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Abstract

This paper deals with the evolution control of level-sets in
the context of contour detection. There is a considerable
amount of existing work on PDEs for geodesic contour de-
tection and the investigation of level-set implementations has
recently resulted in efficient and stable numerical realisa-
tions of the differential evolution. This paper is based on
a finite element implementation for signed distance level-set
evolutions and focuses the attention to the initialisation and
termination of level-set evolutions. An initialisation consists
of an initial signed distance function which corresponds to
some implicit curve. We discuss two types of initialisation.
We generalise the commonly used a priori type, which can
be a rectangle the size of the image, to include more general
initial shapes. We show that the initial shape does not have
to be closed and can for instance be a single line. The sec-
ond type of initialisations is not specified by the user but a
result of previous level-set evolutions. This type of initiali-
sation is useful when different evolution equations are to be
alternated and can be used for instance to detect nested con-
tours or in multi-resolution techniques. For the termination
of a geodesic evolution, we introduce an automatic stopping
condition by looking at the Riemannian length of the implicit
curve as the quantity that is subject to the minimisation. It
turns out that the length can be computed efficiently from the
employed finite element representation and used to terminate
the gradient descent.

1 Introduction

Level-set methods have become powerful tools for many ge-
ometric problems in the analysis of image data in 2D and 3D
[11, 10, 14, 5]. Level-set methods are generally useful when
one has to solve an optimisation problem with respect to an
interface. To that extent, one assigns a cost C'(T") to a given
interface I'. In this paper, we will focus on the problem of
minimising a certain geodesic length in two dimensions and
write G for the cost in the geodesic case. The idea is then
to compute the variation of the cost for deformations of the
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interface and to use gradient descent in order to minimise the
cost.

Level set-methods [11] introduce a level-set function® ¢
to represent the interface I implicitly as zero level-set:

I:=¢ 1(0) (1.2)

The implicit representation links ¢ (as the introduced an-
alytic entity) with the geometric entity I" and allows for
changes in the topology during the evolution. Furthermore,
this relationship can be made one to one by imposing the
signed distance constraint [7, 12].

By the implicit description, IT" is determined by ¢ and the
cost can be viewed as functional C'(¢). Introducing an evo-
lution parameter ¢, we write u(x,t) = ¢(x) for the level-
set function at ’time’ ¢. In this way, the gradient descent
equation for «(x,t) becomes a partial differential equation
(PDE) that controls the velocity of the current interface with
the objective to minimise C':

du __ iC

dt — du (12)

The numerical realisation of the evolution has been dis-
cussed intensively [11, 7, 9, 12] and we adopt here a novel
representation in [12] which uses a sparse dynamic finite ele-
ment complex [15] to represent and evolve the level-set func-
tion. Using the signed distance constraint, one has the fol-
lowing simple expressions for the key geometric quantities
(normal N € S! and curvature «):

N =

K =

Vu
2
Veu

(1.3)
(1.4)

In this paper we focus on the somewhat less discussed issues
of initialising the evolution and terminating the evolution
automatically. The non-parametric nature of level-set rep-
resentations removes the need for manual initialisation that
is required by parametric methods (e.g. B-spline snakes [3]).
Using the geodesic contour detection as an example, we dis-
cuss various options for initialisation and evolution-control
which are of practical use.

Section 2 is a brief review of the geodesic problem us-
ing the Riemannian length as cost function which we use

14 is a continuous, real valued function



throughout the paper. Various options for initialising level-
set functions are then introduced in Section 3. Section 4
on automatic termination completes the theoretical introduc-
tion. This is followed by sections on results (Section 5) and
conclusions (Section 6).

2 Geodesic Active Contours

It has been known for some time [2, 8, 10] that the problem
of contour detection can be cast into the problem of min-
imising a Riemannian length functional that is induced by
the image.

In order to define the cost functional, one starts by intro-
ducing a local measure for edges g (with g(z) € [0;1]). A
simple example? is given by [8, 10]:

1
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where I, is the image smoothed with a Gaussian of scale
parameter o and « is a sensitivity constant to image contrast.
Interpreting ¢ as Riemannian metric for the image, we can
see that we are using the Euclidean length measure in the
absence of edges (¢ =~ 1) but use a smaller length-measure
in areas of large gradient values.

The global cost associated with T' is the Riemannian

length:
Gr) = [ g
r

where the standard Lebesgue measure is used to integrate the
function g over T".

The velocity function S which asymptotically minimises
G can be shown to be [8, 10]:

g: 2.1)

22)

8= div(g%uqu) +cg (2.3)

where c is the coefficient of the so-called “balloon force” [8,
10]. We derive (2.3) in Appendix A for the signed distance
case:

B =(Vg,Vu)+g (Viu+c) (2.4)

and refer to [8] for the connection to parametric snakes that
has been discussed in the literature. The numerical imple-
mentation of (2.4) for the finite element representation has
been recently introduced in [12].

The “balloon force” term does not arise from the cost min-
imisation but is useful in certain situations:

e |t can be used to accelerate the convergence since it
adds a velocity ¢ to the interface motion in the ab-
sence of any edges (¢ =~ 1) and vanishes at ideal edges
(g =~ 0).

o There are applications where the cost functional is lo-
cally flat (e.g. sky-line initialisation of Figures 5 and
6). Here the “balloon force” is vital to drive the evolu-
tion towards the desired minimum (and can be turned
off subsequently to refine the contour).

2Further examples are known in the context of diffusion filtering [13].

e The formulation as Riemannian length minimisation
problem implies that the contour localisation deviates
from the ‘true edge location’ and lies slightly inside
convex areas and outside concave areas. The balloon
force can be used to adjust the location of the con-
tour, provided the object’s curvature is known approxi-
mately. In fact this is one of the original motivations for
adding the term [4, 6].

3 Initialisation of Level-Set Evolu-
tions

The initialisation of level-set evolutions requires an initial
level-set function. By demanding the signed distance con-
straint, one can equivalently prescribe an initial orientated
closed curve (or collections of simple closed curves) that
does not self-intersect. This uses the fact that implicit curves
are in one-to-one correspondence to signed distance func-
tions [7].

In this section we discuss two sources of initialisation:
The first one embarks on a priori knowledge and can be used
to initialise evolutions independent of any previous evolu-
tion. The second initialisation is indirect in that it relies on
previous evolutions. The termination criteria of Section 4
is of particular relevance to the indirect case (Section 3.2)
where the end of one evolution starts a secondary evolution.

3.1 Direct Initialisation

In the most important example, the initial curve consist of
the outline of an image and reflects the assumption that the
objects of interest are fully contained in the image. However,
we discuss more general options and demonstrate in partic-
ular the case of a single infinite line that allows us to capture
non-closed contours such as sky-lines.

A rich set of signed distance function initialisations can
be obtained by transforming and combining two very basic
distance functions, the ones corresponding to a point and a
line.

3.1.1 Elementary and Transformed Shapes
We define the signed distance functions of a point and a line:

qépoim(l’) = |
DinelT) 1= <N, .L>

(3.1)
(3.2)

|

where N € S denotes the ‘outward’ normal of the region
separated by the line. More interesting examples can be
formed by transforming the space (R?) and the levels:

e Spatial Transformations: Signed distance functions
are symmetric under the Special Euclidean Group
SE(R?) and scaling: If ¢ is a signed distance map,

— (x) := ¢(x—T) isthe signed distance map cor-
responding to a translation 7' € R? of the shape.



— ¢(x) := ¢(R'x) is the signed distance map cor-
responding to a rotation (with fixed origin) by
R € SO(2) of the shape.

- 1p(z) := sp(Lx) is the signed distance map cor-
responding to a scaling of the shape by a factor
seR.

o Level Transformations: Signed distance functions are
symmetric under shift and inversion of levels: If ¢ is a
signed distance map,

— () := ¢(x) —d isthe signed distance map cor-
responding to an expansion of the shape’s interior
by a distance d in normal direction.

— (x) := —¢(a) isthe signed distance map corre-

sponding to the same shape but with an inversion
of inside and outside (complement).

By applying this transformations to the point and line, one
obtains general (infinite) lines and general circles. The use
of a single line as initial shape is illustrated in Figures 5 and
6.

3.1.2 Combining Shapes

Implicit shapes can be combined (union and intersection) by
corresponding min/max operations on the distance functions.
Applying the transformations of the previous section to com-
bined shapes, one can generate a manifold of further initiali-
sation shapes.

If ¢4 and ¢- are signed distance maps,

e Union: ¢(z) := min(¢i(x),p2(x)) corresponds to
the union of the interiors described by ¢; and ¢,.

e Intersection: ¢(z) := max(¢y(x), d2(x)) corre-
sponds to the intersection of the interiors described by
b1 and ba.

When combined with the level-inversion, this means that
we can implicitly perform all usual operations that are known
from set-theory on our shapes (complement, subtraction,
union, intersection).

In particular, we can now easily obtain signed distance
functions of arbitrary closed polygons. For instance, we can
obtain the outline of an image by intersecting the four lines
of the image-borders (with normals pointing away from the
image region).

3.2

Indirect initialisations are useful when an evolution is to be
based on the result of a previous related - but different - evo-
lution. Examples of this case are given by:

Indirect Initialisation

e Detection of all local minima: A general problem of
the minimisation problem lies in the fact that a single
evolution will only detect one of the possibly many lo-
cal minima. However, we can follow a scheme that was

suggested in [12] for nested contour detection: The gen-
eral strategy is use the knowledge of a detected local
minimum to drive the subsequent evolution into a dif-
ferent local minimum. The idea is to use two different
Riemannian metrics as illustrated in Figure 1: The ini-
tial interface T’y is first attracted to the local minima I'y
of G = fF g. Subsequently, the evolution with a modi-
fied cost G = fF g is used to move the interface beyond
the already detected minima. Where the detected inter-
face I'y is used to define ¢:

ﬁ(l) — { 1_9(1‘)

e Global distance to contour map: The numerical rep-
resentation is, for computational efficiency, restricted to
the vicinity of the interface I". However, once the inter-
face is located, one can use a subsequent evolution with
constant normal speed (3 = 1) to obtain the global con-
tinuation of the signed distance map (see Figure 7).

else (3.3)

o Multi-resolution techniques: In the finite element rep-
resentation used, it is natural to consider refinements of
elements (Figure 2). Using initially a coarser resolution
speeds up the convergence which is relevant for time
critical applications (e.g. tracking). In this paper we re-
strict ourselves to consider techniques that change the
resolution for the entire domain. More sophisticated
adaptive methods are also possible where one can use
the curvature ~ to drive a sub-division process.

/bb

Figure 1: Modification of the Riemannian Metric for the
Detection of General Local Minima: The original metric
g (left) leads initially to the detection of contour I'; and is
replaced temporarily by g (right) to move the interface away
from the already detected minimum.

4 Evolution Control and Termination
of Level-Set Evolutions

We analyse the convergence behaviour of level-set evolu-
tions in the case where the evolution is derived from a cost
functional C'. For instance, as was pointed out in Section 2,
the Riemannian length G is the cost for the geodesic contour
detection.



Figure 2: Element Sub-division for Resolution Refine-
ment: The original element (left) is sub-divided into four
triangles to double the resolution (right). The level-set func-
tion of the sub-divided elements is initialised to agree with
the original function. This is possible because any coarse
scale polynomial yields a polynomial of the same degree in
the refined elements.

We assume in the following, that one can evaluate the cost
functional and its derivative during the evolution.® We show
in Section 4.1 how to compute the Riemannian length nu-
merically and will use this information to terminate the gra-
dient descent (1.2).

We first investigate the differential changes in the cost in-
duced by the evolution. From Appendix A, (A.6) we obtain
the following result for the geodesic case: for small defor-
mations v of the level-set function v, the changes in cost G
are given by:

Glu+v)— Gu) ~ — / B v (4.1)
N

where we have written I'(w) = «~'(0) for the zero level-set.

In particular, pursuing the steepest descent v = At 3 (with
time step At) results in

AG ~ —At/ B = A1) 221 4.2)
. T
or 1
% = =182 (4.3)
4.1 Measuring Zero Level-Sets. Length in

Euclidean and Riemannian Sense

The aim of this section is to compute the length of a zero
level-set (or individual loop-components of it). The novel
finite element representation [12] proves useful by defining
the level-set unambiguously inside each active element. For
simplicity, we resrict the explicit computations of this sec-
tion to the case of first order elements where we can perform
all necessary computations without approximation.

The Riemannian length can be expressed directly in terms
of the node-values and the result for individual elements can
be summarised as follows (proof omitted here). Using the
notation of [12] (see Figure 3) & € {0, 1,2} denotes the in-
dex such that the sign of w,, is different from the (equal) sign
of the two other coefficients. We then obtain the following
expressions for the length of the zero level-set in the element:

3The method can also be applied to evolutions where the cost is not ex-
plicitly known by using equation (4.3): The integral ;. 32 can be computed
similar to the Riemannian length integral for 1st order elements.

UO ul UO ul UO u1

Figure 3: Element Nodes: Three relevant examples of active
elements. Each element of the complex is a standard simplex
and ug, u1, us denote the node values of the function «. The
zero level-set of « is indicated (red line) for each example.
For the element on the left, the sign of u; with & = 0 differs
from the signs of the other node values. Similarly, for the
elements in the middle £ = 1 and on the right & = 2.

upy/(u1 — ug)? + (uz — ug)?

Ly(U) = 4.4

1(U) Mo — ) (4.4
2

LUy = L(U)> vy (4.5)
=0

where L; denotes the Euclidean and L, the Riemannian
lengths and where we have used y(*); defined by

' 1wy
y(k)i = -

fori #£ k (4.6)

2up — u;

Zy('“)i = 1

i

4.2 Termination Condition

Evaluating the cost functional during the evolution enables
us to define a function ¢(t) := C'(u(t)) which is expected
to become stationary when a local minimum is approached
(Figure 4). Note that we have shown in Section 4.1 how the
cost can be computed for 1st order elements without hav-
ing to introduce any approximation. Theoretically, ¢(¢) de-
creases indefinitely and will not become stationary at finite
time. However, due to the finite numerical accuracy, c(t)
stays monotonous until the finite numerical accuracy leads
to a slight fluctuation. We use this limited numerical accu-
racy to stop the evolution.

5 Results

Figures 5, 6, 7, 8 and 9 show experimental results obtained
with the first order elements of [12].

The use of a direct initialisation from a single line (see
Section 3.1) is demonstrated in Figures 5 and 6. Figure 7
demonstrates the use of a user-specified initialisation (here
a circle) in order to obtain the desired contour in an image
with a complex background.

Applications of indirect initialisations are shown in Fig-
ures 7, 8 and 9: in Figure 7 the global signed map is obtained
by using the contour as initial curve for a constant speed evo-
lution (see Section 3.2). Figure 8 demonstrates the detection
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Figure 4: Geodesic Length Evaluation: The diagram
shows the numerically computed values for the Riemannian
length during (the first part of) the evolution from Figure 8.

of nested contours (see Section 3.2) and Figure 9 shows how
an initially coarse contour can be used for a fast contour de-
tection by initialising a refined evolution in the vicinity of
the local minimum.

6 Conclusion and Future Work

We have presented methods to initialise and terminate level-
set evolutions in 2D. Our investigation adds further practical
advantages to the use of level-set methods in delivering tools
towards user-input free methods.

We exploited the correspondence between implicit curves
and signed-distance constrained level-set functions for the
initialisation. Two types of sources for initial level-set func-
tions were presented: While the direct initialisation is based
on geometric shapes (e.g. polygons), the indirect initialisa-
tion uses signed-distance level-sets of previous evolutions as
starting point. The use of indirect initialisations was demon-
strated in the examples of global signed distance map com-
putation, nested contour detection and multi-resolution tech-
niques.

We introduced a numerical condition to terminate level-set
evolutions when convergence to local minima is achieved.
The paper demonstrates how the numerical method (adopted
from [12]) allows for a direct computation of the Riemannian
length which is used to determine the point of convergence.

Future work is concerned with

o Investigation of methods to automatically suggest val-
ues of the parameters of the metric (o, @) from the im-
age.

o Applications to more general metrics (such as the ones
suggested in [6, 9]).

e 3-dimensional implementation and evolution control
for geodesic implicit surface detection.

Figure 5: Sky-line Example: Initialisaton of a single line
along the top of an image can be used to detect non-closed
contours such as a ‘sky-line’. The top part shows the initial
curve and the bottom part the converged curve. A value of
¢ = 0.5 was used for the *balloon force’.

.'

Figure 6: Sky-line Example: Contour detection with a sin-
gle line along the top as initialisation.
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Figure 7: Cycling Fish Sculpture: The image on the top-left shows the original image with a user-selected circle as initial
level-set. A negative ‘inflating’ balloon-force is used to drive the evolution towards normalised colour edges and the result
of the evolution is displayed on the top-right. Applications based on the obtained contour are displayed in the bottom row
of the figure: the bottom-left shows the implied segmentation (by drawing all pixels for which the level-set function is
negative) and the bottom-right indicates the levels of the global signed distance map (with a spacing of 8 element units and
the zero level-set coloured in red).




Figure 8: Nested Contour Example: The top-left image
shows the trivial initialisation (image outline I'y). Detection
of the first local minimum leads to the result (I';) displayed
in the top-right image. Temporary modification of the cost
(see Figure 1) leads to the departure (I';) from the already
detected contour in the bottom-left image and finally, min-
imisation with the original cost functional leads to the detec-
tion of the nested contours (I'3) in the bottom-right image.

Figure 9: Multi-Resolution Example: The spatial resolu-
tion of the level-set evolution is increased by a factor of 2 in
each of the following steps. The trivial initialisation (image
outline) leads with a coarse resolution version of the algo-
rithm to the contour displayed on the left. The approxima-
tive contour is then used to initialise a refined evolution by
sub-dividing elements (see Figure 2) and the converged re-
sult (middle) is used in turn to initialise the final evolution
with the final result shown on the right.

A Derivation of the Geodesic Evolu-
tion Equation

This section gives a direct poof that 2 of (2.4) does indeed
correspond to the gradient descent of the Riemannian length
in the case that ¢ = 0. Use of the signed distance constraint
allows us to simplify previous proofs in the literature [8].

Proposition A.1. Geodesic Evolution PDE:

Defining the Riemannian length for the zero level-set of ,

G(u) := /Ul(o)g (A1)

we will prove that

B = (Vg,Vu)+gVu
= div(g Vu)

(A2)

corresponds to the gradient descent which we use to min-
imise G.

Proof. Before we detail the proof, we would like to point out
an intuitive geometric interpretation: a change in the level-
set function implies a change in the interface and changes
the length functional G. The two summands in (A.2) corre-
spond to two independent causes for such a change. The first
term ((Vg, Vu)) accounts for the fact that as « changes, the
evaluation of ¢ has to be translated to the new position of the
interface (i.e. moved in normal direction V). Note that the
first term vanishes in the case of a constant metric such as the
Euclidean metric. The second term (¢ V?u) corresponds to
the change in length of the interface assuming that ¢ remains



constant under the deformation (the first term accounts for
the transport of ¢). The change in length is proportional to
the curvature = = V2v and can be understood intuitively by
looking at a circular interface of radius r: While the transla-
tion of a line in normal direction does not change its length,
the (proportional) length of a circle changes under normal
motion proportional to x = %

For the proof, consider the change in the length functional
G when the zero level-set of « is deformed in normal di-
rection (v — u + v). If v : R* = R,z — v(z) denotes the
change in the level-set function, the deformation transforms
an original level-set location z into y = 7'(x), where

T:R* =Rz y=a—ov(z) Vu(z) (A3)

and where we have assumed signed distance representation
(hence |Vu| = 1).

We will now assume that the zero level-set consists of a
single loop so that we can use a simple parametrisation for
the proof. The general case follows then by summation over
individual loops and requires some additional thoughts in the
case of topological changes which we omit here. Let I :=
u~1(0) be parametrised by its Euclidean arc-length on the
interval I = [0; Ly (u)]. We then have

() /|,,sa\g

For the change in Riemannian length, we can write*:

s)) ds (A.4)

Gu+v)— G(u)

AL

/'v %|v=0 [|(lds(x —vVu(a | g(x — vVu(z ))] ds
I

) gu(s)) = %) gla(s))] ds

Q

= —/'U(J:) [g(r) V2u(z) + <Vg(J:).Vu(:f)>] ds

I

_ 7/11»(17) B(x) ds

here the second last step follows from the product rule to-
gether with | 42| = 1 from

(A.5)

oi( (x —vVu)) = =(Vg,Vu)
and
oy lo=o0 [| 5@ = vVu(@)|] = (3, ) = —r =~ V'u
(Gauss map [1]) where we have used the fact that N = Vu
is the normal of the interface. (A.5) means that
% = -4 (A.6)

and hence /3 is the steepest decent in the space of normal
deformations (and 3 vanishes at local minima of G). O

4We have assumed that v is sufficiently small so that no self-intersections
occur. This is justified since we are looking at the infinitesimal case here.
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