of about 20%. The relatively high proportion of the F1 condition makes the 1997

BN task a good starting point for investigating models designed for spontaneous speech.

Each segment in the test set is labelled with exactly one of the F-conditions in table 7.1

although some of them could have been labelled with more than one. Telephone speech, for

instance, is very often spontaneous and could therefore be labelled with F1 as well as F2. How-

ever, a single condition is assigned to each speech segment resulting in non-overlapping sets of

segments.

As part of the development of the CU-HTK system (Woodland et al., 1998) for the 1997

Broadcast News evaluation, parts of the manual transcription of the training data were corrected.

This was done with the help of a forced alignment which highlighted segments exhibiting a

mismatch between acoustic models and manual transcription. Each of these segments, whose

alignment either produced a low average likelihood score or did not complete at all, was checked

manually and either corrected or removed from the training data. These corrected transcriptions

were used to train the models in the following experiments.

In contrast to the 1996 Broadcast News task (Pallett et al., 1997), the 1997 task was an

unpartitioned evaluation. This means that instead of a number of acoustically homogeneous

segments the test data were provided in one unsegmented 3 hour audio file which the partic-

ipants had to split into segments themselves. The segments which were used in the CU-HTK

system (Hain et al., 1998) form the basis for the recognition experiments that will be described

in the following sections.

The dictionary of the recogniser contained about 65000 words some of which had multiple

pronunciations. No pronunciation probabilities were used in the experiments.
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7.4 Experimental set-up

The experiments were performed by rescoring tri-gram lattices which were generated as part

of the CU-HTK system in the 1997 Broadcast News evaluation. The models used were gender

independent cross-word triphone models with Gaussian mixtures models for the output pdf’s for

feature vector � . The mixture components had diagonal covariance matrices. The word insertion

penalty and the language model scaling factor were constant in all the experiments.

The recognition experiments were run on a cluster of 19 LINUX machines with Pentium 3

processors of clock speeds between 700MHz and 1GHz. At most 11 of these machines were used

to rescore the lattices in parallel and the CPU times were subsequently combined by weighting

the CPU time of each process by the ratio between the machine’s clock speed and a clock speed

of 1GHz. These were then summed up to give the approximate CPU time that would have been

used on a 1GHz machine. This value was used to calculate the real time factor of the recogniser

by dividing through the total duration of the test set.

The training of the models involved two separate stages. In the first stage 12 processes were

run in parallel on the same LINUX cluster as above to gather the statistics of the model param-

eters on the training data. The 12 resulting accumulators which had a total size of between

500MB and 2GB were temporarily stored on disk. In the second stage these accumulators were

then combined to obtain the overall statistics of the model components which completed the

expectation step of the EM algorithm. Subsequently, these statistics were used to update the

model parameters with the maximisation step of the EM algorithm. In contrast to the first stage,

the second stage of the parameter update was not performed in parallel but on one model after

another in either a single process or a sequence of processes.

7.5 Experiments with 2 hidden states

In the first set of recognition experiments the hidden variable � was assumed to have two states

and consequently there were two output pdf’s
!#" �)$ ��	 �)& for each state � . The only exception were

the silence and short pause models which were not assumed to exhibit fast and slow dynamics

and whose hidden variables � had therefore only one state. In this case, the posterior proba-

bilities * " �+$ � 	��'& were set to one and the SBME-HMM’s for these phonetic units were therefore

equivalent to a standard HMM with an additional stream
�
. This section will discuss the perfor-

mance of such SBME-HMM’s using different initialisation methods and recognition topologies.

First, section 7.5.1 will give an overview of the different baseline systems which the models

in later sections will be compared to.

Section 7.5.2 and 7.5.3 discuss recognition experiments with models that were initialised

with the relabelled training initialisation and the median split method from sections 5.5.1 and

5.5.2, respectively. These models used a 12 mixture baseline system for initialisation and since

they had two output pdf’s
!#" �%$ �'	 �%& per state � , with the exception of short pause and silence

models, the number of parameters in these SBME-HMM’s was comparable to that in a 24 mixture

baseline system.
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The size of the training data buffers for the softmax functions in these experiments was

restricted to 2000 samples. This resulted in very rapid model updates as compared to using

the complete training data. In contrast to an HMM of roughly the same size for which the

parameter update following the accumulation of the training statistics was completed in about

70 CPU seconds, the parameter update for the SBME-HMM models took about 200 CPU seconds.

While this is an almost 3 fold increase in computational cost the overall cost is still very low and

a detailed analysis of convergence properties in the softmax parameter updates has therefore

been postponed to section 7.6 where higher dimensional indicating features and unrestricted

sample sizes will be used.

7.5.1 Baseline systems and preliminary experiments

This section presents recognition experiments with three different model sets. The first model

set has 12 Gaussian mixture components per state and 24 mixtures for the states of the silence

and short pause models. From this model two others were derived which use approximately

twice as many parameters as the 12 mixture system. For the first model the HMM’s in the

12 mixture system where initially duplicated and then trained on relabelled training data to

derive speaking rate dependent models. In comparison to chapter 6, here the training data were

not relabelled depending on the durational statistics of monophones. Instead the decision if

a phonetic unit was slow or fast was based on the durational statistics of each triphone. This

had to be done, because applying the monophone thresholds to the triphones in the training set

resulted occasionally in very biased classes, some of which were even empty. To increase the

number of observations of each triphone the statistics of models which shared the same physical

model were combined. The fast/slow instances of each HMM that were trained on the resulting

phonetic transcriptions were then recombined in a parallel topology with 6 states per HMM as

in (Iyer et al., 1998) to give a single HMM for each phonetic unit. No further EM iterations were

performed on this model.

Another model was derived from the 12 mixture baseline system by gradually increasing

the number of mixture components. This model was trained 4 iterations at a time after which

the number of mixtures for all the models were increased by two with the model split com-

mand “MU” which is implemented by the HHEd program in HTK (Young et al., 2000). The total

number of iterations to go from the 12 mixture system to the 24 mixture system was therefore

24. The recognition performance for the three different models can be found in table 7.2. The

Overall F0 F1 F2 F3 F4 F5 FX xRT

12 mix base 21.8 12.4 20.5 31.5 31.5 24.3 27.5 43.9 2.69

2 parallel paths 21.8 12.5 20.5 30.5 32.8 25.0 26.9 43.7 3.81

24 mix base 21.3 12.2 20.3 29.9 32.0 24.4 25.7 41.7 3.94

Table 7.2 Recognition performance of base line systems.

first 8 columns contain the overall word error rate as well as the error rates for the different
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F-conditions and the last column gives the total CPU time used expressed by the realtime factor

of the system. The first row in table 7.2 contains the results for the 12 mixture base-line system.

This is a gender independent model set that was developed for the CU-HTK system in the 1997

Broadcast news evaluation (Woodland et al., 1999). This model set contains 6684 states which

are shared among a total of about 95 000 HMM’s. Since each state has roughly 950 parame-

ters, the total number of parameters in the model set was approximately 6.3m. As mentioned

before, the phonetic units of this model are cross-word triphones and the acoustic features are,

as in chapter 6, PLP vectors with first and second order derivatives. Since this model does not

distinguish between telephone and wideband speech, its performance is slightly worse than that

of the gender independent first pass of the CU-HTK system which was reported to give a word

error rate of 21.4%.

The second row in table 7.2 gives the results for the parallel model which was described

above. It is perhaps surprising that the performance of this model is the same as for the 12

mixture baseline system, although the parallel model has twice as many parameters. However,

this is most likely the result of the fact that this parallel model was derived by training its

branches individually without performing any additional EM iterations on the combined model.

This result is therefore worse than the results reported in (Iyer et al., 1998) which compared a

parallel model to a non-parallel model with the same number of parameters. As compared to the

parallel model here, the experiments in (Iyer et al., 1998) showed no difference in performance

between a parallel and a non-parallel model with the same number of parameters, only when

state tying was introduced between states of different branches in the parallel topology could a

slight reduction in error rate be achieved.

Another experiment, this time starting from a 6 mixture baseline system, also showed that

training a parallel model on relabelled training data without subsequent EM updates resulted in

suboptimal performance. Although the parallel model, with a WER of 22.9%, gave an improve-

ment over the baseline system which had a WER of 23.8%, the performance of this system is

worse compared to the WER of 21.8% for the 12 mixture baseline system in table 7.2.

The model with 24 mixture components which was derived from the 12 mixture model

by mixture splitting gives the best performance in table 7.2. It is interesting to note that the

relationship between the number of parameters in the model and the WER was not monotonic.

In fact, by increasing the number of mixtures from 18 to 20 with HHEd resulted in a slight

performance degradation from a WER of 21.4% to a WER of 21.5%.

7.5.2 Relabelled training initialisation

The experiments in this section were performed with models that were initialised with the rela-

belled training initialisation described in section 5.5.1. The rate dependent models, which are

necessary for this type of initialisation, were the same that were used to create the 12 mixture

parallel model baseline system in the last section.

To see the effect of training different system components the training of the models was

divided into steps of 2 iterations each alternating between updating the
!#"(� $ �'& and softmax
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parameters and updating the parameters of the output pdf’s
!#" �)$ ��	 �)& . Table 7.3 gives the word

error rates at each stage of the training using the squared length of the second order derivative

as an indicating feature. Here error rates are reported for the three different model topologies

mentioned in section 5.6, namely the full and parallel topology and the topology where the

variable � has been factored out. The rows corresponding to these topologies are denoted by

“full”, “par” and “fact”, respectively. In addition, table 7.3 also shows the CPU usage, expressed

by the realtime factor, in the column denoted by “xRT” for each of the recognition runs. Finally,

the last column of this table contains the average log likelihood per frame on the training data of

the factorised model after each parameter update. The average log likelihood for the initialised

model, which is not given in this table, was -67.60. As mentioned in section 5.6, the parameters

of the parallel model were derived from a trained factorised system.

updated top Overall F0 F1 F2 F3 F4 F5 FX xRT like!
"(� $ ��& fact 21.7 12.6 20.5 30.7 30.9 24.4 27.5 42.6 3.74

+ full 21.7 12.6 20.5 31.0 30.9 24.5 27.5 42.9 4.59 -67.19

soft par 22.0 12.7 20.7 31.4 32.0 25.3 26.3 44.0 4.40

fact 21.3 12.5 19.9 30.6 31.6 23.6 26.9 42.0 3.75!#" �%$ �'	 �%& full 21.4 12.5 19.8 30.7 31.9 23.9 25.9 42.2 4.33 -66.87

par 22.0 12.6 20.5 31.5 32.7 25.0 26.9 43.6 4.43!
"(� $ ��& fact 21.4 12.6 20.0 30.6 31.7 23.7 27.1 42.1 3.30

+ full 21.5 12.6 20.0 30.9 31.9 23.6 26.9 42.5 4.46 -66.86

soft par 22.2 12.7 20.8 32.2 32.7 25.2 26.8 44.0 4.38

fact 21.3 12.6 19.7 30.1 32.0 23.6 25.9 42.4 3.51!#" �%$ �'	 �%& full 21.4 12.7 19.8 30.2 32.1 23.6 25.9 42.4 4.30 -66.74

par 22.2 12.9 20.5 31.9 32.1 25.0 26.5 44.9 4.34

Table 7.3 Recognition performance for an RTI initialised SBME-HMM with an SLSD indicating feature and

2 � -states.

Table 7.3 shows that the likelihood on the training data increases with each iteration which

results, on the other hand, in a reduction in error rate. The biggest increase in log likelihood

occurs in the first two iterations on the softmax and
!#"(� $ �'& parameters where the initial log

likelihood of -67.60 increases to -67.19 which corresponds to an increase in likelihood by a

factor of 1.5. In the following two iterations on the
!
" �%$ ��	 �)& parameters the likelihood increase

is smaller but still noticeable at a factor of 1.3. These two iterations are also important in terms

of the performance of the system which increases by 0.4% and 0.3% absolute for the factorised

and full topology, respectively. For the parallel topology the error rate stays constant at 22.0%

which is a much worse performance than that of the other two topologies. Enforcing a slowly

varying hidden variable for a model whose parameters were derived from a trained factorised

model therefore seems to be detrimental.

It is interesting to note, that the main increase in performance occurs on the spontaneous
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speech condition while performance on F0 remains more or less constant over all the iterations.

One can also see from table 7.3 that performance of the full topology model was consistently

worse, although not by much, than that of the factorised model while the increased size of the

search space meant that recognition runs for the full topology were slower by about a factor

of about 1.2. The third parameter update in table 7.3 also shows that there is very little gain

in likelihood in the second two iterations on the softmax and
!#"(� $ ��& parameters and that their

likelihoods are already saturated.

Table 7.4, again, gives the results for experiments with a binary hidden variable � . This time,

however, the indicating feature was derived from feature � by applying the phone dependent

LDA transforms that were estimated in the experiments in section 6.2.2.2. Again the parameters

of the model were updated in steps of two iterations each on either the softmax and
!#"(� $ �'&

parameters or the parameters of the output pdf’s
!#" �%$ ��	 �)& . Here the average log likelihood of the

initial model on the training data was -66.08. This might, at first, seem like an improvement over

the initial system which uses SLSD as an indicating feature because the log likelihood in this case

was -67.60. However, the likelihoods of these two systems are not directly comparable as the

LDA derived indicating features occupy a much smaller part of the feature space than the SLSD

values. As a result their variances tend to be smaller and their likelihoods are therefore usually

larger. In contrast to the experiments with SLSD as an indicating feature, the experiments with

updated top Overall F0 F1 F2 F3 F4 F5 FX xRT like!
"(� $ ��& fact 21.5 12.4 20.4 30.7 30.9 24.0 28.0 42.1 3.66

+ full 21.5 12.3 20.5 30.5 31.6 24.3 27.5 42.3 4.52 -65.90

soft par 21.6 12.4 20.2 30.7 31.2 23.9 27.2 43.7 4.45

fact 21.2 12.4 20.2 29.9 30.8 23.9 26.2 41.6 3.66!#" �%$ �'	 �%& full 21.3 12.3 20.4 30.1 30.9 24.0 26.5 41.9 4.58 -65.59

par 21.5 12.5 19.7 30.7 31.4 24.7 25.3 43.0 4.43!
"(� $ ��& fact 21.2 12.3 20.4 30.1 30.9 23.8 26.3 41.5 3.70

+ full 21.3 12.4 20.5 30.3 31.0 23.9 26.8 41.3 4.52 -65.59

soft par 21.6 12.5 19.9 30.9 31.8 24.6 25.9 43.2 4.37

fact 21.1 12.4 19.9 29.9 31.1 23.8 26.5 41.2 3.64!#" �%$ �'	 �%& full 21.1 12.4 19.8 30.1 31.4 23.7 26.8 41.4 4.46 -65.47

par 21.6 12.5 20.1 30.7 31.9 24.7 27.4 42.2 4.57

Table 7.4 Recognition performance for an RTI initialised SBME-HMM with an LDA derived indicating feature

and 2 � -states.

the LDA derived features show a smaller gain in likelihood in the first two iterations which is

about a factor of 1.2. Also the overall increase in log likelihood after a total of 8 iterations

is smaller at 0.61 absolute as compared to 0.86 in the SLSD case. The decrease in error rate,

however, is larger giving an overall error rate of 21.1% for the factorised and full topologies. As

in table 7.3 the parallel topology performs worst. Here, however, the difference between full and
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factorised topologies on one side and the parallel topology on the other is not as big as in table

7.3. Especially after the first two iterations all three systems in table 7.4 show approximately the

same performance. The parallel topology seems to be slightly biased towards the F1 condition

which becomes even more apparent after the following 2 iterations. Here the parallel topology

yields the worst performance on the F0 condition while its performance on the F1 condition

is superior to that of the other two topologies. Later iterations, however, seem to remove this

advantage of the parallel topology and in fact after 8 iterations full and factorised topology

perform better on the spontaneous speech condition than the parallel topology.

The experiments in this section show a number of things. First by comparing table 7.3 and

table 7.4, one can see that phone dependent LDA derived indicating features result in better

performance than the SLSD parameters. It is also apparent that the parallel topology whose

parameters were derived from a trained factorised system gives the worst performance in both

cases. For LDA derived features, however, it seems that the performance degradation is less dra-

matic resulting at one point in the training procedure in a model that is heavily biased towards

spontaneous speech on which it outperforms the other two topologies. This hints at the possi-

bility that an indicating feature which is strongly correlated with phone duration will result in a

factorised or full model which still has features of a parallel topology. The run times of parallel

and full topology systems in all the experiments are approximately the same and are by a factor

of about 1.2 higher than for the factorised system. The run times for the LDA derived features

and SLSD are also approximately the same. Overall the factorised system with phone dependent

LDA derived features gives the best performance both in terms of WER and run time.

7.5.3 Median split initialisation

This section describes experiments which used the MSI method in section 5.5.2 to initialise the

models. The system on which initialisation was based, in this case, was again derived from the

12 mixture baseline system. This time the indicating feature was added as an additional stream

to the baseline system with a single Gamma or Gaussian output pdf
!
"(� $ ��& per state. This model

was subsequently trained with two EM iterations to learn the proper output pdf’s associated with

the new stream and were then used to apply MSI to obtain an SBME-HMM with a binary hidden

variable � . This procedure therefore resulted in a model which had about the same number of

parameters as the 24 mixture baseline system in section 7.5.1. Again, tables 7.5 and 7.6 give

the results for SBME-HMM’s with SLSD and LDA as indicating features, for various stages in the

training process. As before, each model was derived by performing two iterations on the model

parameters indicated by the entries in the first column. In contrast to tables 7.3 and 7.4, the

first parameters to be updated in these experiments where the output pdf’s
!#" �%$ �'	 �%& . This is the

case because the median split initialisation operates on the softmax functions and leaves the!#" �%$ �'	 �%& unchanged. Comparing table 7.3 and 7.5, one can see that already two iterations after

the initialisation the SLSD median split system outperforms the fully trained SLSD system that

was initialised with a model trained on the relabelled training data. Subsequent iterations leave

the performance for the factorised and full topology virtually unchanged, although the average
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updated top Overall F0 F1 F2 F3 F4 F5 FX xRT like

fact 21.1 12.3 20.2 29.9 31.0 23.9 26.0 41.1 3.46!#" �%$ �'	 �%& full 21.1 12.3 20.2 30.0 31.0 23.8 26.2 40.8 4.34 -66.73

par 22.7 13.4 21.1 32.3 32.5 25.6 29.0 44.5 4.40!#"(� $ ��	 �)& fact 21.1 12.3 20.2 29.8 30.7 23.9 25.9 41.1 3.46

+ full 21.2 12.3 20.3 30.0 30.9 23.9 26.2 41.4 4.36 -66.71

soft par 23.3 13.7 22.2 32.9 33.1 26.4 29.9 45.4 4.56

fact 21.1 12.3 20.0 30.0 31.5 24.1 25.4 40.7 3.54!#" �%$ �'	 �%& full 21.1 12.2 20.0 30.3 31.3 23.8 25.4 41.0 4.38 -66.59

par 23.4 13.6 22.0 33.4 32.8 26.5 30.0 46.0 4.35!#"(� $ ��	 �)& fact 21.1 12.3 20.0 30.1 31.3 24.1 25.7 41.0 3.53

+ full 21.1 12.3 20.1 30.3 31.4 23.8 25.7 40.9 4.24 -66.59

soft par 23.6 13.9 22.0 33.8 33.5 26.7 29.4 45.7 4.53

Table 7.5 Recognition performance for an MSI initialised SBME-HMM with an SLSD indicating feature and

2 � -states.

log likelihood still increases slightly. As in previous experiments the performance of the parallel

topology becomes worse. In this case the discrepancy between the performance of the factorised

and parallel model whose parameters were derived by training a factorised system becomes

even more pronounced with a difference of 2.5% absolute as compared to 0.9% previously. This

indicates that the models derived from the relabelled training data are still closer to a parallel

topology, even after a number of iterations, than in the case of a median split initialised model.

Table 7.6 gives the results for the SBME-HMM with LDA derived indicating features. Just

as before, this model was initialised from a model with the indicating feature added as a new

stream which was trained with two iterations. This table shows that also for the LDA derived fea-

tures the performance after only two iterations is the same as for the fully trained RTI initialised

model in table 7.3. Here, however, subsequent iterations decrease the error rate even further

resulting in a gain over the fully trained system in table 7.4 of 0.3% absolute. As in the case of

the SLSD features, one can see that the difference in performance between the factorised and

parallel topology is much larger than for the LDA model in the last section. This again hints at

the fact that median split initialisation creates models which are “less” parallel in structure than

models that have been initialised with relabelled data. It is interesting to note that increased

performance, in this case, does not relate to an increase in the average likelihood of the training

data. In fact, the likelihoods in tables 7.4 and 7.6 are virtually identical.

While all the experiments discussed so far in this chapter trained different model parameters

separately, in the experiments in table 7.7 all the parameters were trained at the same time.

The first column in table 7.7 repeats the baseline performance mentioned in table 7.2 for the 24

mixture baseline system, while the second and third row give the results for SBME-HMM’s with

SLSD and LDA derived indicating features initialised with the RTI method. The fourth and last
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updated top Overall F0 F1 F2 F3 F4 F5 FX xRT like

fact 21.1 12.2 20.1 30.2 30.4 24.2 27.7 40.7 3.50!#" �%$ �'	 �%& full 21.2 12.2 20.0 30.1 30.4 24.4 28.1 41.1 4.50 -65.57

par 22.3 13.0 21.0 32.5 32.0 24.9 28.3 42.8 4.42!
"(� $ ��& fact 21.1 12.2 20.0 30.0 30.2 24.1 28.3 40.7 3.70

+ full 21.1 12.2 20.1 30.0 30.4 24.1 27.8 40.9 4.53 -65.57

soft par 22.4 13.2 20.7 32.4 32.4 25.2 29.1 43.2 4.30

fact 20.8 12.2 19.6 29.6 29.9 23.9 26.6 40.1 3.49!#" �%$ �'	 �%& full 20.8 12.2 19.6 29.6 30.1 24.1 26.3 40.4 4.43 -65.44

par 22.5 13.4 20.8 32.0 33.3 25.3 28.1 43.4 4.42!
"(� $ ��& fact 20.8 12.2 19.7 29.7 29.9 23.8 26.9 40.2 3.35

+ full 20.8 12.2 19.7 29.6 30.1 23.8 26.6 40.2 4.32 -65.44

soft par 22.4 13.4 20.7 32.2 31.9 25.1 28.6 43.0 4.31

Table 7.6 Recognition performance for an MSI initialised SBME-HMM with an LDA derived indicating feature

and 2 � -states.

row, on the other hand, give the results for models initialised with the MSI method. Only results

for the factorised model are reported in this table since this was shown to be the best model

in previous experiments. For the RTI initialised models 4 full iterations were performed and 6

for the MSI initialised models which is a rather small number as compared to the 24 iterations

that are needed to derive the 24 mixture from the 12 mixture baseline system. The results in

table 7.7 show that training the SBME-HMM model parameters in this way gives a small but

consistent improvement over the performance in tables 7.3 and 7.4.

Overall F0 F1 F2 F3 F4 F5 FX xRT

24 mix base 21.3 12.2 20.3 29.9 32.0 24.4 25.7 41.7 3.94

SLSD RTI (4 it.) 21.2 12.6 19.8 30.4 31.3 23.5 25.4 41.3 3.42

LDA RTI (4 it.) 21.0 12.3 19.7 29.9 31.3 23.3 27.4 41.5 3.65

SLSD MSI (6 it.) 21.0 12.3 20.1 29.6 32.0 23.7 25.3 41.0 3.63

LDA MSI (6 it.) 20.7 12.1 19.6 29.5 30.3 23.4 26.0 40.2 3.74

Table 7.7 Recognition performance for SBME-HMM’s with factorised topology and 2 � -states whose parame-

ters were trained simultaneously.

It is interesting to note that although the classification experiments in chapter 6 showed

that the duration of vowels was more strongly correlated with the indicating features than the

duration of consonants, it was not sufficient to split the states of the vowels exclusively. Table

7.8 gives the results for an SBME-HMM with a factorised topology where only triphones with

a vowel in the centre were initialised with the median split method. Table 7.8 shows that this

model’s performance is by 0.6% absolute worse than that of the model in the last row of table
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Overall F0 F1 F2 F3 F4 F5 FX xRT

LDA MSI 21.3 12.4 20.0 30.3 30.8 24.4 27.8 41.0 2.89

Table 7.8 Recognition performance for an MSI initialised SBME-HMM with an LDA derived indicating feature

where only vowels had two � -states.

7.7. However, the number of parameters in the model is considerably smaller than in any of the

models in table 7.7. Comparing table 7.8 with the first row in table 7.7 shows therefore that it is

possible to achieve the same performance with an MSI initialised SBME-HMM as with a standard

HMM that has a much higher number of parameters. This is also reflected in the realtime factor

in table 7.8 which is by more than one smaller than for the 24 mixture baseline system in table

7.7.

Finally table 7.9 gives the significance levels between the different systems in table 7.7. The

numbers in this table give the probability in percent of observing the output of the two systems

under the null-hypothesis. A high value in this table therefore indicates that the differences

between systems are not statistically significant. Since the null-hypothesis is usually rejected

24 mix base SLSD RTI LDA RTI SLSD MSI LDA MSI

24 mix base � 70.4% 12.1% 19.0% 0.1%

SLSD RTI � � 15.3% 27.6% 0.1%

LDA RTI � � � 94.4% 3.4%

SLSD MSI � � � � 2.7%

Table 7.9 Significance levels of the differences between the systems in table 7.7.

below the 5% level, table 7.9 shows that the systems in the first 4 rows of table 7.7 are essentially

the same. The MSI initialised SBME-HMM model with an LDA derived indicating feature, on the

other hand, is statistically significantly different from each of these models. The increase in WER

over the 24 mixture baseline of about 2.8% relative is even significant at the 0.1% level.

7.6 Experiments with 3 hidden states

Preliminary experiments with a hidden variable � with 3 states showed that reducing the size

of the training buffers to a maximum of 2000 samples per softmax function had a detrimen-

tal effect if the dimension of the indicating feature was greater than one. In this case, after a

number of EM iterations on the softmax parameters alone another iteration on these parame-

ters could sometimes reduce the likelihood of the training data. Although this effect was not

observed to be very strong it was decided to lift the restriction of limited buffer sizes to ensure

that 2 dimensional indicating features were not at a disadvantage as compared to one dimen-

sional indicating features. Not restricting the buffer sizes meant that all the data points
� 2 and8 2 " � 	760& where stored in the accumulators as long as the state likelihood 8 2 " � & was above a certain
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threshold. This was chosen to be the same threshold as the one that decides which data points

were accumulated for the other model components. The resulting accumulators contained up to

84 000 data points and the total size of the accumulators thus derived was about 2GB. Since this

amount of accumulated data could not be read into memory all at once, the parameter update

had to be performed on a number of mutually exclusive parameter sets. Since several states

can share the same softmax functions the information whether a softmax function had already

been updated needed to be stored as well so that a subsequent parameter update did not train

the same model twice. The parameter update was split into 10 steps which resulted in program

sizes of between 400 and 600 MB.

7.6.1 Relabelled training initialisation

The first set of experiments in this section uses the RTI method to initialise the model param-

eters. As in section 7.5.1 the � -state labels are derived by dividing the instances of triphones

which share the same physical model into classes of approximately equal size depending on

their durational statistics. Subsequently, 4 iterations were performed on the relabelled training

data to give robust estimates of the � -state dependent models. These models were then com-

bined according to the RTI method to give models which used SLSD as an indicating feature

as well as features derived from the phone dependent LDA transforms in section 6.2.3.2. Since

these transforms are 2 dimensional for a 3 class problem this resulted in 2 dimensional indicating

features as compared to SLSD whose feature vectors are one dimensional. Once RTI was com-

pleted, only the
!#"(� $ �'& and softmax parameters were initially trained with 2 EM iterations. This

was done to allow the softmax functions for the 2 dimensional indicating features to adapt to

the statistics of the initialisation, before being trained in combination with the remaining model

parameters. After the first 2 EM iterations another 4 iterations were performed on the complete

parameter set. The total number of iterations including the ones during the initialisation phase

were therefore 10. This slight increase in the number of iterations as compared to the training

in section 7.5.2 tried to make up for the much larger number of iterations that would be used

if the mixtures in a 12 mixture baseline system were increased to 36 using the same method by

which the 24 mixture baseline system in section 7.5.1 was derived. Since each addition of 2 new

mixture components requires 4 iterations in this method, the total number of iterations in this

case would be 48.

Table 7.10 gives the average log likelihoods for the � -state dependent models during the first

4 iterations of the RTI method. Here, the column named “init” gives the likelihood of the model

that was derived by simply duplicating the models in the original 12 mixture baseline system.

Since the models for the different � -states are the same in this case, this is the same number as

for the 12 mixture baseline system. Subsequent iterations give an increase in log likelihood by

about 1.5% relative which seems to be reasonably saturated after 4 iterations.

Table 7.11 gives the average log likelihoods as well as some other information derived from

the training of models that used SLSD as an indicating feature. The column named “init” in this

table gives the likelihood of the model that was derived with RTI from the models that have
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init 1 2 3 4

-65.30 -64.58 -64.46 -64.39 -64.35

Table 7.10 Log likelihoods of a standard HMM trained on relabelled training data.

EM iteration

soft+
!#"(� $ �'& all parameters

init
1 2 3 4 5 6

log like -67.43 -66.96 -66.95 -66.64 -66.46 -66.34 -66.27

nr. iter. � 5.38 4.09 3.46 3.90 3.77 3.63
� � 0.813 0.754 0.711 0.741 0.732 0.722

CPU sec. � 0.33 0.28 0.25 0.27 0.27 0.27

Table 7.11 Log likelihoods and softmax parameter update information for an RTI initialised SBME-HMM

with an SLSD indicating feature and 3 � -states.

been trained on the relabelled training data. Comparing this with the average log likelihood of

the initial model in the case of 2 hidden states, which was -67.60, one can see that the increase

in hidden states results in a small increase in likelihood. Also, subsequent iterations preserve

this difference as can be seen by comparing table 7.11 to table 7.3. The first update in table

7.3 was performed on the
!#"(� $ �'& and softmax parameters by applying two EM iterations. The

log likelihood of -67.19 therefore corresponds to the value of -66.95 in table 7.11. The log

likelihood at the bottom of table 7.3, which is -66.74, approximately corresponds to the log

likelihood of the model in table 7.11 for the fourth iteration, which is -66.46. Although this

model’s softmax parameters where trained with one more iteration, the small gain in likelihood

affected by updating the softmax parameters in later stages of the training suggests that this is a

fair comparison. Overall, the introduction of an additional hidden state therefore has a positive

effect on the likelihood of the training data.

Table 7.11 also contains information about the average number of iterations that were

needed to update the softmax parameters, which is given in the second row of this table. Fur-

thermore table 7.11 gives the average value of the learning rate � and the average CPU time

needed for the softmax parameter update during the various stages of the training process. As

previously, the CPU time is measured on a 1GHz Pentium 3 processor.

It can be seen from table 7.11 that the average number of iterations in the softmax parameter

update decreases over the first three EM iterations. In the fourth iteration, however, one can

observe a slight increase in this number. This is a consequence of the fact that up until the

third EM iteration the unaltered
!#" �)$ �0	���& output pdf’s are used in the expectation step of the EM

algorithm and the classification problems on which the softmax functions are trained remain

therefore more or less unchanged. After the first update of the
!#" �%$ �%	��'& output pdf’s in the

third EM iteration, however, these classification tasks are redefined. Since the softmax functions

are not as well adapted to the new classification problems, slightly more iterations on these
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parameters are needed to find the optimal solution.

Changes in the number of iterations on the softmax parameters directly correlate to changes

in the average number of CPU seconds and they also correspond to changes in the average values

of the learning rate. It seems that further away from the optimal solution the learning rate is

higher and decreases in later stages of the training process. This is a similar effect as the one

observed in the training of the softmax functions with an eighth degree exponential polynomial

on the training set in figure 5.2(a). Here, figure 5.7(a) in section 5.4 showed that after a full

step in the Newton direction in the first iteration the learning rate slowed down considerably.

In the example in section 5.4, however, the learning rate increased again in later iterations. The

reason why this is not observed here is probably due to the relatively low complexity of the

classification tasks in the experiments in table 7.11 as compared to the one in figure 5.2(a).

Overall the computational cost involved in the softmax parameter updates is relatively low in

table 7.11 resulting in a total of 2270 CPU seconds for the complete model update in the first

iteration and 1813 CPU seconds for the update in the final iteration, which is a decrease in

computational cost of about 20%.

Table 7.12 is the equivalent of table 7.11 and gives the same information for models that

used LDA derived indicating features, instead of SLSD, and softmax functions with linear and

quadratic polynomials. The degree of the polynomials in this table is contained in the column

EM iteration

deg soft+
!
"(� $ ��& all parameters

init
1 2 3 4 5 6

log like -66.776 -66.452 -66.439 -66.123 -65.946 -65.837 -65.763

nr. iter. � 5.30 4.07 3.43 3.73 3.57 3.43
1 � � 0.811 0.753 0.708 0.728 0.718 0.707

CPU sec. � 0.80 0.66 0.58 0.62 0.58 0.57

log like -66.776 -66.447 -66.435 -66.118 -65.946 -65.835 -65.762

nr. iter. � 5.99 4.50 3.81 4.29 4.17 4.01
2 � � 0.826 0.768 0.729 0.751 0.743 0.733

CPU sec. � 2.39 1.92 1.68 1.78 1.74 1.68

Table 7.12 Log likelihoods and softmax parameter update information for an RTI initialised SBME-HMM

with an LDA derived indicating feature and 3 � -states.

denoted by “deg”. In order to be able to compare the average log likelihoods of the softmax

functions with linear and quadratic polynomials these values are given in table 7.12 up to the

third decimal position. The phone dependent LDA transforms used here are the same as in sec-

tion 6.2.3.2. Since these were derived for a 3 class problem, their output is 2 dimensional. The

polynomials in the softmax functions have therefore two indices and the number of parameters

in three softmax functions with 2 linear polynomials is

 � 	 � �

which increases to

 � �J� p�


for the quadratic polynomials. The latter models therefore use twice as many parameters and

studying the computational cost of updating the different models will give an indication as to
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how the computational cost of the softmax parameter updates scales with model complexity.

The column denoted by “init” in table 7.12 gives, again, the average log likelihood of the

training data under the model that has been initialised based on the models that were trained

on the relabelled training data. Since the polynomials of the softmax functions both for the

linear and quadratic case were initialised to be identically 0, the two likelihoods in the “init”

column are exactly the same. It is interesting to note, that the initial likelihood in this table is

higher than the one in table 7.11 although the dimension of the indicating feature is higher. This

is again a result of the fact that the LDA transformed indicating features occupy a much smaller

area in the feature space than the SLSD features and their likelihoods are therefore higher.

Table 7.12 shows, again, that successive iterations increase the likelihood of the training

data. Here the first iteration on the
!#"(� $ ��& and softmax parameters gives an improvement in log

likelihood of about 0.3. This is similar to the increase in the third iteration which updates all the

model parameters which illustrates that the softmax functions and the
!#"(� $ �'& output pdf’s make

a substantial contribution to the overall model fit although, typically, they tend to be saturated

fairly early in the training process.

Table 7.12 also shows that there is little improvement in the log likelihood by using quadratic

instead of linear exponents for the softmax functions. Although the difference between these

numbers is larger in early iterations they are almost identical in the final one. This is some-

what disappointing because as table 7.12 also shows, the update of the softmax functions with

quadratic exponents is computationally more expensive than the update for linear exponents.

While there is not a big difference between the number of iterations necessary to update the

softmax parameters the increase in CPU time is quite substantial by about a factor of 3. This is

due to the higher number of parameters in the quadratic model which means that the calcula-

tion of the first and second order derivatives of the cross-entropy error function requires more

computational effort. The similar number of iterations for both linear and quadratic softmax

exponents is also reflected in similar numbers for the learning rate. As in table 7.11, one can

observe a steady decrease in the number of iterations and learning rate over the first 3 iterations

which is followed by a slight increase in the fourth iteration. As in the case of an SLSD indicating

feature this can be attributed to the unchanged
!#" �%$ �%	��'& output pdf’s which are used in the first

3 expectation steps of the EM iterations.

Comparing table 7.12 to table 7.11 one can see that the average number of iterations needed

to update the softmax functions for the SLSD model is slightly higher than for the LDA derived

indicating feature using linear exponents in the softmax functions. For softmax functions with

quadratic exponents, however, updating the parameters needs somewhat more iterations than

for the one dimensional SLSD feature. Although the update of the softmax functions with linear

exponents needed less iterations than the update of the SLSD model the average CPU time

needed for this process is higher by a factor of 2.3 on average which can, again, be attributed to

the higher number of parameters in the two dimensional softmax functions. Since the number

of parameters for three one dimensional softmax functions with linear exponents is

 � 
 � �

,

the increase in the number of model parameters is two in this case. Plotting the average CPU

times against the number of parameters in the model gives a fairly straight line which can also
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be seen by dividing the difference in average CPU usage between the models by the difference in

parameters which results in values close to 0.17. In the range of model complexities investigated

here the addition of one parameter in the softmax models corresponds to an increase in CPU time

of about 0.17 seconds in the model update. One has to be careful, though, with extrapolating

the CPU usage based on this scaling factor since there are two elements that contribute to the

computational complexity of the softmax training. One is, obviously, the number of parameters

in the softmax function, while the other is the complexity of the training set. For other indicating

features, the decision boundaries might become more complicated and the CPU time estimated

with the scaling factor above might therefore not be accurate.

The complete model update in table 7.12 took 5392 and 16038 CPU seconds in the first

iteration for the linear and quadratic exponents, respectively. This number was reduced to 3845

and 11263 CPU seconds in the last iteration which is a reduction of almost 30% which is a larger

speed up than for the model using an SLSD indicating feature.

Table 7.13 gives the word error rate of the model whose training has been documented in

table 7.11 and therefore uses SLSD as an indicating feature. By comparing the first row of

topology Overall F0 F1 F2 F3 F4 F5 FX xRT

fact 21.2 12.4 19.8 30.1 31.6 24.7 25.7 41.0 4.77

full 21.3 12.4 19.7 30.1 31.8 24.9 26.9 42.1 6.44

par 23.0 13.2 21.7 32.2 33.2 26.2 28.6 46.8 6.61

Table 7.13 Recognition performance for an RTI initialised SBME-HMM with an SLSD indicating feature and

3 � -states.

this table to the second row in table 7.7 one can see that, although an increase in likelihood

was observed in table 7.11 over table 7.3, the introduction of an additional state of the hidden

variable � does not improve recognition performance. Overall the performance stays the same

with a slight increase on the F0 condition from 12.6% previously to 12.4% in table 7.13 and

constant performance on the F1 condition and again a slight improvement on F2 going from

30.4% to 30.1%. For conditions F3-F5 the performance is worse than for the 2 state model

and for FX one can again observe a small improvement of 0.3% absolute. In addition to the

unchanged overall recognition performance, the realtime factor of the recognition process was

also increased due to the additional � -state from 3.42 to 4.77.

These results might at first seem disappointing, but one has to bear in mind that the models

whose performance is collected in table 7.13 were derived by initially duplicating the 12 mix-

ture baseline system and they therefore do not implement any additional parameter sharing. In

addition to the large number of parameters, the models in table 7.13 also suffer from the com-

paratively small number of EM iterations after which their log likelihoods becomes saturated.

Both these effects combine to prevent any further improvement over the system in table 7.7.

Similar to the case of an SBME-HMM with 3 hidden states and SLSD as an indicating feature,

table 7.14 shows that no improvement in recognition performance can be obtained by adding a

hidden state to a model that uses the LDA derived indicating feature and linear softmax expo-
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nents. Comparing, again, the first row in table 7.14 to the third row in table 7.7 shows that in

topology Overall F0 F1 F2 F3 F4 F5 FX xRT

fact 21.1 12.2 20.2 29.6 31.4 23.8 26.8 42.0 5.11

full 21.2 12.2 20.3 29.7 31.7 23.9 26.5 42.4 7.01

par 22.4 13.2 20.7 30.9 33.5 26.1 29.3 44.7 6.90

Table 7.14 Recognition performance for an RTI initialised SBME-HMM with an LDA derived indicating fea-

ture, 3 � -states and softmax functions with linear polynomials.

this case the addition of a hidden state even decreases the overall system performance by going

from a WER of 21.0% to 21.1% in table 7.14. Perhaps more surprising is the fact that the model

in table 7.14 is less biased towards the spontaneous speech condition than the model in table

7.7. In fact, the performance on the F0 condition is by 0.1% absolute better in table 7.14. On

the other hand, performance on the F1 condition is considerably worse at 20.2% as compared

to 19.7% in table 7.7. Here the increase in run time is even larger than in the case of an SLSD

indicating feature giving a realtime factor of 5.11 as compared to a factor of 3.65 in table 7.7.

This is, of course, due to the higher dimension of the indicating feature.

Table 7.15, finally, gives the recognition results for LDA derived indicating features with

a model that uses quadratic softmax exponents instead of linear ones. The minute increase in

topology Overall F0 F1 F2 F3 F4 F5 FX xRT

fact 21.2 12.4 20.4 29.5 31.0 23.6 28.7 41.9 5.20

full 21.2 12.4 20.2 29.3 30.9 23.9 28.3 42.0 7.36

par 22.4 13.2 20.7 31.0 33.1 26.3 29.7 44.7 7.27

Table 7.15 Recognition performance for an RTI initialised SBME-HMM with an LDA derived indicating fea-

ture, 3 � -states and softmax functions with quadratic polynomials.

likelihood on the training data in table 7.12 already indicated that one could not expect any large

improvements in recognition performance. Quite on the contrary, table 7.15 shows that using

quadratic softmax exponents even decreases performance by 0.1% absolute. As for the linear

exponents the models in table 7.15 exhibit no bias towards the spontaneous speech condition

and, in fact, add to the word error rate for both F0 and F1 as compared to the models in table

7.14. The recognition run time in table 7.15 was slightly increased as compared to the models

with linear softmax exponents. The decrease in performance due to the use of quadratic softmax

exponents is most likely a result of the fact that the decision boundaries are essentially linear

and therefore quadratic polynomials seem to generalise less well on unseen data.

Summarising, one has to say that in spite of a better training data match, which was indicated

by an increase in likelihood of the models on the training data, the recognition performance for

RTI derived SBME-HMM’s did not profit from the introduction of an additional state for variable
� .
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7.6.2 Median split initialisation

This section describes experiments which used an SBME-HMM with a hidden variable � with

three states and the MSI method to initialise the model parameters. Since this method assumes

a one dimensional indicating feature the two dimensional 3 class LDA transforms from section

6.2.3.2 could not be directly applied for initialisation. Instead the phone dependent, one di-

mensional two class LDA transforms from section 6.2.2.2 were used to obtain a one dimensional

feature which was added as a new stream to the model. As previously, this stream was modelled

with a single Gaussian per
!#"(� $ �'& output pdf. Initially, 2 EM iterations were performed to learn

the
!#"(� $ �'& parameters which were then used to split the indicating feature space into 3 areas of

equal volume with the MSI method. While the MSI initialised softmax parameters were kept

fixed, 4 more EM iterations were performed on the
!#" �%$ �%	��'& output pdf’s. After that the one

dimensional LDA transforms were replaced with the two dimensional ones and the
!
"(� $ ��& output

pdf’s were initialised with the same methods that are used in RTI. Here, the softmax functions

were initially set to be identically zero. In order to adapt to the
!
" �%$ �0	���& that had already been

learned, and to keep the influence of the untrained
!#"(� $ �'& output pdf’s and softmax functions on

the
!#" �%$ �%	��'& to a minimum, only the initialised

!#"(� $ �'& output pdf’s and softmax functions were

trained in the next 2 EM iterations. Finally, the complete model parameters were trained with 4

more EM iterations to arrive at the model sets which were used in the recognition experiments

of this section.

Unlike for the models using LDA derived indicating features, training the SBME-HMM’s with

SLSD as indicating feature was straight-forward since the squared length of the second order

derivatives is one dimensional. In order to be able to compare the performance of these two

systems, the same training strategy was applied in the case of SLSD as well without, however,

the initialisation of the softmax and
!#"(� $ ��& parameters after the first 4 EM iterations.

Compared to the training of the models in section 7.6.1 the training of the MSI derived

models used two more iterations which were needed at the beginning of the training procedure

to learn the one dimensional output pdf’s
!
"(� $ ��& . Since the increase in likelihood at the end of

the training of the models in section 7.6.1 was very small the comparison of the performance of

models in this section and the latter models is therefore sensible.

Table 7.16 gives the likelihood for the first 4 iterations on the
!
" �%$ �0	���& output pdf’s after

the softmax parameters were initialised with MSI where the model used SLSD as an indicating

feature. Comparing the numbers in table 7.16 to table 7.10 one can see a decrease in log likeli-

init 1 2 3 4

-67.56 -66.56 -66.33 -66.21 -66.12

Table 7.16 Log likelihoods for the first 4 iterations of an MSI initialised SBME-HMM with an SLSD indicating

feature and 3 � -states.

hood which is the result of the presence of an indicating feature in table 7.16. Also, comparing

table 7.16 to 7.11 shows that the MSI initialised model has a higher likelihood on the training
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data already after the first 4 iterations than the fully trained RTI initialised system. This again

illustrates the superiority of MSI as an initialisation scheme over RTI. Since the
!#"(� $ �'& output

pdf and the softmax functions remain unchanged between the fourth iteration in table 7.16 and

the first iteration in table 7.17 the log likelihood after the fourth iteration in table 7.16 and the

initial model in table 7.17 are the same.

Table 7.17 shows that the increase in likelihood on the training data over the last 6 iterations

is smaller than the increase over the first 4 iterations. Especially, training the softmax and
!
"(� $ ��&

EM iteration

soft+
!#"(� $ �'& all parameters

init
1 2 3 4 5 6

log like -66.12 -66.11 -66.11 -66.05 -66.00 -65.97 -65.94

nr. iter. � 4.42 3.67 3.20 3.79 3.75 3.68
� � 0.772 0.727 0.687 0.736 0.733 0.727

CPU sec. � 0.28 0.27 0.25 0.26 0.25 0.27

Table 7.17 Log likelihoods and softmax parameter update information for an MSI initialised SBME-HMM

with an SLSD indicating feature and 3 � -states.

parameters seems to give only a minute improvement. This is similar to the results in table

which showed that updating the softmax and
!#"(� $ �'& parameters of an MSI initialised model with

a two state hidden variable � does not contribute much to the likelihood of the training data

under the model.

As in the previous section, table 7.17 also contains information about the update of the

softmax parameters. In comparison to table 7.11, table 7.17 shows a reduced number of average

iterations per softmax update up to the fourth EM iteration, while for the last two EM iterations

the number of iterations in the softmax update is virtually the same. The largest difference

occurs in the first iteration where the MSI initialised model needs an average of 4.42 iterations

to update the softmax parameters as compared to 5.38 for the RTI initialised model. This is

the case because the
!#" �%$ �%	��'& output pdf’s in the MSI initialised model have been trained on the

initial softmax functions and therefore replicate to a certain extend the classification problem

that was defined by the initial softmax functions.

As in the last section, the number of iterations in the softmax parameter update decreases on

the first 3 EM iterations and increases in the fourth iteration due to the use of updated
!#" �%$ �%	��'&

output pdf’s in the expectation step of the EM algorithm. The correlation between learning

rate and average number of iterations in the softmax parameter update is also the same, the

latter decreasing whenever the former does. Finally, the average number of CPU seconds for a

softmax parameter update is approximately constant in table 7.17 at about the same value as

for the second to last EM iterations in table 7.11. The total number of CPU seconds used in the

complete model update was around 1800 in all the EM iterations.

Table 7.18 contains the average log likelihoods for the first 4 EM iterations of an MSI ini-
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tialised model that used LDA derived indicating features. As mentioned before, the LDA transfor-

mations used in these experiments were the one dimensional two class transforms from section

6.2.2.2 which were chosen to be able to apply MSI which relies on one dimensional feature

vectors. As a result of the more compact LDA space the log likelihoods in table 7.18 are again

init 1 2 3 4

-66.30 -65.46 -65.22 -65.09 -64.95

Table 7.18 Log likelihoods for the first 4 iterations of an MSI initialised SBME-HMM with a one-dimensional

LDA derived indicating feature and 3 � -states.

higher than the ones in table 7.16 while the increase is approximately the same at about 2%

relative.

Table 7.19 gives the average log likelihoods for the iterations following the ones in table 7.18

where the one dimensional LDA transforms were replaced by two dimensional transforms. This

table contains information for models having softmax functions with both linear and quadratic

polynomials. As in the previous section, the first two iterations in table 7.19 operate on the soft-

max and
!#"(� $ �'& parameters alone which is indicated by the entry in the second row of the table.

The remaining iterations update all the model parameters which is indicated in the second row

of the table. One can see from table 7.19 that the introduction of the 2 dimensional indicating

EM iteration

deg soft+
!
"(� $ ��& all parameters

init
1 2 3 4 5 6

log like -66.346 -65.848 -65.814 -65.698 -65.629 -65.578 -65.538

nr. iter. � 6.38 4.82 3.87 3.45 3.44 3.37
1 � � 0.843 0.792 0.742 0.710 0.709 0.703

CPU sec. � 0.955 0.734 0.639 0.590 0.560 0.546

log like -66.346 -65.845 -65.813 -65.697 -65.629 -65.578 -65.538

nr. iter. � 6.83 5.11 4.19 4.25 4.14 4.10
2 � � 0.853 0.803 0.760 0.758 0.752 0.750

CPU sec. � 2.70 2.07 1.77 1.73 1.75 1.74

Table 7.19 Log likelihoods and softmax parameter update information for an MSI initialised SBME-HMM

with an LDA derived indicating feature and 3 � -states.

feature after the first four iterations in table 7.19 decreases the log likelihood of the training data

by more than -1.2 which amounts to a decrease in likelihood by a factor of about 0.3. This is the

effect of the higher dimension of the indicating feature which corresponds to smaller likelihood

values of the
!#"(� $ �'& output pdf’s. Since both the linear and second degree polynomials are ini-

tialised to be zero both log likelihood values in the column denoted by “init” are the same. The

first two iterations in table 7.19 show a consistent increase in average log likelihood with the
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main contribution affected by the first iteration. The next iteration which is performed on all the

model parameters again provides a substantial likelihood increase which is much higher than in

the following iterations. Comparing the likelihood for the linear and second degree exponential

polynomials in table 7.19 one can only notice a very small difference. This again indicates that

the nature of the decision surfaces is essentially linear.

The models whose training has been discussed so far in this section were used in recognition

experiments which are summarised in tables 7.20, 7.21 and 7.22. These experiments used again

the three different types of model topology from section 5.6, namely the factorised, full and

parallel topology whose parameters were derived from a trained factorised system.

Table 7.20 gives the WER for the SBME-HMM with 3 hidden states and SLSD as an indicating

feature. This table shows small improvements over the results in table 7.13 for the factorised

and full topologies whereas the performance for the parallel topology is worse by about 2%

absolute. This is again caused by the MSI initialisation which does not take durational statistics

topology Overall F0 F1 F2 F3 F4 F5 FX xRT

fact 21.1 12.2 19.8 30.4 32.0 23.7 25.9 41.2 4.55

full 21.2 12.3 19.8 30.6 32.0 23.7 26.2 41.2 6.12

par 25.0 14.5 24.2 35.3 35.0 27.9 29.3 50.3 6.47

Table 7.20 Recognition performance for an MSI initialised SBME-HMM with an SLSD indicating feature and

3 � -states.

into consideration when initialising the models but rather relies on the statistics of the indicating

features. Perhaps surprisingly, the overall improvement is mainly due to an improvement on the

F0 condition while for spontaneous speech the full and factorised models in table 7.20 and table

7.13 give the same performance. Compared to the SBME-HMM with a two state hidden variable
� , SLSD as an indicating feature and the factorised topology, whose results are contained in the

fifth row of table 7.7, the performance of the factorised model in table 7.20 is worse by 0.1%

absolute, although it appears to give small improvements on the F0 and F1 conditions.

Tables 7.21 and 7.22 give the word error rates for SBME-HMM’s with LDA derived indicating

features and 3 hidden � -states for linear and quadratic softmax exponents. Again, the minute

differences in likelihood between these models in the training indicate that there are no big

differences to be expected in terms of recognition performance. And in fact, the numbers in

tables 7.21 and 7.22 are almost identical. Only the runtime of the recognition is increased in

topology Overall F0 F1 F2 F3 F4 F5 FX xRT

fact 20.9 12.4 19.5 28.8 30.8 24.3 25.0 41.6 4.73

full 21.0 12.4 19.5 29.0 30.8 24.1 25.1 42.0 6.79

par 23.5 14.1 21.7 33.9 33.4 26.0 28.7 46.1 6.00

Table 7.21 Recognition performance for an MSI initialised SBME-HMM with an LDA derived indicating fea-

ture, 3 � -states and softmax functions with linear polynomials.
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table 7.22 as a result of the higher degree of the softmax exponents. Comparing tables 7.21 and

7.22 to tables 7.14 and 7.15 respectively, it becomes evident that MSI is again the better of the

two initialisation methods for the full and factorised topology. Only for the parallel topology

the opposite is true. However the results for the factorised topology in tables 7.21 and 7.22 are

topology Overall F0 F1 F2 F3 F4 F5 FX xRT

fact 20.9 12.4 19.5 29.2 30.4 24.1 24.8 41.3 5.42

full 21.0 12.4 19.6 29.4 30.5 24.3 25.1 41.6 7.37

par 23.5 14.2 21.5 34.0 32.2 26.3 29.1 46.1 7.15

Table 7.22 Recognition performance for an MSI initialised SBME-HMM with an LDA derived indicating fea-

ture, 3 � -states and softmax functions with quadratic polynomials.

worse than the result for the factorised topology of an SBME-HMM with 2 hidden � -states in the

last row of table 7.7. Overall, the introduction of an additional hidden � -state therefore gave no

positive contribution to the system performance.

7.7 Summary

This chapter investigated a number of different SBME-HMM models and initialisation methods

and evaluated them in a series of recognition experiments. The models in these experiments

were derived from a state-of-the-art 12 mixture baseline system whose mixture components

were Gaussians with diagonal covariance.

Experiments with a hidden variable � that had two states in section 7.5 showed small im-

provements for a factorised model topology over a 24 mixture baseline system which used ap-

proximately the same number of parameters. The largest improvement was obtained for LDA

derived indicating features where the model was initialised with the MSI method from sec-

tion 5.5.2. The LDA transforms in these experiments where the phone dependent 2 class LDA

transforms from section 6.2.2.2. Significance tests showed that the improvement in recognition

performance which was in this case about 2.8% relative over the 24 mixture baseline system was

significant at the 0.1% level. The differences to the other SBME-HMM’s with a hidden variable
� with 2 states were also statistically significant.

Increasing the number of states of the variable � to three had, unfortunately, an adverse

effect on the recognition performance as was discovered in section 7.6. It was concluded that

this was the result of the large number of parameters in the model and also the small number

of iterations after which the likelihood of the training data under the SBME-HMM’s was already

saturated. Furthermore, no improvement in performance was observed by choosing quadratic

softmax exponents over linear exponents in the case of a two dimensional indicating feature.

Detailed investigations of the softmax parameter update in section 7.6 showed that the num-

ber of Newton iterations needed on average was relatively small and the CPU usage scaled about

linearly with the number of model parameters in the range of model complexities that were
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discussed. It seems therefore plausible that the introduction of higher dimensional indicating

features with more complicated decision boundaries in future experiments is possible without

stretching CPU usage in the softmax parameter update beyond reasonable limits.



8

Conclusions and further work

This chapter reviews some of the results that were presented earlier and suggests various direc-

tions for future research in connection with SBME-HMM’s.

8.1 Conclusions

After introducing the basic theory of HMM’s in chapter 2, this thesis set out by discussing various

models in chapter 3 which were either directly proposed to describe hidden dynamics in the

speech process or which were conceptually related to such models. Special room was given in

this chapter to the hidden mode model, the subband and multi-stream models as well as the

mixture of experts architectures and finally the dynamic Bayesian networks. Finally, section 3.5

summarised a number of other approaches which were either related to the models discussed

before or were proposed to tackle the problem of recognising spontaneous speech.

Chapter 5 introduced a new model called the state based mixture of experts hidden Markov

model (SBME-HMM), which shared some of its features with the models in chapter 3 while

trying to avoid some of their inherent problems. Since the SBME-HMM implements a special

factorisation of the joint state and observation likelihood, special care was taken to motivate

this particular choice of factorisation as compared to other possibilities. This was done in sec-

tion 5.3 which compared softmax functions, neural networks and Gaussian mixture models for

the purpose of modelling posterior probabilities. Subsequently, the theoretical properties of the

SBME-HMM were developed and it was shown that the SBME-HMM can be efficiently trained

with the EM algorithm by using a variant of the forward-backward algorithm. Also the existence

and uniqueness of solutions to the softmax parameter estimation problem in the maximisation

step of the EM algorithm was briefly discussed. This was later formulated in a more general

frame-work in appendix C where such solutions where shown to exist. In addition to the the-

oretical analysis of the SBME-HMM training, chapter 5 also proposed three different types of

topologies which can be used for recognition.

The development of indicating features which play an integral part in the SBME-HMM was

investigated in chapter 6. Here the indicating features were derived from the standard observa-

tion � , with three different types of dimensionality reducing transforms. Two of these transforms

114
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were linear, namely PCA and LDA, while the other was the squared Euclidean norm of some of

the subvectors of � . The different schemes were evaluated in classification experiments on the

training set of the 1997 Broadcast News task in either phone dependent or phone independent

fashion. The results in this chapter showed that phone dependent LDA transforms gave the best

classification performance for both 2 class and 3 class experiments and that taking the squared

length of the second order derivative of � gave the best one dimensional phone independent

feature in the 2 class experiments. These two features were therefore used in the recognition ex-

periments in chapter 7 to evaluate the influence of phone dependent versus phone independent

indicating features on the recognition performance of an SBME-HMM.

Chapter 7 discussed results of a number of recognition experiments which contrasted the

performance of SBME-HMM’s with standard HMM’s that had a similar number of parameters.

These experiments showed a small but statistically significant improvement of 2.8% relative

over the HMM baseline for an SBME-HMM with a binary hidden variable � and an indicating

feature that was derived by applying the phone dependent LDA transforms from section 6.2.2.2.

Experiments with a hidden variable � with 3 states did not give any improvements and, in fact,

degraded system performance slightly. A detailed analysis of the computational cost of training

the softmax parameters in section 7.6 showed that CPU usage scaled about linearly with the

number of parameters which seems promising for future experiments with higher dimensional

indicating features and more complicated classification problems. Overall the results in chapter

7 showed that the phone dependent LDA derived indicating features were superior to the SLSD

feature and that the factorised model topology gave the best performance while the parallel

model whose parameters were derived from a trained factorised model performed worst.

8.2 Suggested further work

This section discusses some of the techniques that could be applied to the SBME-HMM further

to the ones that were investigated in this thesis.

8.2.1 Training the transforms

The recognition experiments in chapter 7 showed that the quality of the dimensionality reduc-

tion scheme by which the indicating feature is derived has a direct influence on the recognition

performance of the SBME-HMM. The measure of quality that was applied to evaluate these

schemes initially was the performance of the classifiers in chapter 6 that were built for the cor-

responding indicating features. However, this is a rather crude optimality criterion that has no

obvious relation to the more commonly used ML criterion. Since the indicating features are

eventually designed to improve recognition performance a different more model specific cri-

terion would be more appropriate. As already pointed out at the end of section 6.1.2 such a

criterion exists and is simply the likelihood of the training data under the model. Using the

same techniques that were developed in (Schukat-Talamazzini et al., 1995; Gopinath, 1998;

Saon et al., 2000; Gales, 1999) to optimise HDA transforms or semi-tied covariances it would
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therefore be possible to learn the optimal linear dimensionality reducing transforms within the

EM frame-work. This seems to be a promising approach, especially, in the light of recognition

results which have been reported for linear feature space transforms that have been trained in

this way.

8.2.2 Using the states of � in the recognition process

The disappointing performance of the models that explicitly used the state of the hidden variable
� for recognition needs further investigation. In the case of the parallel model it is obvious that

a better method to derive the model parameters needs to be investigated. Here the model was

directly derived from a trained factorised SBME-HMM which is clearly a suboptimal solution.

However, other types of parallel models should also be investigated. One of the problems in

the design of the parallel topology in section 5.6 is that it only considers the indicating feature

at time 5 to infer the state of � . If � is, however, assumed to change slowly over time, the

window over which the probability of the states of � is estimated should also be wider. This

can be done in two different ways. First, one can concatenate the indicating features in a

window surrounding time 5 and thereby create a higher dimensional indicating feature which

can again be used to train all the system components. Alternatively, one can train the softmax

functions on the original low dimensional indicating features and use a smoothing technique to

include information about surrounding time instants. Such a smoothing technique, although in

a different context, has already been presented in section 3.2 where equations (3.5) and (3.6)

were used to calculate the probability that a combination of subbands are useful for recognition

given that the individual subbands are reliable sources of information. This method can also be

adopted to calculate the probabilities that the hidden variable � is in state 6 at time 5 given the

probabilities * " �
� 6 $ � 2 b 	�� 2 b & in a time interval surrounding 5 , i.e. 5 v � 5 s � 	 5 s � ��p 	������
	 5 �

� s p 	 5 � �
. Applying (3.5) and (3.6) in this situation therefore yields

* " �
2 � 6 $ � 2
� �
	������3	 � 2�� � 	�� 2 � � 	������3	�� 2�� � &

� * S
� �� C � * � (8.1)

where the following holds

*;� � � 2�� �2 b CE2 � �
* " �

�  $ � 2W	�� 2Q&* " �
� 60& � � (8.2)

Here * " �
� 60& is the overall probability of observing state �

� 6 . If the distribution of the states

of � is not strongly biased as is most likely the case in an MSI initialised SBME-HMM this value

will be close to
p � r .

Another way to use the state of the hidden variable � explicitly in the recognition process is by

making it available to objects that are at higher levels in the hierarchy of the speech recogniser.

Such objects are, for instance, the probabilities for different pronunciations of a single word or

transition probabilities between words in the language model. In the former situation the state

of � could be used to switch between fast and slow pronunciations of a word. In the latter case

the state of � could be used to change the probabilities of transitions to words in the dictionary



Conclusions and further work 117

that are models for hesitations. In any case, the use of the hidden variable in higher levels of the

recogniser hierarchy will require a slowly changing state since these objects themselves usually

span longer time intervals. For this reason, a smoothing technique as the one suggested for the

parallel topology seems appropriate to obtain more slowly changing hidden variables.

8.2.3 Combination with other sources of information

The indicating features studied here are not the only conceivable source of information about the

state of variable � . One could also use some of the speaking rate measures discussed in chapter

4 or the features used in (Shriberg and Stolcke, 1996) to detect spontaneous speech events like

false starts and speech repairs. Higher level features like the ones discussed in (Shriberg et al.,

1997) might also be of interest.

8.2.4 Selecting which models to split

In section 7.5 an experiment was conducted that showed that it was possible to achieve the

same recognition performance as the 24 mixture baseline system with an SBME-HMM whose

triphones had two � -states only if their central phoneme was a vowel. This gave a model set

with a much smaller number of parameters which was also reflected in reduced recognition run

time. While the performance of this model was not as good as for the SBME-HMM where all the

models were initialised with MSI, this experiment shows that an application dependent optimal

trade-off between system complexity and recognition performance can be found by selecting

which triphones should have how many � -states. Clearly, in this experiment the choice which

models had 2 � -states was rather ad hoc and was only based on the observation in chapter 6

that classification performance of the indicating features was usually better on vowels than on

consonants. A more principled way of deciding which states should have how many � -states

would be more appropriate.

8.2.5 Application to other hidden modes

This thesis focused on the development of a model that was performing well for spontaneous

speech. However, the SBME-HMM is not restricted to this situation. As already pointed out

in the introduction of this thesis the more general theme presented here is that of soft model

selection which replaces the usual segmentation, labelling and model selection approach. The

SBME-HMM frame-work can therefore be also applied to other situations where a soft decision

as to which hidden mode is present is more appropriate. This is, for instance, the case for speech

that is corrupted by background noise which can vary in both type and level. In this case, one

could use a signal-to-noise measure as an indicating feature to decide which model should be

used for recognition. Another application is the automatic switching between gender dependent

models. Here an estimate of the f0 formant could be used as an indicating feature.
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8.2.6 Single Step Newton with fixed learning rate

Section 5.4 discussed two different methods that can be used to train the softmax parameters

in an SBME-HMM. The second one which was called the full Newton algorithm was the one

used in the experiments in this thesis. This method was preferred over the other method in

section 5.4 which was called the one step Newton algorithm because it gives the exact solution

to the maximisation problem in the EM algorithm. It would be interesting to see the difference

in performance between these two methods, especially, since the one step Newton algorithm

is computationally much less complex than the full Newton algorithm. The one step method

also has the additional advantage that it does not need to accumulate the complete sequence of

training data and requires instead just the accumulation of the first and second order derivatives

which are needed in the Newton update. The disadvantage of this method is that the learning

rate has to be set manually. However, the experiments in section 7.6 that evaluated the per-

formance of the softmax parameter update showed that the learning rate was always relatively

high and setting this value sensibly by hand should therefore not lead to oscillatory behaviour in

the model training. It is interesting to note that in the case of MMI training a parameter called�
has also be set manually which has similarities to the learning rate in this case.

8.2.7 Experiments on other data bases

Although the 1997 Broadcast News task is a sensible starting point to investigate the perfor-

mance of a system on spontaneous speech, performance evaluations should also be conducted

on other databases like, for instance, Switchboard. This is a data base that consists entirely of

spontaneous telephone conversations between two individuals and constitutes one of today’s

major challenge in the field of speech recognition.
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Phone set statistics

This appendix lists all the phones of the phone set that was used in the classification experiments

in chapter 6 and from which the triphones in the recognition systems in chapter 7 were derived.

This phone set is given in table A.1 with an example for the pronunciation of each of the phones

which also indicates whether the phone was considered to be a vowel or a consonant. This is

shown in the columns denoted by “v/c” where “v” stands for vowel and “c” stands for conso-

nant. In addition this appendix contains the statistics of the test and training sets on which the

Phone Example v/c Phone Example v/c Phone Example v/c

aa bott v en button c ow boat v

ae batt v er bird v oy boy v

ah but v ey bait v p pet c

ao bought v f fan c r red c

aw bout v g get c s sue c

ax about v hh hat c sh shoe c

axr butter v ih bit v t tat c

ay bite v ix dating v th thin c

b bet c iy beet v uh book v

ch cheap c jh jeep c uw boot v

d bdebt c k cat c v van c

dh that c l led c w wed c

eh bet v m met c y yet c

el bottle c n net c z zoo c

em bottom c ng thing c zh measure c

Table A.1 The phone set.

classification experiments in chapter 6 were performed which are given in table A.2.
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Phone train test Phone train test Phone train test

aa 41211 10302 en 3878 968 ow 31605 7901

ae 75798 18949 er 15203 3799 oy 2531 631

ah 69244 17310 ey 48752 12188 p 50726 12681

ao 38458 9614 f 42920 10729 r 107723 26930

aw 15695 3923 g 21256 5313 s 120161 30040

ax 154451 38611 hh 31558 7889 sh 18251 4561

axr 44390 11097 ih 136459 34113 t 180440 45109

ay 40578 10143 ix 20056 5012 th 14179 3544

b 43210 10801 iy 85781 21444 uh 9471 2367

ch 10966 2741 jh 14959 3738 uw 41122 10280

d 85866 21466 k 79453 19863 v 46555 11638

dh 71559 17888 l 76438 19109 w 47164 11790

eh 67369 16841 m 66531 16631 y 21651 5411

el 17014 4252 n 176689 44171 z 72613 18153

em 498 123 ng 27215 6802 zh 1113 277

Table A.2 Phone set statistics.



B

Gamma densities

This section will derive the reestimation formulae that were presented in section 2.4.2 for an

HMM whose output pdf’s are Gamma distributions. As mentioned in section 2.4.2, Gamma

densities are pdf’s of a one dimensional random variable which are given by

� c[ "]\ & � c �
�

 ����� (B.1)

The part of the HMM auxiliary function involving the parameters of the Gamma pdf for the � -th
state is therefore given by

�
2 8 2 " � & "]\ ���
� � s ���
� [ "]\ & � "]\ s p & ���
� � s � � & (B.2)

Taking the derivatives with respect to � and
\

therefore yields

�
� �

Y " / 	
Z/ & � �
2 8 2 " � & � \� s � 2 � (B.3)

�
� \ Y " / 	
Z/ & � �

2 8 2 " � & � ���
� �Js [ v "]\ &[ "]\ & � ���
� � 2 � (B.4)

Observing that some of the terms in the sums in (B.3) and (B.4) are independent of the time

variable 5 one therefore finds the following reestimation formulae, which were already quoted

in section 2.4.2. \
�

� � 2 8 2 " � & � 2� 2 8 2 " � & (B.5)

^ "]\ & s ���
� \ � � 2 8;2 " � & ���
� � 2� 2 8�2 " � & s ���
� � � 2 8;2 " � & � 2� 2 8�2 " � & � (B.6)

where
^ "]\ & � [3v "]\ & � [ "]\ & is the digamma function. The interpretation of equation (B.5) is

obvious. The left hand side of this equation is the mean of the Gamma distribution, while the

right hand side is the mean estimated on the training data. One would therefore probably expect

to obtain the following as the second reestimation formula

\
� �

� � 2 8 2 " � & "(� 2 s � � & �

� 2 8 2 " � & (B.7)
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Here the left hand side is the variance of the Gamma density and the right hand side is the

variance estimated on the training data. In fact, this equation has also been used to fit a Gamma

density to a set of samples (Burhstein, 1995). However, since this type of parameter estimation

does not maximise the likelihood of the model it does, strictly speaking, not fit within the EM

algorithm. It is interesting to note that the right and left hand side of equation (B.6) can be given

a similar interpretation as (B.7), i.e. both sides can be interpreted as second order statistics of

the distribution under consideration. To see this it is useful to introduce the following notation

* " 5 & � 8�2 " � &� 2 8�2 " � & (B.8)

The function * is therefore the probability of observing state � at time 5 given that it was observed

anywhere in the utterance. Equation (B.6) can now be rewritten as

�
2 * " 5 & ���
� � 23s ���
�

� �
2 * " 5 & � 2 � � �

2 * " 5 & ���
�
� 2

� 2 * " 5 & � 2
� �

2 * " 5 & ���
�
� < 2OF � AH A � < 2OF � A* " 5 &� s � " *�� ��& (B.9)

Here
� " *�� ��& is the Kullback-Leibler distance between the probability distributions * " 5 & and � " 5 &

where the latter is given by

� " 5 & � * " 5 & � 2� 2 * " 5 & � 2 (B.10)

This, in fact, defines a probability distribution since the
� 2 are all positive and therefore the

� " 5 & are positive, lie between zero and one and sum to one. The value s � " *�� ��& can now be

interpreted as a variance measure, because it depends on the distribution of the
� 2 around

their estimated mean
� 2 8�2 " � & � 2 . The closer each individual

� 2 is to the average the closer the

distribution � is to * . In fact if each
� 2 is the same as the mean then * and � are identical.

Since equation (B.10) involves division by the estimated mean the difference between � from *
is scaled by the magnitude of the mean. If the mean is therefore high the difference between

� 2
and the mean is therefore less weighted than for small means.

Interestingly, the left hand side of (B.6) can be seen to be just the continuous equivalent

of this variance measure for the gamma distribution. One can see this from the subsequent

calculations, where
!#"(� & denotes the gamma distribution.

�
�
�

!#"(� & ���
� �
c
�
� � � s ���
� \

�
�

�
�

!#"(� &	� � � �
�
�

!#"(� & ���
� "(� &	� �

� s ���
� \ � ���
� � � �
�
�

!
"(� & ���
� "(� &	� � (B.11)

Here, the fact that
!
"(� & is a probability distribution was used. Next the second term in (B.11) is
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calculated.
�

�
�

!#"(� & ���
� "(� &	� � � �
�
�

� c[ "]\ & � c �
�

 ��� �

���
� "(� &	� �

� � c
� [ "]\ &

�
�
�

� �
� � c � � 
 ��� ���
� �� � �

� p
[ "]\ &

����
�
�

�
�

� c � � 
 ��� ���
� "(� &	� �� ��� �` b <Uc F
s ���
� �

�
�
�

� c � � 
 ��� � �� ��� �`;<Uc F

��			



� ^ "]\ &
s ���
� �

Adding the last expression to (B.11), finally, gives the left hand side of (B.6), which proves the

assertion.

In summary, the ML estimation of the Gamma density parameters involves the solution of

one first and one second order statistics equations where the latter replaces the normal variance

concept with another one that is special to the Gamma densities.



C

Existence and uniqueness results for the softmax parameter

estimation problem

As mentioned earlier in chapter 5, the softmax functions which are used in the SBME-HMM to

model the probabilities of states of the hidden variable � have a number of very useful properties.

This appendix will explore the shape of their error surfaces and will show that, unlike for the

probability models discussed in sections 5.3.1 and 5.3.2, here the existence of unique global

extrema in the error surface can be established.

First the relevant theorems will be stated together with two corollaries and will later be

proved in sections C.1 and C.2.

The error function of choice in this chapter is the cross-entropy error since this is the one

most commonly used in connection with softmax functions(Bishop, 1995; Bridle, 1989). As

pointed out in section 5.2, the cross-entropy error is related to the log likelihood of the model

and maximising the latter is equivalent to minimising the former. In order to show the existence

of a unique set of softmax parameters which maximises the auxiliary function of an SBME-HMM,

it is therefore necessary to prove the existence of a unique global minimum of the cross-entropy

error function.

To put the discussion in a more general frame-work, which does not rely on the HMM for-

mulation in chapter 5, the cross-entropy error function will be denoted by � "�� 	R*3	�xy	 j & and is

defined to be

� "�� 	R*3	�xy	 j & �
��
� C �

x �
��
S�C � * � � S

���
� � * � � Sd S "�� � & � (C.1)

Here
� � "�� � 	������3	 � � & is a set of data points each of which has a set of probabilities * � � S ,6 � p 	������3	�r associated with it for the r different classes of the classification problem. These

probabilities indicate how likely it is that a data point
� � belongs to one of the r classes. Thex � in (C.1) are positive weights and j is the set of softmax parameters. The data points

� �
in C.1 correspond to the

� 2 in 5.21, while the * � � S and x � correspond to the 8 2 " � 	760& and 8;2 " � & ,
respectively. This formulation is slightly more general than the error function in (5.22) in that it

does not assume that the x � and * � � S are both derived by the same estimation process.

For the softmax functions the same notation will be used as in chapter 5. Here, however, the

exponents of the softmax functions do not necessarily have to be polynomials. Instead they can
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be linear combinations of arbitrary functions of the data points
�
. The exponents considered

will therefore have the following form

��� "�� & � 9 ��
f C �

e ��� f 	 ��� f "�� & � 	 � "�� & (C.2)

and the vector of values of the 	 ��� f for a given
� � and  will be denoted by

� � "�� � & � " 	 ��� � "�� � &�	������3	 	 ��� 9 � "�� � &W& (C.3)

The first theorem in this appendix addresses the question whether the minima of the cross-

entropy error surface, if such minima exist, are unique. This problem will be tackled by asserting

that the error surface is convex. A function
h

is called convex if the following holds for any two

points
� � and

� � in the region where
h

is defined.

h " 5 � � � " 5 s p & � � & � 5 h "�� � & � " 5 s p & h "�� � & (C.4)

Here 5�� p
and

� � 5 � " 5 s p & � � is therefore a point on the line connecting
� � and

� � . The theorem

asserting the convexity of the cross-entropy error function can now be stated as follows.

Theorem 1 The cross-entropy error function � "�� 	R*3	�x 	 j & of a r -class problem of arbitrary finite

dimension, regarded as a function of the model parameters j , is always convex. If there exists a  
with

p �  � r s p
for which there are at least

, � ��p
data points

� � such that the
� � "�� � & are

linearly independent then the error function � "�� 	R*3	�x 	�� & is strictly convex.

An immediate consequence of this theorem is the following corollary.

Corollary 1 The error function � "�� 	R*3	�x 	 j & of a one-dimensional K-class problem is convex if the
��� "�� & are polynomials and strictly convex if there exist at least

����� � , � �op
different

� � .

The reason why strict convexity is important for ensuring unique minima is that because of

equation (C.4), for any two global minima every point on the line connecting the two has to

be a minimum as well. If the inequality in (C.4) is furthermore strict then there cannot be two

global minima, otherwise any point connecting these two would have a function value below

the minimum, which is, obviously, a contradiction.

The last theorem showed that under special conditions the minima of the cross-entropy error

surface, if such minima exist, have to be unique. The next theorem addresses the problem of

determining when such minima exist. Together both theorems therefore answer the question

under which conditions there exist unique global minima in the cross-entropy error surface.

Theorem 2 Let
"�� 	R*
	�x & be a multi-class problem of arbitrary finite dimension. Suppose none of

the * � � � are zero and that there exists for each set of functions � � "�� & ,  � p 	������ 	�r s p
, and each

� � at least one  for which �X� "�� � & �� n
then there exists a point j in the parameter space which

minimises � "�� 	R*3	�xy	 j & . If, furthermore, there exists at least one  for which there are
, � � p

data

points
� � such that the

� � "�� � & are linearly independent then this solution is unique.
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This theorem has again the following useful corollary.

Corollary 2 Let
"�� 	R*3	�x & be a one-dimensional r -class problem and suppose there exist at least

����� � , � � p
different

� � such that * � � � ���n
for all these  . Then there exists exactly one point j in

the parameter space which minimises � "�� 	R*3	�xy	 j & .

C.1 Proof of Theorem 1

This section will proof the convexity of the cross-entropy error function by establishing that the

Hessian of this function is always positive definite.

In section 5.2 the gradient of the cross-entropy error function was shown to be

�
� e P�� @f � "�� 	R*
	�x 	 j & �

��
� C �

x �
��
S�C �

" * � � S s d S "�� � &W& 	 f "�� � & (C.5)

In order to determine the form of the Hessian of the cross-entropy error function, it is therefore

necessary to calculate the partial second order derivatives of the softmax functions. This can be

accomplished as follows.

�
� � ��� f d S "�� & � 
 � V <�� F �

�
� �]T � � S "�� & " p � � � � �SXC � 
 � V <�� F & s 
 � V <�� F ��� �

�S�C � 
 � V <�� F �
�
� �]T � � S "�� &" p	� ��� � �S�C � 
 � V <�� F & � (C.6)

For 6 �  , equation (C.6) becomes

�
� � ��� f d � "�� & �

�

 � � <�� Fp	� ��� � �S�C � 
 � V <�� F

s "

 � � <�� F & �

" p	� ��� �
�S�C � 
 � V <�� F & � � 	 ��� f "�� & (C.7)

and for 6 ��  equation (C.6) reduces to

�
� � ��� f d S "�� & � s 
 � V <�� F 
 � � <�� F" p	� ��� � �S�C � 
 � V <�� F & � 	 ��� f "�� & (C.8)

Substituting the definitions of the softmax functions, these last two equations can be reformu-

lated as follows

�
� � ��� f d S "�� & �

��� ��
" d S "�� &3s d S "�� & � & 	 ��� f "�� & k  � 6

s d � "�� & d S "�� & 	 ��� f "�� & k  �� 6 (C.9)

This shows that the second order derivatives of the error function � "�� 	R*3	�x 	�� & are given by

�
� e ��� f e S
� f b �

"�� 	R*
	�x 	 j & �
��� ��
� �

� C � x � " d S "�� � &3s d S "�� � & � & 	 S
� f "�� � & 	 S
� f b "�� � & k  � 6
s � �

� C � x � d S "�� � & d � "�� � & 	 ��� f "�� � & 	 S
� f b "�� � & k  �� 6 (C.10)

For the special case where the �X� "�� & are polynomials, equation (C.10) reduces to

�
� � ��� f � S � f b �

"�� 	R*3	�x 	�� & �
��� ��
� �

� C � x � " d S "�� � & s d S "�� � & � & � f � f b� k  � 6
s � �

� C � x � d S "�� � & d � "�� � & � f � f b� k  �� 6 (C.11)
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Equation (C.10) gives the components of the Hessian of � "�� 	R*3	�xy	��+& which will be denoted by

� "�� 	R*3	�xy	��+& in the following. This will also sometimes be abbreviated with � if the particular

classification problem
"�� 	R*3	�x & is not important. One can see from (C.10) that for a two class

problem with a single exponential function � "�� & the second order derivative of the error function

� "�� 	R*3	�x 	�� & can be written as the sum of simpler matrices, i.e. � � � �
� C � � � , where � � is given

by

� � � � � � "�� � & v � "�� � & (C.12)

Here
� � is the scalar value

� � � x � " d � "�� � & s d � "�� � & � & � x � d � "�� � & d � "�� � & (C.13)

and
� "�� � & is the vector in (C.3) for � "�� & . Since x � is positive and

n
�
d S "�� & � p

holds for all
�
, the

� � in (C.13) are always positive. This immediately implies that each � � is positive semi-

definite and since � is the sum of the � � it too is positive semi-definite. If there are
, �op

data

points
� � such that the

� "�� � & are linearly independent then � is strictly positive definite. These

considerations show that the error surface � "�� 	R*3	�x 	��+& for a two-class problem of arbitrary finite

dimension is always convex and strictly convex if there
, ��p

linearly independent
� "�� � & and

therefore proves theorem 1 in the case of a two class problem.

Also for a r -class problem with r � 

the Hessian can be written as a sum of simpler

matrices � � . However, these matrices are slightly more complex than in the two class case. For

instance, for a 	 -class problem, according to equation (C.10), the � � are block matrices of the

following form

� � �
�

� � �W� � � � �

� v� � � � � � �
� (C.14)

where the blocks � � � � are given by

� � �?� � " d � "�� � & s d � "�� � & � & � � "�� � & v � � "�� � & (C.15)

� � � � � s d � "�� � & d � "�� � & � � "�� � & v � � "�� � & (C.16)

and � can take the values 1 or 2. These considerations generalise straight-forwardly to a r -class

problem with arbitrary r � 

. In this case the matrices � � � " � � � �=& � � ��D� �7C � are block matrices

whose blocks � � � � are given by

� � � � � � � � � � � "�� � & v � � "�� � & (C.17)

with the scalar
� � � � defined as follows

� � � � �
��� ��
x � " d � "�� � &3s d � "�� � & � & k � �  

s x � d � "�� � & d � "�� � & k � ��  
(C.18)

In order to prove the positive semi-definiteness of � � it has to be shown that � � � �
v�� n

for

arbitrary vectors � of dimension r s p � � � �
�� C � , � . For a 	 -class problem the vector � can be
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written as �
� "

� � 	 � � & where � � are the first
, � � p

components and � � are the remaining
, � � p

components. The positive semi-definiteness of � � can therefore be shown by proving that the

following is true.

� � �W� � � � "�� � &�	 � � � � � 
 � � � � �
� � "�� � &�	 � � �

�
� � "�� � &�	 � � � � � � � � �

� � "�� � &�	 � � � � � n
(C.19)

Since the inner products �
� � "�� � &�	 � � �

and �
� � "�� � &�	 � � �

can take arbitrary values, proving

inequality (C.19) is equivalent to showing that the following matrix is positive semi-definite.

� � �
� � � �W� � � � �

� � � � � � � �
� (C.20)

Again, these considerations can be easily generalised to a r -class problem with more than 	
classes. In this case, proving that the individual terms � � of the second order derivative are

positive semi-definite is equivalent to showing that the matrix
� � � "�� � � ��& � � ���� � C � is positive semi-

definite. This can be done by observing that the matrix
� � is diagonally dominant which can be

seen as follows.

$ � � �?�W$ � d � "�� � &3s d � "�� � & � � d � "�� � & " p s d � "�� � &W& ��d � "�� � &
��

� C � � � �CE�
d � "�� � &

� d � "�� � &
� �

�
�

� C � � � �CE�
d � "�� � & �

� �
�

�
�7C � � � �CE� $

� � � �;$ (C.21)

Since, furthermore, the diagonal elements of
� � are positive the matrix is positive definite. If

there exists a  with
p �  � r�s p

for which there are
, � � p

data points
� � such that the

� � "�� � &
are linearly independent then the second order derivative of the error function � "�� 	R*3	�x 	�� & is

positive definite. This concludes the proof of Theorem 1.

It is interesting to note that in the proof of the second theorem in (Jordan and Xu, 1995)

Jordan and Xu calculate the Hessian of the cross-entropy error function. However, they arrive at

an expression which is somewhat different form the one given here because they do not consider

the situation where  �� 6 in (C.9). This therefore leads them to assume that the Hessian always

has the same form as in the two class case. Since this is wrong for more than 2 classes their

proof is therefore, strictly speaking, only valid for r ��

.

C.2 Proof of Theorem 2

To show the existence of a global minimum of the error function it is sufficient to prove that

there exists a local minimum along each direction in the parameter space. This together with

the fact that the set of directions is compact and taking the minimum of the error function along

each direction is a continuous operation will show that there exists a global minimum of the

error function.

To show that there exists a minimum along each direction it is necessary to observe that the

error function restricted to a particular direction in parameter space becomes a one-dimensional
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convex function. One therefore only has to show that the error function tends to infinity if the

one-dimensional parameter goes to infinity or minus infinity. For a K-class problem of arbitrary

finite dimension this can be done as follows. Let � � "�� & ,  � p 	������
	�r s p
, be an arbitrary

set of polynomials such that not all of them are identically zero, then the direction specified

by the � � "�� & is the set of polynomials given by e � � "�� & ,  � p 	������3	�r s p
, where e is a real

number. Suppose there exists an
� � , such that �7� "�� � & �� n

for at least one  . Without restricting

the generality of the proof one can assume that � � "�� � & � n
. Now let � be defined by � �

��� � ���
	 � ��� "�� � & . Then ��� "�� � & � n
and therefore the following holds true.



� � � <�� � Fp	� ��� � �� C � 


� � � <�� � F
� p

for e � � (C.22)

This implies that
d � "�� � & � n

if  �� � . Similarly, one has
d � "�� � & � n

for e � s � . This implies

that for $ e'$ � �
there is always one  such that

d � "�� � & converges to zero. For such a  the

following therefore holds, assuming that * � � � ��on
.

* � � � ���
��� * � � �d � "�� � & � � � (C.23)

And as a result the error function � "�� 	R*3	�xy	��+& tends to infinity. This concludes the proof of

Theorem 2.
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