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Abstract

We propose an algorithm for estimating disparity and oc-
clusion in stereo video sequences. The algorithm defines a
prior on sequences of disparity maps using a 3D Markov
random field, and approximately computes the MAP esti-
mate for the disparity sequence using loopy belief propaga-
tion. In contrast to previous work on temporal stereo, the al-
gorithm (i) correctly models half-occlusions — scene points
visible in one camera but not the other — and (ii) enforces
the so-called “monotonicity constraint” on the boundary of
half-occluded regions. The algorithm is also able to exploit
temporal coherence more appropriately than many previ-
ous approaches to temporal stereo, by employing additional
states in the Markov random field. These additional states
permit rudimentary motion estimation to be performed as
part of the belief propagation, thus improving the quality
of temporal inference. Parameters of the algorithm are
learned from the ground truth disparities of a real stereo
sequence. Qualitative results are shown on real sequences,
including comparisons with competing approaches, and the
performance of the algorithm is assessed quantitatively us-
ing the ground truth data.

1. Introduction

The problem of reconstructing scene geometry from cal-
ibrated stereo image pairs has a 30-year history in computer
vision1. The history of stereo reconstruction for sequences
of stereo pairs is shorter (perhaps 10 years), yet still quite
rich. However, it appears that previous approaches to tem-
poral stereo have not attempted to model pixels that are
“half-occluded” — that is, visible in one image and not the
other. Furthermore, previous temporal stereo approaches
ignore a very useful constraint, known as the monotonic-
ity constraint (see Section 2), which precisely specifies the
disparities permitted on the boundary of half-occluded re-
gions. This paper presents an algorithm to infer disparity

1However, as Belhumeur [1] points out, biological evolution solved this
problem millions of years ago, and humans have studied the concept of
stereo vision since at least the time of Leonardo da Vinci.

sequences with half-occlusions while enforcing the mono-
tonicity constraint.

The algorithm is inspired by previous successful ap-
proaches to static stereo reconstruction using Markov ran-
dom fields (MRFs). These approaches perform estimation
by either graph cuts (e.g. [3]) or belief propagation (e.g.
[21]). We concentrate here on belief propagation, which
generalizes naturally to the temporal domain. A notable
special case of the belief propagation approach to stereo
is the 3-plane model (3PM) of Criminisi et al. [6], which
builds on earlier ideas employing dynamic programming for
stereo [4, 15, 10, 1]. We single out 3PM here for two rea-
sons: (i) recent papers have demonstrated that 3PM is fast
and accurate, especially when certain post-processing steps
are applied [5]; and (ii) 3PM is the primary inspiration for
our new algorithms. 3PM correctly models half-occlusions
and the monotonicity constraint, and introduces a powerful
new capability: modeling of non-fronto-parallel surfaces.
Our algorithm retains these properties, while overcoming
a potential disadvantage of 3PM, which treats all scanlines
independently: this can result in poor accuracy unless care
is taken with separate pre- and post-processing stages.

The paper’s main contribution is a hierarchy of three
MRF models with good performance for temporal stereo.
First, we show how to remove the inter-scanline indepen-
dence assumption from 3PM, resulting in a 2D MRF that
retains the advantages of explicit occlusion labeling, non-
fronto-parallel surfaces, and the monotonicity constraint.
Second, we extend the MRF in a similar fashion by intro-
ducing dependencies between frames. This results in a 3D
MRF which exploits both inter-scanline and temporal co-
herence. Third, we further extend the MRF by introduc-
ing a new binary state (“in motion” vs “stationary”) at each
pixel. This primitive motion estimation permits improved
constraints on stationary regions which increase the bene-
fits of temporal coherence. The temporally-coherent models
are formulated and compared in both filtering and smooth-
ing contexts, and their results compared with the best known
competitors: graph cuts, and 3PM with pre-processing.

In addition to these theoretical developments, the paper
makes an important practical contribution: as far as we are
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aware, it provides the first ever hand labelled “ground truth”
data for a real (i.e. non-synthesized) stereo sequence. We
use this labelled data to provide hard numbers on our algo-
rithms’ performance. Our labelled data will be made avail-
able to the research community.

The final significant aspect of the paper is that all MRF
parameters are determined by learning. We propose a learn-
ing methodology inspired by Freeman et al. [9], which en-
compasses transitions between left-, right- and un-occluded
pixels in the temporal and spatial domains, in addition to
the more familiar transitions between disparity levels.

1.1. Related work

Disparity estimation algorithms can be categorized ac-
cording to the type of coherence they impose on their dis-
parity maps (horizontal i.e. intra-scanline, vertical i.e. inter-
scanline, or temporal i.e. inter-frame), and the extent to
which they model occlusions (do they incorporate occlu-
sions at all, and if so do they enforce the monotonicity con-
straint described in Section 2?). Figure 1 gives examples of
early and/or significant work in these categories, and indi-
cates the contributions we believe are made by this paper.
To be specific, we believe this paper is the first to address
both vertical and temporal coherence with the monotonicity
constraint enforced correctly. Furthermore, this paper intro-
duces motion modeling to assist with temporal coherence.

Type of coherence
Horizontal Horizontal

& vertical
Horizontal,
vertical, &
temporal

No
occlusions

Cox96
(DP)

Ohta85
(DP++),
Sun02 (BP)

Leung04
(DP++)

Occlusions Belhumeur-
92 (DP++),
Kolmogorov-
01 (GC)

Occlusions
& mono-
tonicity
constraint

Geiger95
(DP), Cri-
minisi03
(DP)

This paper
(BP)

This paper
(BP)

Figure 1. Previous Work.Early and/or significant contributions in
each category of disparity estimation are given, together with the
chief algorithm used: dynamic programming (DP), dynamic pro-
gramming with additional processing (DP++), graph cuts (GC),
belief propagation (BP).

There is, of course, much work on temporal stereo that
defies the simple taxonomy of Figure 1. For example,
Zhang et al.[25], Strecha and van Gool [19], and Davis
et al.[7] are mostly suitable for use in static scenes and/or

structured light. Other approaches rely on effective pre-
processing to obtain good estimates of higher-level scene
characteristics. For example, Vedula et al.[23] employ optic
flow, while Shao [18] employs line and edge information.

2. Background

The aim of this work is to recover the 3D structure of a
scene from stereo image sequences by finding the disparity
of points in the scene. When a scene point is projected into
a left and a right image, the disparity is defined as the dis-
tance between the projections. For this paper, the disparity
is measured with reference to the cyclopean image. This is
an image with an optical centre in the middle of the optical
centres of the left and right input images. Also, all inputs
are rectified to align scanlines [12]: a point will project to
the same vertical position in the left, right and cyclopean
images.

Left

Right

A

LO

RM

LM

B
a

Figure 2. Scanline matching diagram.This diagram shows the
matching surface for a single scanline. (A) Parts of the image
at constant depth are represented using alternating horizontal and
vertical “moves”. (B) Pixels that are half-occluded are explicitly
labelled as such. The pixels that are not visible in the left scanline
and are labelled as left-occluded (LO) before returning to right-
matched (RM) and left-matched (LM) moves where the points are
visible in both inputs. For the points marked as occluded, a virtual
disparity can be measured (shown dashed).

Figure 2 shows a diagram of the type introduced by [10].
Corresponding scanlines from the left and right images are
used as axes on which a matching surface is drawn. Each
point on the matching surface corresponds to a single point
in the scene and its horizontal position in the two input im-
ages can be read off the axes. We refer to the 45◦ line (thick
dashed) as the cyclopean line because the horizontal posi-
tion of a point in the cyclopean image is found by diagonally
projecting the matching surface onto this line. The disparity
is proportional to the distance of this projection a.

Each scanline is composed of discrete pixels and the
matching surface is therefore piecewise linear between
points on a grid. We call these linear components moves.
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After [5], we restrict the possible moves to horizontal and
vertical. A planar object in the scene that is parallel to the
image planes should correspond to a portion of the match-
ing surface that is at 45◦ (constant disparity). By restrict-
ing the moves, such portions are approximately modelled
as alternating horizontal and vertical moves (see Figure 2).
Planar objects that are not parallel to the image planes will
have matching surfaces at different angles comprising either
more horizontal or more vertical steps. Another reason for
a prolonged sequence of horizontal or vertical moves is a
depth discontinuity in the scene. In such cases, background
pixels appearing in one input image are occluded by fore-
ground in the other. Again, we follow [5] and explicitly
label such moves as “left-occluded” or “right-occluded”.
For such pixels, disparity is undefined, however we intro-
duce the notion of virtual disparity which equals the true
disparity for matched points, and the diagonal distance to
the cyclopean line for occluded ones (Figure 2). Note that
(provided the well-known ordering constraint holds), there
is only one way to terminate a run of half-occluded pixels: a
matched move perpendicular to the run. This exactly spec-
ifies the disparity value on the boundary of a half-occluded
region. Because this fact is equivalent to the requirement
that the matching surface is a monotonic function of both
the left and right pixel locations, Geiger et al. [10] call this
the “monotonicity constraint”. 3PM-like algorithms exploit
these powerful constraints along epipolar lines to achieve
computational efficiency.

The cyclopean image is defined as having the same hor-
izontal resolution as the inputs. As this corresponds to the
45◦ line in Figure 2, each cyclopean pixel will encompass
two moves on the matching surface. Because of monotonic-
ity, only three two-move possibilities are allowed: right-up,
right-right and up-up. These correspond to changes in (vir-
tual) disparity of 0, +2 and −2 along epipolar lines.

To establish the dense stereo task as an inference prob-
lem, we introduce hidden nodes at every pixel location in
the cyclopean image. The problem is then a matter of la-
belling a node i ∈ I with a label xi representing the (vir-
tual) disparity at that point and whether it is visible in both
inputs or just one. Hidden nodes are then “connected” to
one another, encoding the spatial (and temporal) relation-
ships between them. Hidden nodes x are also connected
to visible ones, y which take measurements from the input
data to support proposed labellings.

3. Problem formulation

Consider a single stereo pair of images with no tempo-
ral data. The spatial neighbourhood for a hidden node x1

in the cyclopean image is illustrated in Figure 3a where it
is modelled as dependent on its four neighbours only. In
addition to this, each hidden node is singly connected to

x1x2 x3

x4

x5

HH
V

V

xt
1

xt
2

xt+1
1

xt
5

xt
3

xt−1
1

xt
4

T

T

H

H

V

V

(A) (B)

Figure 3. MRF neighbourhoods.(A) Spatial neighbourhood: cir-
cles represent hidden nodes; lines show the cliques of which x1 is
a member. (B) Spatiotemporal neighbourhood.

an observable node capturing measurements from real data.
This results in a Markov random field [11] consisting solely
of pairwise cliques and the joint distribution over the hidden
nodes (given data y) may be written

P (x|y) ∝ P (y|x)P (x)

∝
∏
i∈I

Φ(xi; y) ×
∏

i,j∈H
Ψh(xi, xj) ×

∏
i,j∈V

Ψv(xi, xj),

(1)

where Ψh is a compatibility function between two hidden
nodes connected horizontally in the image, and Ψv is for
those connected vertically. Φ is a term representing cliques
between a hidden node and an observable node.

Now consider a sequence of images in which informa-
tion is to be passed from nodes at one time step to adjacent
time steps. Figure 3b shows this spatiotemporal neighbour-
hood of a node xt

1. The state of this node is modelled as
being dependent on four spatial neighbours (as it was in
Figure 3a), and two temporal neighbours, one time-step into
the future and the past. The temporal neighbours are in the
same spatial location as xt

1. As in Equation (1), we may
write a joint distribution for all hidden nodes x, across all
locations and all times, similarly factorized into data terms
Φ and compatibility functions Ψ:

P (x|y,Ms) ∝ P (yt, . . . , y1|xt, . . . , x1)P (xt, . . . , x1)

=
t∏

τ=1

[∏
i∈I

Φ(xτ
i ; yτ )

∏
i,j∈H

Ψh(xτ
i , xτ

j )
∏

i,j∈V
Ψv(xτ

i , xτ
j )×

∏
i∈I

Ψt(xτ
i , xτ−1

i )

]
, (2)

where Ψt is the compatibility function for temporal cliques.
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By marginalizing the joint distribution in Equation (2),
an expression may be derived for the hidden variables in
the last frame only:

P (xt|y,Mf ) =
∑

x1,...,xt−1

P (xt, . . . , x1|yt, . . . , y1)

=
∏
i∈I

Φ(xt
i; y

t)
∏

i,j∈H
Ψh(xt

i, x
t
j)
∏

i,j∈V
Ψv(xt

i, x
t
j)×

∏
i∈I

∑
xt−1

i

Ψt(xt
i, x

t−1
i )P (xt−1

i |yt−1, . . . , y1). (3)

We call this the filtering model as it infers the state at time t
under the assumption that nodes in the past are conditionally
independent of nodes in the future. In contrast to this, we
will refer to Equation (2) as the smoothing model where
past nodes are not independent of future ones. Ms and Mf

imply that the smoothing or filtering model is in use.

3.1. Specifying MRF parameters

In the cyclopean image, every location must be labelled
with a disparity if it is visible in both input images, or as oc-
cluded (with virtual disparity). If the maximum anticipated
disparity is ∆ pixels, the space of possible labels X is

xi ∈ X ≡ {d0, . . . , d∆, l0, . . . , l∆, r0, . . . , r∆} (4)

where dn indicates visibility in both images with a disparity
of n pixels and ln/rn indicates occlusion in the left/right
image with a virtual disparity of n.

Recall from Section 2 that our (virtual) disparities
change by either 0 or ±2 between neighbouring cyclopean
pixels, and that there is only one possible change in dispar-
ity when transitioning from a matched to occluded state. If
node i is the left neighbour of node j, these facts are encap-
sulated by the following parameterization of the (unnormal-
ized) horizontal compatibility function:

Ψh(xi, xj) xi

xj dn rn ln
dn 1 0 0

dn+1 e−γ e−β 0
dn−1 e−γ 0 e−β

rn+1 e−β e−α 0
ln−1 e−β 0 e−α

. (5)

Ψh(xi, xj) = 0 for all other inputs not listed above. There
are fewer constraints on the possible disparity values be-
tween vertical neighbours, and thus Ψv has a more general
form:

Ψv(xi, xj) =




e−qv(‖xi−xj‖) xi, xj both matched
e−κv xi, xj both occluded
e−εv one occ., one matched

(6)

Ψt takes the same form as Ψv with function qt and constants
κt and εt.

Data is introduced via a 1D matching score between left
and right pixels. For a proposed pair of matching points,
the normalized sum of squared differences (NSSD) [17] is
computed for a 3×3 region Ω ⊂ Z

2 around the points pl =
[U(i) + D(xt

i), V (i)] in the left image and pr = [U(i) −
D(xt

i), V (i)] in the right:

s(yt
l , y

t
r;x

t
i) =∑

δ∈Ω

(
[yl(pl + δ) − ȳl(pl)] − [yr(pr + δ) − ȳr(pr)]

)2

2
∑

δ∈Ω

(
[yl(pl + δ) − ȳl(pl)]2 + [yr(pr + δ) − ȳr(pr)]2

) ,

(7)

where ȳl/r(pl/r) is the mean intensity over the patch of size
Ω centred at pl/r. The data term Φ is then defined in terms
of this score:

Φ(xi; yt) =
{

e−f(s(yt
l ,yt

r;xt
i)) xi matched

e−ρ otherwise
(8)

3.2. Approximate learning of MRF parameters

There are 7 constants and 3 functions defining the data
term and compatibility functions. These parameters may be
set by hand, but a more pragmatic approach is to learn them
from data. We use the approximate algorithm described in
[9] since exact learning in a loopy MRF is challenging. Sec-
tion 5 describes a hand-labelled video sequence. By treating
each clique independently, statistics were gathered from the
labelled data and these were used to set the model param-
eters. Figure 4 shows the shape of the functions qv and qt.
The unusual shapes can be attributed to the planar structure
from which they were learnt: objects are mostly smooth but
there are occasional large jumps in disparity. Given more
training data we expect to observe a wider range of dis-
continuities in disparity and so the curve shown as a dot-
ted line in Figure 4 was fitted which has a more intuitive
form: as noted in Section 5 the inference is somewhat more
reliable with this fitted form. In addition, this truncated lin-
ear form would allow significant computational savings and
this is discussed in Section 6. The form of the data cost
f(s(yt

l , y
t
r;x

t
i)) is shown in Figure 5.

3.3. Allowing for motion

We extend the basic smoothing and filtering models to
explicitly model moving objects by introducing a new set of
binary hidden variables g, where gi = 0/1 implies that the
point corresponding to position i has/has not moved since
the last time step. A version of Equation (2) may now be
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Figure 4. Learnt compatibility functions.(left) function qv defines
the compatibility function when i and j are connected vertically;
(right) qt defines compatibility when i and j are temporal neigh-
bours. These functions were learnt from the hand-labelled se-
quence described in Section 5. The dashed lines show least-
squares fits of truncated linear models to these data.
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written taking g into account:

P (x|y,Ms+) ∝
∑

gt,...,g1

P (y|x, g)P (x|g)P (g)

∝
t∏

τ=1

[ ∏
i,j∈H

Ψh(xτ
i , xτ

j )
∏

i,j∈V
Ψv(xτ

i , xτ
j )×

∏
i∈I

∑
gτ

i

P (gτ
i )P (yτ |yτ−1, xτ

i , gτ
i )Ψ′

t(x
τ
i , xτ−1

i ; gτ
i )

]
.

(9)

The spatial compatibility functions, Ψv and Ψh are the same
as previously, however the data term and temporal compat-
ibility function now depend on the motion flag, and there
is a prior over the motion labels P (g), which are treated
as mutually independent. This allows the match between
the image data at adjacent frames to directly influence the
amount of temporal smoothing.

The data term is now modelled as:

P (yτ |yτ−1, xτ
i , gτ

i ) ∝ Φ(xτ
i ; yτ )Γ(gτ

i ; yτ , yτ−1) (10)

where Φ only considers how well the data at time τ cor-
respond to the given disparity. If the node is labelled as

stationary (gτ
i = 0) then the pixels indicated by xτ

i should
be similar in appearance to the same spatial locations in the
previous time step, and this is captured by a new function Γ.
The temporal compatibility is likewise extended to capture
the fact that if a point has not moved, it will have exactly
the same disparity as previously:

Ψ′
t(x

τ
i , xτ−1

i ; gτ
i ) =

{
Ψt(xτ

i , xτ−1
i ) if gi = 1

δ(xτ
i − xτ−1

i ) if gi = 0
(11)

where δ is the Dirac delta function.
As before, Equation (9) can be marginalized according

to the filtering model to give:

P (xt|y,Mf+) =
∏

i,j∈H
Ψh(xt

i, x
t
j)
∏

i,j∈V
Ψv(xt

i, x
t
j)×

∏
i∈I

Φ(xt
i; y

t)

(
(1−Γτ

i )P (xt−1
i = xt

i|yt−1, . . . , y1)P (gi)+

Γτ
i P (ḡi)

∑
xt−1

i

Ψt(xt
i, x

t−1
i )P (xt−1

i |yt−1, . . . , y1)

)
. (12)

where Γτ
i = Γ(gτ

i = 1; yτ , yτ−1). Ms+ and Mf+ denote
the smoothing and filtering models with motion detection.

4. Loopy belief propagation

Having defined a Markov network in Section 3, it is nec-
essary to perform inference on it and thereby estimate the
underlying scene structure given some data. For networks
without loops, message-passing rules can be used to com-
pute MAP and MMSE estimates at each node [16, 24]. Even
though the MRF defined above does contain loops, it has
been shown (e.g. in [24, 8]) that satisfactory approximate
results are still achieved if the loops are ignored and mes-
sages are passed as if the loops were not there. We refer to
this algorithm as loopy belief propagation and restrict our-
selves to the MAP formulation.

The algorithm works by computing messages from a
node i to one of its neighbours (node j) using the follow-
ing formula:

mij(xj) = max
xi


Q2(xi, xj)Q1(xj)

∏
k∈N(i)\j

mki(xi)


 .

(13)
where N(i) is the set of all nodes in the neighbourhood of
i. Q1 is the composition of all single node terms appearing
in the joint distribution; likewise Q2 is for two-node terms.
Once the messages have converged, we can compute the
belief at each node:

B(xi) = Q1(xi)
∏

k∈N(i)

mki(xi). (14)
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A point estimate for the state of a node i can be found as the
value of xi that maximizes B(xi).

The forms of Q1 and Q2 depend on whether inference
is taking place under the smoothing or filtering temporal
model and whether motion detection is being used. In any
case Q2(xi, xj) = Ψh,Ψv or Ψt depending on the rel-
ative orientation of i and j2. The one-node term for the
smoothing models is simply the data term, Q1(xi;Ms) =
Φ(xi; y). In the filtering model, Q1 includes the prediction
from the previous time-step:

Q1(xt
i;Mf ) ≈ Φ(xt

i; y
t)
∑
xt−1

i

Ψt(xi, x
t−1
i )B(xt−1

i ) (15)

Q1(xt
i;Mf+) ≈Φ(xt

i; y
t)
(
(1 − Γt

i)B(xt
i)

+ Γt
i

∑
xt−1

i

Ψt(xi, x
t−1
i )B(xt−1

i )
)

(16)

Notice that the belief B(xt−1
i ) is being used in place of the

marginal reverse-time posterior P (xt−1
i |yt−1, . . . , y1). The

belief does not have a simple mathematical interpretation
in terms of the marginal posterior, however we use it as a
convenient proxy.

In this paper, messages are computed according to the
“accelerated” update schedule proposed in [22] for which
all messages are updated in-place and are put to use imme-
diately in subsequent evaluations of (13). A complete iter-
ation involves passing all right-going messages, traversing
the grid from the leftmost to the rightmost nodes and then
repeating for leftward, upward and downward messages. If
the smoothing model is in place, messages are similarly
passed in the future and past directions where (abusing nota-
tion) the i and j nodes in Equation (13) are temporal neigh-
bours. Iterations are then repeated until convergence (in this
paper a fixed number of 10 iterations is used). As discussed
in Section 6, by judicious choice of MRF parameters we
expect in future to be able to take advantage of significant
computational speedups [8].

5. Results

To evaluate the performance of the new stereo algo-
rithms, a simple “ground truth” sequence was captured us-
ing a stereo camera. Two stills from the sequence are shown
in the first row of Figure 6. As the scene is entirely com-
posed of (approximately) planar surfaces, it was possible
to estimate the ground-truth disparities and occlusions by
hand-labelling the corners of the constituent planes in both
right and left input images. The outer regions of the im-
ages, which contain no interesting texture, are deliberately

2In the case of smoothing with motion detection (Ms+),
Ψt(xτ

i , xτ−1
i ) is replaced by the term (1 − Γτ

i )δ(xτ
i − xτ−1

i ) +

Γτ
i Ψt(xτ

i , xτ−1
i )

left undefined. Two renderings of the hand-labelled dispar-
ities from the cyclopean viewpoint are shown as the second
row of Figure 6. The sequence consists of 51 frames at a
resolution of 320 × 240 pixels.

Figure 6. Ground-truth sequence.Gray pixels are matched in both
inputs (lighter indicates greater disparity). Left and right occluded
points are shown as blue and red respectively.

To compare the relative improvements afforded by the
new models, Figure 7 shows the mean error in disparity es-
timates when tested on the ground-truth sequence, normal-
ized such that the 3PM algorithm has an error of 1. For a
single frame, there will be locations labelled as occluded
by either the hand-labelling or the algorithm being tested
and there are also undefined portions of the hand-labelled
sequence. The error is therefore the mean absolute error
in disparity estimates over all points in an image for which
a disparity is available for both the algorithm output and
the labelled sequence. As described in Section 3, the MRF
model parameters were learnt from the labelled sequence,
and for this the first 12 and last 12 frames of the sequence
were used. Errors are therefore reported as the mean over
the middle 27 frames.

Algorithm Normalized error
Horizontal coherence (3PM) 1.0000
Hoz. & vert. coherence 0.0163
Filtering

no motion detection (Mf ) 0.9220
motion detection (Mf+) 0.0132

Smoothing (Ms) 0.0127

Figure 7. Normalized accuracy.Five algorithms are compared.
They are (i) the 3PM, which uses horizontal coherence only, (ii)
a 2D MRF incorporating vertical coherence (Figure 3a), (iii,iv)
The filtering algorithm with and without the motion flag and (v)
the smoothing model. Errors are normalized so that the 3PM has
an error of 1.

The output of some of the algorithms in Figure 7 are

6



Horizontal coherence Hoz. & vert. coherence

Filtering & motion Smoothing

Figure 8. Output of four algorithms on ground-truth sequence.

shown as stills in Figure 8. While the hand-labelled data
was invaluable for providing data to approximately learn
the MRF parameters, it is “too easy” in that many of the
algorithms perform equally well, with a very low error rate.
We therefore also ran the algorithms on a more challeng-
ing sequence showing a ballet dancer (without ground-truth
disparities) and stills comparing the output of the various
algorithms are shown in Figure 9. The MPEG clips sub-
mitted as supplementary material give side-by-side compar-
isons of these algorithms. The addition of vertical coher-
ence in the 2D MRF model affords the most dramatic im-
provement over the output of 3PM. Adding temporal pre-
dictions through filtering (Mf ) qualitatively improves the
performance over the stationary parts of a sequence, but
performs worse over the moving parts. This is because
the future-going predictions rapidly tend to point estimates
causing objects to “stick” to the background. By using sim-
ple motion detection (Mf+), the moving parts are un-stuck
leading to considerable improvements in the output. Solv-
ing the 3D MRF as a batch, smoothing problem (Ms) gives
the best overall performance as information is propagated in
both future and past directions. However, adding motion de-
tection to the smoothing algorithm (Ms+) is less beneficial
than in the filtering case; the reasons for this are currently
under investigation.

The supplementary material also shows comparisons
with two of the most successful approaches in previous
work: (i) 3PM with additional preprocessing termed “cost-
space smoothing” [6], and (ii) the graph cut approach of
Kolmogorov and Zabih [13]. None of the approaches is
a clear winner, and fair comparisons are difficult here.
However, our temporal algorithms demonstrate a pleasing
level of detail and accuracy, particularly on the stationary
backgrounds where their stability is superior to 3PM-with-
preprocessing, while capturing more detail than graph cuts.

Figure 10 contains a table of the time taken per frame
by each of the algorithms tested. All experiments were
conducted on a 3.2GHz Intel Pentium IV PC with 3GB of
RAM, except the smoothing experiments which were car-
ried out on a 64-bit machine with 16GB of RAM and a 2.2
GHz AMD Opteron processor.

Algorithm Time per 320×240 frame (s)
Horizontal coherence 1.9
Hoz. & vert. coherence 246.7
Filtering

no motion detection (Mf ) 298.1
motion detection (Mf+) 351.3

Smoothing
no motion flag (Ms) *686.1
motion flag (Ms+) *947.5

Graph cuts 49.1

Figure 10. Algorithm run times.Smoothing experiments were con-
ducted on a different machine to the rest.

6. Discussion and conclusions

We present a hierarchy of MRF models for temporal
stereo including explicit occlusion labellings and the mono-
tonicity constraint. We also present a preliminary step
toward making full principled use of motion information
in the computation of dense stereo. We investigate the
simplest possible temporal model which assumes temporal
smoothness everywhere and show that better results can be
obtained by adding a binary “in motion”/“stationary” flag.
In future work we anticipate that by explicitly modelling
motion and disparity in the same MRF it should be possi-
ble to combine optic flow with dense stereo to the advan-
tage of both. The difficult areas for optic flow come at the
boundaries of moving objects, but in many cases where one
camera sees a occluding boundary the other will see an un-
obstructed full patch of background due to parallax. A joint
estimation of both cameras’ flow fields and the disparity be-
tween them may provide significant gains in performance.

The running times presented in Figure 10 are somewhat
slow compared with the state of the art [5, 8]. This is be-
cause our algorithm is general enough to use the learned
MRF parameters shown in Figure 4. However, we demon-
strate our best results using the fitted curve from that figure,
and have chosen the analytic form of that curve so that it
is amenable to the distance transform methods pioneered in
vision by Felzenszwalb and Huttenlocher [8]. By combin-
ing this with the coarse-to-fine evaluation mechanism de-
scribed in [8] the authors report several orders of magnitude
speedup on a problem very similar to ours, and future work
will verify that this is indeed attainable.
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Input (left) Horizontal coherence Hoz. & vert. coherence Filtering & motion Smoothing

Figure 9. Output of four algorithms on ballet sequence.

Finally, we have used approximate learning methods
from a very limited training set. We are actively seeking
to gather more extensive and challenging ground-truth se-
quences, and plan to investigate more accurate learning ap-
proximations as discussed in [9].
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