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ABSTRACT

This paper addresses the use of discriminative training criteria for
Speaker Adaptive Training (SAT), where both the transform gen-
eration and model parameter estimation are estimated using the
Minimum Phone Error (MPE) criterion. In a similar fashion to the
use of I-smoothing for standard MPE training, a smoothing tech-
nique is introduced to avoid over-training when optimizing MPE-
based feature-space transforms. Experiments on a Conversational
Telephone Speech (CTS) transcription task demonstrate that MPE-
based SAT models can reduce the word error rate over non-SAT
MPE models by 1.0% absolute, after lattice-based MLLR adapta-
tion. Moreover, a simplified implementation of MPE-SAT with the
use of constrained MLLR, in place of MPE-estimated transforms,
is also discussed.

1. INTRODUCTION

For speech recognition tasks, such as conversational telephone
speech (CTS) transcription, with a large amount of variability in
the training data (due to e.g. speakers), adaptive training can be
used to remove some of that variation by estimating a set of adap-
tation transforms for each speaker or acoustic condition along with
a canonical model of speech given those transforms.

Speaker Adaptive Training (SAT) applies speaker-specific
training-set transforms in the HMM parameter optimization pro-
cedure [1, 3] to improve the speaker-independent acoustic mod-
els (the canonical models). In general, each iteration of estimat-
ing a SAT canonical HMM set requires two sequential steps: the
speaker-specific transforms are first generated with the current HMM
parameters, and then the canonical HMM set parameters are re-
estimated after applying those transforms in the feature or model
space. SAT training was originally developed [1] for unconstrained
Maximum Likelihood Linear Regression (MLLR) [6], but this re-
quires a complex training procedure and severe memory overheads
[4]. A simpler formulation of SAT uses constrained MLLR [4]
since those transforms can be applied to the features directly and
this makes the parameter re-estimation of the canonical HMM con-
siderably more straightforward.

Recently it has been shown that improved performance for
large vocabulary tasks can be obtained by using discriminative
training criteria [13] such as Maximum Mutual Information (MMI)
and Minimum Phone Error (MPE) [9], so most state-of-the-art
large-vocabulary recognition systems use discriminative training.
Particularly MPE reduces the training set estimated phone error
(in a word recognition context) and has been shown to outperform
MMI on CTS transcription. However, current speaker adaptation
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techniques for SAT, are still normally based on ML estimation,
and it is therefore interesting to explore discriminative SAT where
a discriminative training criterion is used for both linear trans-
form optimization and model parameter re-estimation. It is also
expected that the use of discriminative criteria can improve adap-
tive training as some previous work on this topic have suggested
[5,8,2].

In this paper, we concentrate on the use of the MPE criterion
for discriminative SAT, in particular for the estimation of speaker-
specific transforms called constrained Discriminative Linear Trans-
form (DLT), which can be applied to feature-space in the same way
as those used in constrained MLLR. The use of weak-sense auxil-
iary functions [10] provides a method to derive estimation formula
for MPE-based constrained DLT, where a smoothing technique is
used to prevent over-training. The statistics to estimate the linear
transforms are accumulated for each “baseclass” of the regression-
class tree [7], where a group of Gaussian components belonging to
that baseclass share the same adaptation transformations. The sec-
ond step of discriminative SAT is to re-estimate the model param-
eters where the Extended Baum-Welch (EBW) algorithm is used
with the observation vectors adapted by the constrained DLT. For
comparison, we also use a simplified but practical implementation
of discriminative SAT in the CTS experiments, where linear trans-
forms are still estimated under the ML criterion, and the HMM
sets are optimized using a discriminative training criterion.

The rest of this paper is organized as below. In Section 2,
we describe the MPE criterion for constrained DLT estimation, in-
cluding the use of a weak-sense auxiliary function and statistics
smoothing. Then, experiments on CTS transcription are presented
in Section 3, and the results from various types of discrimina-
tive SAT models are given when testing with unsupervised test-set
adaptation. In the last section, some issues concerning MPE-based
discriminative SAT are discussed.

2. MPE CRITERION FOR DISCRIMINATIVE ADAPTIVE
TRAINING

The MPE criterion was recently developed as a novel discrimina-
tive training method for continuous speech recognition. It takes
into account the mis-classification of HMM models, by measuring
the phone transcription accuracy in a word recognition context.
The objective function of the MPE criterion, proposed in [9, 10] is
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as below:
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where M®" is the composite model corresponding to the word
sequence wy, P(w,) is the probability of the word sequence wy
and k is the acoustic scale. The RawAccuracy(w) measures the
accuracy of hypothesis .

2.1. Weak-Sense Auxiliary Function

The idea of a weak-sense auxiliary function [10] was introduced
for the optimization of discriminative criteria, in contrast to the use
of the standard strong-sense auxiliary function [10] for ML train-
ing. Given the objective function F (), the weak-sense auxiliary
function is defined to satisfy the following condition:
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where A refers to the original parameter set and A represents the
newly estimated one. This equation implies that if there is a local
maximum in the objective function, it must also be a local max-
imum of the auxiliary function. Although optimizing the weak-
sense auxiliary function doesn’t guarantee an increase in the ob-
jective function, it can still offer the minimum condition for the
optimization of F(X). For discriminative training, the weak-sense
auxiliary function provides a feasible approach for the optimiza-
tion for objective functions with negative terms. This idea can be
used to define the auxiliary function for the MMI criterion [10],
which consists of three individual parts.

g, A) = Q™A N) = Q¥ (AN + Qem(MY) - @
The superscripts num and den in Eq. (2) correspond to the nu-
merator (correct transcription) and the denominator (all possible
transcriptions) of the MMI objective function [13, 10]. Each term
in Eq. (2) is defined as a Gaussian expression:
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where y;jm () is the posterior probability at time ¢ for state j mix-
ture component /m; mean fij, and covariance f]jm refer to the
new parameter estimates . The third term Qsm(A, 5\) is a smooth-
ing term related to the original model parameters to improve the
stability of training, which is given in the diagonal covariance case:
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Obviously the differential of above equation at X = Xis zero, so
that adding this smoothing term can still ensure Eq. (2) is a weak-
sense auxiliary function. The smoothing factor Dy, is defined as
E E yer (¢) with the value E used to keep the covariance esti-

mate posmve.

In this paper, we extend the use of weak-sense auxiliary func-
tions to the optimization of speaker-specific transforms under both
the MMI and MPE critera. As for constrained MLLR, the MMI-
based constrained DLT will be applied to both means and variances
so as to perform in the feature-space:

6(t) = Ao(t) + b = W((¢)

with W = [ BT AT]T, ¢(t) = [ 1 o(t)T]T for each speaker.
To optimize the linear transform W under the MMI criterion, the
HMM parameters are fixed and the auxiliary function is defined
according to Eq. (2), by ignoring the terms not containing w:
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Notice that the above unadapted model parameters have been trans-
formed with W (typically W would be initially estimated by con-
strained MLLR):
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Given that W; is the ¢th row of W, and p; Ais the extended cofactor
row vector [0 ¢i1 ++¢ cinl, (cij =cof(Ay;)), the accumulators

to estimate the linear transforms can be derived by calculating the
differential with respect to w;:
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It can be observed that above equations are the same as appeared in
[2], which used Conditional Maximum Likelihood (equivalent to
MMI) to deduce the discriminative likelihood linear transform for
feature normalization. Since Eq. (4) has the same form as that in
constrained MLLR but different accumulators G®) and k) [4],
the iterative solution for constrained MLLR is also used here to
estimate constrained DLT matrices on a row-by-row basis.

For the second stage of discriminative SAT, the auxiliary func-
tion in Eq. (2) with adapted observation 6(¢) can be maximized by
setting the differential with respect to fijm, Or &jm to zero. There-
fore, similar updating formulae for the model mean and diagonal
covariances as for standard MMI estimation [13] are obtained,
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where the statistics are accumulated with the transformed observa-
tion for each instant rather than the original observation.
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2.2. Discriminative SAT using the MPE criterion

In discriminative training for large vocabulary tasks, the evalua-
tion of the MMI (& MPE) “denominator” term is typically com-
puted using an approximate lattice representation which is com-
puted once and then assumed to represent all confusable hypothe-
ses. Lattices consist of nodes (annotated with starting and ending
time) and arcs (words connecting nodes and annotated with lan-
guage model scores). The use of lattices reduces the computational
load for generating the statistics needed for parameter estimation
[13].

Since the MPE criterion involves the phone accuracy in the
objective function, the auxiliary function proposed in [10] is then
based on the log likelihood of phone arcs to make the optimization
of MPE criterion tractable,
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here each sentence r contains of a set of phone arcs ¢ = 1, ..., @,
and p(q) represents the likelihood of arc ¢ calculated from the cor-
responding starting to ending times.

The above equation can be separated into two parts in terms

, which are
(=X)
analogous to the numerator and denominator terms in the MMI
auxiliary function in Eq. (2). More importantly, it can be shown
that EBW updating formulae can be used in the same way as for
MMI estimation to optimize the model parameters in MPE train-
ing, provided that the numerator/denominator statistics have dif-
ferent definitions[10].
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Thus we can also design a weak-sense auxiliary function to
solve the optimization of MPE-based constrained DLT. With the
quantity defined for MPE training, +, M PE _ LO%ypE  the qux-
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iliary function can be written as below.
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where ;. (t) is the posterior probability over time ¢, at state
7, mixture component m on condition of arc g. The function
F(7vd*FE) = max(0,§*FF) determines that the arcs with pos-
itive v4*P® will be used to accumulate the numerator statistics,
while those with negative values will be used to get denominator
statistics. The smoothing fuction in above equation Gsm (W, W)
has the same expression as in Eq. (3) with the factor
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Therefore, the accumulators in Eq. (5-6) for MMI-based con-
strained DLT can be used for the estimation of MPE-based con-
strained DLT, with the different numerator statistics:
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Thus the row-by-row optimization for constrained MLLR is
also a practical solution to estimate MPE-based constrained DLT
matrices. After generating linear transforms for each speaker, the
acoustic model parameters can be re-estimated according to the
updating formula in Eq. (7), where the transformed observations



are used in MPE training with the modified numerator statistics:
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2.3. The smoothing technique for MPE-based discriminative
SAT

The I-smoothing technique was introduced [10] to make MPE train-
ing converge without over-training and improve the generalization.

The basic idea of I-smoothing is to incorporate the information

from ML statistics as a “prior” to smooth the discriminative statis-

tics over each component. The implementation adds an extra term

log P()\) in the auxiliary function:
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with 7 points of statistics from ML training.

Motivated by I-smoothing, we present the smoothing tech-
nique for the optimization of MPE-based constrained DLT. The
statistics from ML estimation will be added to the auxiliary func-
tion in Eq. (10) by ignoring the terms independent of w:
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Since the accumulators for MPE-based constrained DLT are all
calculated at the baseclass level to avoid memory overload, we
then present baseclass smoothing for MPE-based constrained DLT
optimization with the occupancy count 7:
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3. EXPERIMENTS ON CONVERSATIONAL
TELEPHONE SPEECH TRANSCRIPTION

The training set for our experiments contains 1118 conversation
sides (76 hours) of speech from the Switchboard I, Call Home
English and Switchboard Cellular corpora. The official develop-
ment set for the 2001 NIST evaluation dev0] is used as the test-set,
which contains approximately 6 hours speech (118 conversational
sides) from the Switchboard I (SW-I), Switchboard II (SW-II) and
Cellular (Cell) data.

3.1. Experimental Setup

The acoustic models used in our experiments are gender indepen-
dent continuous mixture density, tied state cross-word triphone
HMMs. Each frame of speech has MF-PLP analysis applied to
get the static cepstra with 1st, 2nd and 3rd order derivatives, and
then a HLDA feature matrix is used to project the 52-dimensional
feature vector to 39-dimensions. Vocal tract length normalization
(VTLN) analysis is also applied in both training and testing.

Thus, the basic HMM sets consist of 5920 tied-states, each
of which has 12 Gaussian components. Starting from HLDA-ML
models, a single constrained MLLR transform is generated for
each speaker, and then the observations are transformed to esti-
mate the initial ML-SAT model parameters. At each iteration, the
linear transforms are updated based on the current ML-SAT model,
and the final ML-SAT model after 5 iterations is then used as the
seed model for the further discriminative SAT.

The construction of discriminative SAT models relies on the
lattice-based framework as used in previous work on MMI/MPE
training. Word lattices are initially generated with an adapted HLDA-
ML-SAT model, by fast decoding with a pruned bigram language
model for all training segments. Then the denominator and nu-
merator phone-marked lattices are created by aligning the recog-
nized word lattices and true transcriptions separately. The appro-
priate statistics for the discriminative SAT are accumulated via
a forward-backward pass through the lattice constructed by the
phone boundary times.

Seeding on the HLDA-ML-SAT model and constrained MLLR
transforms for each speaker, we then estimate MMI-based con-
strained DLT and MPE-based constrained DLT respectively, where
three matrices are generated for each conversational side using the
regression class tree. Those feature-space transforms are then fixed
and applied to adapt observation vectors for the re-estimation of
HMM sets, so as to construct MMI-SAT and MPE-SAT systems
(8 iterations). For comparison, a simplified implementation of dis-
criminative SAT is also tested, where three constrained MLLR ma-
trices using the regression class tree are applied during re-estimating
model parameters under the MMI/MPE schemes. We list below
the discriminative SAT models that are considered in this paper:



transform generation/
parameter re-estimation

MMI-SAT(+CMLLR) constrained MLLR/MMI
MMI-SAT(+MMI_CDLT) | MMI-based constrained DLT/MMI
MPE-SAT(+CMLLR) constrained MLLR / MPE

MMI-based constrained DLT/MPE
MPE-based constrained DLT/MPE

MPE-SAT(+MMI_CDLT)
MPE-SAT(+MPE_CDLT)

In testing, full decoding is conducted with the adapted HLDA-
MPE triphone models and bigram language model (LM), the gen-
erated lattices are then expanded using a 4-gram LM. So lattice
rescoring rather than full decoding is performed with these ex-
panded lattices for all SAT systems. Consequently, the 1-best out-
put from lattice generation is also used as the supervision informa-
tion for the testing adaptation.

The unsupervised test-set adaptation is a sequential process
as illustrated in Fig. 1. To adapt discriminative SAT models,
constrained MLLR transforms are first estimated and then lattice-
based MLLR [11] is applied, where transforms are estimated in an
iterative way. In Fig. 1, “INPUT” indicates that these transforms
are applied to the feature/model space when calculating the occu-
pancies for new linear transforms, while “PARENT” means those
transforms are also applied when accumulating the statistics for
new linear transforms. Hence the “PARENT” transforms should
be combined with newly estimated transforms for the further ap-
plication.

Constrained MLLR

( 2 feature—space transforms)

INPUT

MLLR ( 2 mean transforms
+ diagonal covariance transforms)

INPUT

/ Lattice—based MLLR \

2 mean transforms
INPUT + PARENT

global full covariance transform

l INPUT

3 mean transforms

l INPUT
\ 5 mean transforms /

Fig. 1 The testing adaptation used for discriminative SAT

PARENT

3.2. Experimental results

Table 1 shows the rescoring results for test set dev01 with both
baseline MMI/MPE models and discriminative SAT models, where
1-best constrained MLLR as shown in the first box of Fig. 1 is used
for test-set adaptation. The separate columns indicate the WERs
(%) for three subsets of dev01.

It is observed that MMI-SAT system with MMI-based con-
strained DLT could reduce the WER over the MMI system by 0.5%

absolute, while MPE-SAT system with MPE-based constrained
DLT could also improve the performance by 0.8% absolute com-
pared to standard MPE training.

Systems SW-I | SW-II | Cell | total
MMI 21.1 334 | 33.1 | 29.2
MMI-SAT(+MMI_CDLT) || 20.3 329 | 32.6 | 28.6
MPE 20.2 33.0 | 32.7 | 28.6
MPE-SAT(+MPE_CDLT) || 20.1 31.8 | 31.8 | 27.8

Table 1. The WER(%) on test set dev01 for MMI/MPE systems
and discriminative SAT systems, after constrained MLLR
adaptation.

Note that the rescoring results of the MMI and MMI-SAT
models maybe optimistic (the gain between MPE and MMI should
be a little bigger), since the adaptation supervision comes from de-
coding with an adapted MPE model. So lattice-based MLLR is a
fairer way to evaluate the performance of systems trained under
MMI framework, because the effect of adaptation supervision is
reduced.

Furthermore, we evaluate MMI-SAT systems trained with ML-
based linear transforms and MMI-based linear transforms respec-
tively. In Fig. 2, the MMI criterion values on each iteration dur-
ing training have been plotted for both MMI-SAT (+CMLLR) and
MMI-SAT(+MMI_CDLT) systems. Here, MMI-SAT with MMI-
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Fig. 2 The MMI criterion value on each iteration during the
training of MMI-SAT systems

based constrained DLT is effective in improving the MMI objec-
tive function, compared with the simplified implementation of MMI-
SAT using constrained MLLR. The WERSs(%) for these two MMI-
SAT systems on test set dev01, with standard 1-best MLLR and
lattice-based MLLR for testing adaptation are given in Table 2.
It can be seen that there are small improvements with the use of
MMI-based constrained DLT for MMI-SAT.

Systems MLLR | lattice MLLR
MMI 29.1 28.6
MMI-SAT(+CMLLR) 28.5 28.0
MMI-SAT(+MMI_CDLT) 28.5 27.9

Table 2. The WER(%) on dev01 for MMI and MMI-SAT
systems, after MLLR and lattice-based MLLR adaptation.



Next we explore the performance of MPE-S AT models trained
with different types of linear transforms. In Fig. 3, the aver-
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The Average Phone Accuracy during MPE training

MPE-SAT(+MPE_CDLT) —+—
MPE-SAT(+MMI_CDLT) --x--
MPE-SAT(+CMLLR) -~ --

0.8

1 2 7 8 9

4 5 6
Iteration Number
Fig. 3 The average phone accuracy on each iteration for the
training of MPE-SAT models.

age phone accuracies during MPE training illustrate that applying
MPE-based constrained DLT could make MPE training converge
faster and achieve higher phone accuracy, in comparison with con-
strained MLLR for MPE-SAT.

The rescoring results on test set dev01, as shown in Table 3,
indicate that MPE-SAT with MPE-based constrained DLT here
outperform MPE-SAT with constrained MLLR, but the gain is
only 0.1% after lattice-based adaptation. Furthermore, the use
of MMI-based constrained DLT for building an MPE-SAT model
could also get similar test-set performance.

Systems MLLR | lattice MLLR
MPE 28.5 27.9
MPE-SAT(+CMLLR) 27.8 27.0
MPE-SAT(+MMI_CDLT) 27.8 26.9
MPE-SAT(+MPE_CDLT) 27.8 26.9

Table 3. The WER(%) on dev01 for MPE and MPE-SAT
systems, after MLLR and lattice-based MLLR adaptation.

4. DISCUSSIONS AND CONCLUSIONS

This paper has investigated the use of the MPE criterion for dis-
criminative SAT and its application to the CTS task. Using the
weak-sense auxiliary function, the estimation formulae for MPE-
based constrained DLT have been derived, where smoothing is
necessary to ensure the convergence of the optimization procedure.
The experimental results on CTS have shown that discriminative
SAT could make acoustic models give better results after adapta-
tion on the test data.

Theoretically, it is more reasonable to use the consistent MPE
criterion in the two stages of discrminative SAT, however, MPE-
SAT model trained with MPE-based constrained DLT yields only
slight improvements over the model trained with standard con-
strained MLLR matrices on the CTS task. Although previous re-
search had shown that VTLN gives essentially additive gains to the
use of ML-SAT [4], it is worth further investigating possible inter-
actions between VTLN and discriminative SAT. Referring to the
work on supervised adaptation reported in [12], it may be possible

that the use of suitable and consistent discriminative criterion for
SAT may give potential benefits for supervised adaptation.
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