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Video Normals from Colored Lights

Gabriel J. Brostow, Carlos Hefindez, George Vogiatzis, &jn Stenger, and Roberto Cipolla

Abstract—We present an algorithm and the associated
single-view capture methodology to acquire the detailed 3D
shape, bends, and wrinkles of deforming surfaces. Moving
3D data has been difficult to obtain by methods that rely
on known surface features, structured light, or silhouettes.
Multispectral photometric stereo is an attractive alternative
because it can recover a dense normal field from an un-
textured surface. We show how to capture such data, which
in turn allows us to demonstrate the strengths and limitations Fig. 1. Setup and calibration board. Left: a schematic representation
of our simple frame-to-frame registration over time. of our _multispectral setup. Right: Attaching two boards with a p_rinted

Experments were perfoned on Mmonoclar video se- SV PR e 1 & paner o et o cone e
&%?[gcrensak%fugnétjéjtgé?:wg?g}ilrﬁgg ufr?g:fs;\’;tt?alg nggp'gg,:; d orientation can be obtained from a cloth sample inserted in the square
red, green, and blue lights. Our first finding is that the color hole between the boards.
photometric stereo setup is able to produce smoothly varying

er-frame reconstructions with high detail. Second, when these . . .
gD reconstructions are augmen?ed with 2D tracking results, a sequence of normal maps_for that ijgct which, in turn,
one can both register the surfaces and relax the homogenous-2llows us to make the following contributions:
color restriction. Quantitative and qualitative experiments 1) A simple acquisition setup for acquiring high-detail,

explore both the practicality and limitations of this simple per-frame reconstructions.

multispectral capture system. 2) A simple calibration procedure that extends this tech-
Index Terms—Photometric stereo, multispectral, single nigue to human faces.

view, Video Normals. 3) An optical-flow based tracking that suffices for

medium-term registration of folds and creases of a
real deforming surface.
4) An algorithm for detecting self-shadows.
The modeling of dynamic cloth geometry is increasingly 5) An application of our method for ‘dressing’ a virtual
based on computer vision techniques [1], [2], [3], [4], [5]. character with real moving cloth.
Both cloth and faces entail complex underlying dynamics |n this paper, we apply our newest work for relaxing the
that motivate capturing motion data from the real worl@ieed for gray albedo [13] to extend our previous work [14]
whenever possible. with (i) a new self-shadow detection algorithm, (ii) exper-
Existing algorithms one might employ for capturingments on a rigid object for quantitative comparisons, and
detailed 3D models of moving cloth or skin include multipl€iii) qualitative experiments to showcase the problems with
view stereo [6], photometric stereo [7], [8], and laser basedgistration and of using non-Lambertian surfaces. Video
methods [9]. However, most of these techniques requisgd calibration data from our experiments will be provided
that the subject stand still during the acquisition processnline!.
or move slowly [10]. Another substantial challenge is that
even starting from a sequence of 3D scans of the deforming Il. RELATED WORK

objzctl, reglstt)rlatlfon Clsznec_esse_lw to ]!oroﬁucz a smglle _3DThe animation and capture of cloth and face deformations
model, suitable for animation or further data analysig, approached from various perspectives, and we review the

such as used in [11] and [12]. » most relevant ones with regard to the proposed technique.
The technique proposed here for acquiring complex a) Texture Cues:White and Forsyth [4], [5] and

motion data from real moving cloth and faces uses §holz et al [3] have presented work on using texture
highly practical setup that consists of an ordinary videg,es to perform the specific task of cloth capture. Their
camera gnd 'three cplored Ilght sources (see Fig. 1). The kE¥i04s are based on printing a special pattern on a piece
observation is that in an environment where red, green, a&fjcloth and capturing video sequences of that cloth in
blue light is emitted from different directions, a Lambertian, ;+ion usually with multiple cameras. The estimation of
surface will reflect each of those colors simultaneousfye ¢joth geometry is based on the observed deformations
without any mixing of the frequencies. The quantities Qf¢ yhe known pattern as well as texture cues extracted from
red, green, and blue light reflected are a linear function g{e \igeo sequence. The techniques produce results of very
the surface normal direction. A color camera can measuggod quality but are ultimately limited by the requirement

these quantities, from which an estimate of the surface N printing a special pattern on the cloth which may not be
mal direction can be obtained. By applying this technique

to a video sequence of a deforming object, one can obtairthttp://mi.eng.cam.ac.uk/research/projects/VideoNormals/

I. INTRODUCTION
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practical for a variety of situations. In the present work, weevichet al. [25] actually demonstrated an algorithm for
avoid this requirement while producing detailed results. calibrating unknown color light sources and at the same

Piletet al. [1] and Salzmanet al. [2] proposed a slightly time computing the surface normals of an object in the
more flexible approach where one uses the pattern alreatdgne. They verified the theory on synthetic data and an
printed in a piece of cloth, by presenting it to the systeimage of a real egg. Drew and Kontsevich [26] even present
in a flattened state. [15] were among the first innovators efidence suggesting that the famous Lena photo was made
such approaches. Using sparse feature matching, the patterder spectrally varying illumination. Woodham [27] also
can be detected in each frame of a video sequence. Dlemonstrated that multi-spectral lighting could be exploited
to the fact that detection occurs separately in each frante,obtain at least the normals from one color exposure. Also
the method is quite robust to occlusions. However, the premilar to our approach, his normals could be computed
sented results dealt only with minor non-rigid deformationsobustly when some self-shadowing was detected. Without

b) Photometric StereoPhotometric stereo [16] is oneusing a calibration sphere made of the same material as the

of the most successful techniques for surface reconstrgtibject, we take a practical approach for calibration, and
tion from images. It works by observing how changinghe same orientation-from-color cue, to eventually convert
illumination alters the image intensity of points throughoutideo of un-textured cloth or skin into a single dense surface
the object surface. These changes reveal the local surfadth complex changing deformations. For the simplified
orientations. This field of local surface orientations can therase of a rigid object, [28] is using this principle to capture
be integrated into a 3D shape. State of the art photometrielief details by pressing it against an elastomer with a
stereo allows uncalibrated light estimation [17], [8] aknown-albedo skin.
well as multiple unknown albedos [18], [19]. The main The parameters needed to simulate realistic cloth dy-
difficulty with applying photometric stereo to deformingnamics were estimated from video by projecting explicitly
objects lies in the requirement of changing the light souratructured horizontal light stripes onto material samples
direction for each captured frame, while the object remainsmder static and dynamic conditions [29]. This system mea-
still. This is quite impractical when reconstructing the 3Bured the edges and silhouette mismatches present in real
geometry of amovingobject, though Meet al. [20] have vs. simulated sequences. Many researchers have utilized
recently built an impressive dome that uses structured asimuctured lighting, and Gt al. [30] even used color,
polarized multiplexed lighting to capture human faces. Stidlithough their method is mostly for storing and manipu-
constrained by multiplexing, Vlaskt al. [21] demonstrated lating acquired surface models of shading and geometry.
a multi-view system with eight 240Hz cameras and 1200/eise et al [31] leads the structured light approach, and
individually controllable light sources to capture geometrijas some advantages in terms of absolute 3D depth, but at
similar to our own. We show how multispectral lightingthe expense of both spatial and temporal sampling, e.g. 17
allows one to essentially capture three images (each withHa compared to our 60 Hz (or faster, limited only by the
different light direction) in a single snapshot, thus makingamera used). Zhargt al. [32] also presented a complete
per-frame photometric reconstruction possible and vesystem that uses structured light for face reconstruction.
accessible. d) Multi-View Registration with 3D TemplateSand

To really explore the limitations of our system, we alset al. dispensed with special lighting but leverage markered
capture highly deforming human faces. The newest worksotion capture and automatic silhouettes to deform a
by Ma et al [22] and Wilsonet al [23] have among human skeleton and body template [33]. The numerous
the highest quality face capture systems, in part becaws®l recent progress in cloth animation is based on this
they build precise stages to capture both photometric stelmmcept of matching a specially-built 3D template mesh
and precise depth. [22] is close to the ideal situation o videos filmed in elaborate multi-camera systems with
all three ways, where photometric stereo captures detailgtddio lighting (or structured lighting as in [34]). Bradley
normals, projected structured light patterns capture accurate[35] opt for a simple manual step for template-creation,
depth, and feature-tracking with extra cameras providésat then hinges on the video resolution to create wrinkles.
excellent landmarks for registration over time. They sho®e Aguiaret al. [11] use a single 360laser-scan to create
how marker-based tracking can yield almost as high avery precise template, and then address the challenge of
quality facial animation, thanks to training a model irpreserving those wrinkles and folds while the actor moves
the heavily instrumented studio. Since heavy multiplexinground. Vlasicet al. [12] have a very similar process, that
was keeping them at a maximum of 30fps, [23] usedlso starts with a laser scan or with a template made by
high quality stereo cameras without the structured light ®tarck and Hilton [36]. Our technique, on the other hand,
compute good depths, and added a new flow-based trackeagpects no prior models of the cloth being reconstructed.
to compensate for interframe motion. It could be interestingstead, our algorithm could eventually be extended to be
to extend our approach to use high quality stereo camegprecursor stage for those systems. There are potentially
in the future. benefits if they used time-varying templates with our level

¢) Colored and Structured Lightsthe earliest related of detail, instead of static ones.

works are also the most relevant. The first reference to e) Registration With and Without ArticulatiorReg-
multispectral light for photometric stereo dates back 2@tration is not the emphasis of our research, but it is
years to the work of Petrov [24]. Ten years later, Konan inherent part of using our time varying surfaces in
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applications. Works in this area focus on the registratiqroint clouds must overlap substantially to allow registration
problem itself, except [37] who couple registration witlof temporal neighbors, but holes and gaps can come and go,
their own capture system. Unlike ours, their approach bo#imd the technique eventually merges the deforming scans
requires and benefits from i) a pre-made smooth templaiteo a single urshape, with better coverage than individual
of the body, ii) an articulated skeleton of each subjestans. At the heart of the algorithm is a meshless volumetric
which is used in their standard articulated-motion-captudeformation model with an energy function that allows
framework, and iii) a multi-camera studio. Like most regeonsistent parts of multiple point clouds to be aligned with
istration techniques, including our own, any assumptiorsch other. Hierarchical processing in the time domain
about smoothly changing normals can ruin the high qualitgads to a globally consistent solution, which is attractive
normal fields that may have been recovered. This techniguempared to our frame-to-frame registration, except for the
winds up smoothing and interpolating normals over memory constraints and running times. We have our own
window of five frames, precluding capture of normals fodata acquisition process that rivals what the authors of this
examples with flapping cloth, like our pirateShirt sequengeaper assume as input, and we explicitly detect occlusions
visible online. and apply no data-culling. Our registration does accumulate
The focus of [38] is on articulated or piecewise-rigicerror but has a simpler regularization that does not penalize
shapes, where there is a known number of limbs, and theglumetric, velocity, and acceleration changes. So speaking
are pre-segmented for at least one depth-image. For thiste broadly, ours is “fast and cheap”, while theirs is slow
technique to succeed, consecutive frames must be clésg good for many of the same situations we care about.
enough to give classic ICP a good initialization, which caQualitative evaluation of the resulting videos is necessary
be viewed as similar to our assumption about local flow do assess the amount of detail retained in our respective
video normals. Other registration techniques for articulatedgistered models.
shapes are fully automatic, such as [39] who discretize pose
space and then seek out favorite transformations that align 1. DEPTH-MAP VIDEO
large sections of the two point clouds. We found the spin- . . . .
images descriptor [40] to be brittle for single-view surface N this section, we follow the notation of Kontsevet
scans, but [41] is able to make skeletons out of similar dad; [25]- For simplicity, we first focus on the case gf a
enabling [42] to demonstrate good registration on synthefiindle distant light source with directioh= [l; I> I3]
and man-made shapes. illuminating a Lambertian surface_ p.omt. with surfape
Multiple techniques now attempt to register the availabfiormain. Let S()\)_be the energy distribution of that light-
point clouds (or volumetric scans [43]) in batch mod&0Urce as a function of wavelengthand letp()) be the
instead of online. Mitraet al. [44] successfully registers spectral reflectance function representing the reflectance

many scans of stiff objects all at once, instead of usingPiOPerties at that surface point. We assume our camera

sequence of ICP-steps chained together. Their extensiGgSist of multiple sensors (typically CCD's), sensitive to

for deformable bodies assume very limited degrees @fferent parts of the spectrum. i#;()) is the spectral
freedom, which is not the case with our data, and revert §§NSitivity of thei-th sensor for the pixel that receives
optimizing just one time slice, unlike the main 4D funcion!'9Nt fTrom x, then intensity measured at that sensor is
They emphasized how errors crop up for them because’of= 1 1./ S(A)p(A)wi(A)dA, or in matrix form
incorrect normals and non-rigid motion, which are exactly r = Mn, 1)
the problems we are addressing.

Also in the family of batch registration algorithms,where the(i, j)-th element of the3-column M/ is
Stumuthet al. [45] and Wancdet al. [46] have shown very
nice general-purpose approaches that make few assump- mi; = lj/S()\)p()\)Vi()\)dA. (2)
tions, and are mostly just limited by memory capacity. Both
have even registered sequences of faces as long as 1500 solve forn, M must be rank3, meaning3 or
frames. This is particularly hard with just points that argore sensors (rows) are required. Actually, even viith
not parameterized with some connectedness. [45] emb&g&sors M would be of rank 1 when using just one light
the series of 3D point clouds in a 4D implicit function, angource, because the per-sensor dot products are not linearly
apply an EM-type optimization to find mesh deformation#§idependent. When more light sources are added, if the
that prefer rotation and keep close to the positions &Fstem is linear and'n > 0 still holds for each light, the
the point-clouds in the immediate temporal neighborhootgsponse of each sensor is just a sum of the responses for
Their algorithm can be seen as parallel to the registrati@@ch light source individually, so we retain (1) but with
steps of our own, and possibly more extendible, in that &
their embedding of the point clouds in an implicit function M= ZM ’ ©)
(though costly) could be extended to allow the extracted ¥
meshes to change topology over time. [46] presents amereM* describes thé-th light source. Therefore, in the
impressive optimization system for computing a singlabsence of self occlusions, three sensors and a minimum of
shape and its time-varying deformation function from three different lights need to be present in the scendfor
sequence of point clouds (as many as 201 frames). Tioebe invertible. If the surface is uniformly colored (constant
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albedo), then the reflectanpé)) and consequently/ will
be fixed across all un-occluded locations.

Equation (1) establishes a one-to-one mapping betwee
an RGB pixel measurement from a color camera and th
surface orientation at the point projecting to that pixel. Ou
strategy uses the inverse of this mapping to convert a vide
of a deformable surface into a sequence of normal maps.

A. Setup and calibration

Our setup consists of a color video camera and thre:
light sources which have been filtered with red, green anc
blue filters respectively. The camera is placed 5m away X _
from the target object. The light sources are at a similar , - _ _ ,
dist t colinear. aimed at the target. and se ara_F| 42. Applying the original algorithm to a face with white makeup.

Istance, no ! , al get, b p - example input frames from video of an actor smiling and grimacing.
by about30 degrees from one another. The filming occurBottom: the resulting integrated surfaces.
in a dark room with minimal ambient light. Figure 1 (left)

describes this schematically.

In [25] and [47], methods were proposed for the estiesylts, but often at the cost of having a more complicated
mation of the linear mapping/ of equation (1) from the setup. Ma et al. [20] use polarized spherical gradient
image itself, using the constraints of uniform albedo angumination patterns and multiplexing to recover detailed
surface integrability that must be satisfied by the norma|jrface geometry. Furukawa and Ponce [51] have recently
map. However the results obtained with these techniquiﬁ%’oduced a new tangential r|g|d|ty Constraint for regis_
can be unsatisfactory, especially in situations where th@tion, but also rely on multiple synchronized cameras.
target object does not have a wide range of surface Ofiradley et al. [52] recently showed excellent results with a
entations (e.g. if it is mostly planar). We prefer to estimatg4-camera system with special lighting that allowed them
the mapping by employing an easy-to-use calibration to@} register geometry and textures using a stereo flow-based
(Figure 1, right) similar to the one used in [48]. Theechnique, similar to the one we use here for single-view
pattern is planar with special markings that allow the plangpture. While they succeed by tracking highly detailed
orientation to be estimated. By placing the cloth in thgsxture, we are able to track the video of normals, though
center of the pattern, we can measure the color it reflectsg take no face-specific steps to counteract drift, which
its current orientation. We thus obtain a set(efn) pairs eventually leads to error-accumulation.
from which the mappingV/ is estimated using linear least 5,44 facial expression capture should not depend on

squares [14]. makeup. The calibration step is extended, on the basis of
[13], to cope with unpainted faces, and more generally,
B. Depth from Normals with single-albedo objects that can be rotated in front of
By estimating and inverting the linear mapping link- the camera without significant deformation. In practice,
ing RGB values to surface normals, we can convert during this calibration step, the makeup-free actor need only
video sequence captured under colored light intidao of hold some expression while turning their head all the way
normal-mapsEach normal map is integrated independentlp the left and right. The head itself is used as a rigid
for each frame using a Fast Fourier Transform (FFTalibration object, and the per-frame pose and 3D shape
method [49]. At the end of the integration process, were estimated in order to obtaif, the skin’s response to

obtain avideo of depth-maps this arrangement of multi-colored illumination.
The first step is to establish the changing pose of the
IV. HUMAN FACE NORMALS head. Although skin can appear mostly smooth, the blue

The motion of cloth can be dynamic and intricateghannel of facial skin shows fairly distinct (though sparse)
but cloth is also flexible and easily used in our origindfackable features. The 3D pose of these points on a rigid
flat-surface calibration method [14]. Here we extend tHebject is computed from the 2D tracks using established
previous approach to reconstruct moving human faces. SfM algorithms [53]. We feed our own 2D tracks to the

A trivial extension for capturing Video Normals of mov-Boujou [54] software, producing the relative pose between
ing faces is to fully apply makeup to the skin, and then ugBe camera and each frame of the head. If 2D tracks are not
the same makeup on a flat surface in the calibration boa¥éailable, silhouette-based calibration methods such as [55]
of Figure 1. Such a calibration makes the assumption tHit [56] can serve this purpose.
the makeup is matte and evenly applied. While approximateThe second step uses the poses to help estimate the shape
and slightly inconvenient for the actor, this simple approadlf the head, to an extent slightly better than a visual hull.
is surprisingly effective (see Figure 2). We apply the silhouette and stereo fusion technique of [57]

It is worth noting that some existing facial scanning [50because it is simple and reliable. Reasonable alternatives
and motion capture systems can already produce excellerist for this stage, including [58] and [59]. The expectation
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here is only that the surface patches with a given world- « the deformations should be compatible with the frame-
orientation have a similar color overall, so the recovered to-frame 2D optical flow of the original video se-
head model’'s shape can be approximate. This initial head quence,
geometry is shown in Figure 3(B). « the deformations should be locally as rigid as possible.
In the third step, the head’s poses and approximate _

geometry are used to compute the illumination directiofs 2D Optical flow
and intensities. Here, instead of the previous calibration ofwe begin by computing frame-to-frame optical flow
the 3 x 3 M matrix using a flat material sample, we use thi the video of normal-maps. A standard optical flow
estimated head model itself. Unlike Lim et al.'s [17] reconalgorithm is used for this computation [62] which for every
struction algorithm, we do not assume that all projected 3Bixel location (u,v) in framet predicts the displacement
surfaces are equally informative of illumination. We followd!(u, v) of that pixel in framet + 1. Let (u!,v') denote
the RANSAC-based formulation of [8], where lighting isthe position in frame of a pixel which in framed was at
estimated from partially correct geometry. Our algorithny,® ). We canadvectd?(u, v) to estimate(u?, v*) using
randomly selects a fixed number of points on the surfagge following equation from [33]:
and_ uses thglrcorregpondlng pixel mtens.mes to hypothesi %7Uj) = (i i) di! (ujfl,vjfl) =1t
an illumination candidate. All surface points are then us

. . . . L 5)
for testing this hypothesis. This process is iterated and .

. : . If there were no error in the flow and our template from
the candidate with the largest support is selected as the
. S : o ; rame 0 had perfectly deformed to match frante then
illumination estimate. This is more robust to both inaccurate 0 . .

. . . .~ vertexx; of the template would be displaced to point
geometry and inconsistent albedo, because an illumination v
hypothesized based on an unfortunate choice of three points yi = (ul,vf, 2" (ul,0f)). (6)
on the head mesh will receive fewer votes and appear as o
an unusual outlier compared to choices from the dominaAt Regularization
albedo. For a pure Lambertian surface and distant pointSimply moving each template vertex to the 3D position
light source model, only three points are required to espiredicted by optical flow can cause stretching and other
mate illumination. However, the approach can easily coggometric artifacts like the ones displayed in Figure 10
with more complex lighting models. For example, a firgtthird row). This is due to accumulated error in the optical
order spherical harmonic model (8 4 matrix) could be flow caused in part by occlusions. We tried two different
estimated from four points. This approximation is equivaegularization techniques. The first, described in more detail
lent to a distant point light source with ambient lightingin our original paper [14], requires that translations applied
Figure 3 shows sample input and output frames fromta nearby vertices are as similar as possible. This is
longer face sequence without the use of the calibrati@ehieved by finding the,;'s that optimize the energy term

board or any face makeup. E = aFEp + (1 — a)Eg. Here,a determines the degree
of rigidity of the mesh,Ep is the data term, andtr
V. TRACKING THE SURFACE measures the dissimilarity of translations being applied to

hile the vid ¢ deoth . b neighboring vertices. Reasonably good registration results
While the video of depth-mapsepresentation can be_ .."cown at the bottom of Figure 10.

adequate for some applications, for texture mapping, poinisyq aiternative regularization technique is similar to the
on different depth maps must be brought into COMespORGgnment-by-deformation of Ahmeet al. [63], and is

dence. Figurg 10 (second row) shows the.failure of di,recqyased on Laplacian coordinates [64]. Unlike [63], we use
texture-mapping each dep_th-map_ of moving cloth withoy computed flow instead of SIFT features with adaptive
any registration. As mentioned in Section II, one coulthginement. Given the fine grid connection graphXafwe
choose to. register th_e time-varying surfapes using one Bbke theN x N mesh Laplace operatds, and apply it to
many available algorithms, based on articulations, spegfle oints from the template to convert them to Laplacian
or subject-specific constraints. Instead, we showcase rdinatesQ — LX. Q now encodes the high spatial
spatio-temporal detail of the points derived from Videgoq ency details oK and ignores its absolute coordinates.
Normals by doing simple frame-to-frame registration thak the least-squares optimal absolute coordinates in the

is not limited by memory constraints when processing Ior]_gext frame, is computed by solving the linear equation
sequences. We use optical flow, precisely because it relies

on good texture details, and advect the first point cloud L v _ Q )
in experiments using two different registration optimiza- BIn —\BY )
tions. Let 2" (u,v) denote the depth-map at frameOur  \yhich trades off the Laplacian coordinates against the
deformable template is the depth-map at frabpand 15 @ results of tracking, using a similar rigidity parameter
dense triangular mesh with edgeéaind verticeX = {x},  gection VIl describes the qualitative evaluation of how
x0 = (u?,v?,zo (u?,v?)) . i=1...N. (4) Io_ng each of the two regularization approaches tracks our
Video Normals through large deformations before eventu-
Similarly to [61], the deformations of the template arally falling off. In all the experiments, was set t0.9 and
guided by the following two competing constraints: 6 to le — 3.
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(A)'
0@
| (B)

Fig. 3. Face sequence without makeupOur calibration technique builds on multi-view reconstruction and lighting estimation (see Section IV). It is
made possible by first moving the head around with a fixed expression (A). The initial recovered head geometry, shown in (B), is only approximate.
The integrated surfaces are shown on the right using the self-shadow processing method of [60].

ponents with fewer tha20 pixels could safely be rejected at
the conservative setting ef= 5%. These parameters could

Fig. 4. SpandexSelfShadow images. (A-C) are the red, green, and biigange for filming under different conditions, to match the
components of the recorded frame, while (D) shows the edges detected

by the Laplacian filter. Note the prominent blue line running down thQVe"aII bl’lght-n.ess of th_e averggé
right leg, where the blue light cast a shadow. (E) shows where each of theThe remaining gradient pixels are used as seeds for

lights cast its color shadow, except that the background has already bgernconservative rood-fiIIing algorithm which expands to
turned off. . . : ; .
neighbors whose intensity is equal or darker. With
shadowed-pixels in each channelidfabeled, we compute
a lookup visibility mask for each pixel, indicating which
channels are present, if any. A dark backdrop was enough
So far, the algorithm is applied directly to each pixefo insure that our algorithm labeled not only the correct
in a given frame, independently of its neighbors in thaegions on the actors as having two, one, or no discernable
frame. Unfortunately, it is inevitable that another part o$elf-shadows, but also the surrounding scene as having all
the subject can come between the light and the camelfaree shadows.
causing a self-shadow. This is also a problem for regularFinally, the parts of a surface that are self-shadowed by
photometric stereo, though there are potentially fewer sejéist one light sourcei. £ = 2) can now be processed
shadows induced by one light source than by three. Thpecially to compensate for the missing channel of informa-
three distributed lights however, offer a new opportunitiion (see Figure 5A-B). Onn and Bruckstein [66] addressed
that can be exploited to partly compensate when computipeecisely this situation when dealing with two-image pho-
normals for shadowed surface patches. tometric stereo. The same ambiguity exists whether two
For the first time in the algorithm, we consider thgray-scale images are available, or when givén; s of a
spatial relationship of the pixels in an image. When gaurface illuminated by just two colored lights. The local sur-
photograph is considered as a composite of reflectarfége is constrained to have one of two possible orientations,
and illumination, Sinha and Adelson [65] observed th&orresponding to the two acceptable roots of a quadratic
illumination varies more smoothly and is less likely teequation. Having classified the pixels as shadowed from a
align with reflectance changes. Though we must contepérticular light, we choose the root whose normal is locally
with three sources of illumination, the three-channel videgontinuous with the unshadowed surface, under the constant
camera allows us to examine each light in turn, whilalbedo assumption. Figures 5(A-B) illustrate the effect of
reflectance changes were constrained from the outset. THis improvement on the integrated surface. For the less
justifies the use of a simple Laplacian edge-detector @bvious improvement for dealing with self-shadows (once
each of the color channels of captured frafig;z. The found) and complicated albedo, see [60].
resulting per-channel edges are pictured, with increased
contrast for illustration, in Figure 4D. VII. EXPERIMENTS
Per-channel edge pixels are analyzed in turn to determineOur experiments use real-world subjects filmed using a
gradient orientation. We compute and quantize orientati@olor video camera with resolution of eithé280 x 720
by checking along each of the eight cardinal directions, at 1024 x 1024 at 60fps. Since reconstruction consists

~ < ’ a distance oft-2 pixels. Pixels whose gradient magnitude
falls below a thresholdr are rejected. Adjoining pixels
whose direction agrees are grouped into connected compo-
nents, and we found empirically that for our footage, com-
(B) (©) (D) (E)

(A)

VI. SELF-SHADOWING
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(D)
h
[ i
(A) (B) (©) (D) ,
Fig. 5. Self-shadowing & the Lambertian assumption.(A-B): Inte-
grating the surface normals where all pixels are treated equally vs. using (E) (F)

our self-shadow detection and correction (Section VI). The difference ﬁg. 6. Comparison with photometric stereo. (A-C) show three

most pronounced above the model's right knee. Separate from the magigly scale images captured by a digital camera, each taken under a
of self-shadowing, (C-D) show a limitation of our system. Since the clotffigerent illumination, providing the input to a classic photometric stereo

violates our Lambe_rtian assumption, the integrated surface _of a differefkqnstruction [16] shown in (D). (E) shows a frame from a jacket

pose looks convincing from the front (C), but not from the side (D).  sequence, where the same object is illuminatEdultaneoushby three
different colored lights. Our algorithm only uses one such frame to
generate the surface mesh shown in (F). Note that both algorithms give

of a matrix-vector multiplication followed by a Poissorvery similar results, but only the new one (bottom row) can work with
integration [67], our FFT-based integration implementeff 7 SE02 200 008 R B I 0 e both reconatrustions
with CUDA libraries produces depth-mapsGiHz. Com- s only 1.4% of the bounding box diagonal.

putation times were on the order of 8 additional seconds
for each registration of the mesh to the current frame. If
the shadow correction algorithm from [60] is used, then
the Poisson integration is about 10 seconds per frame. The
sweater sequence meshes are 365415 triangles and 183742
vertices, while the makeup-free face mesh is 611764 trian-
gles and 307362 vertices. Computations were carried out
on a 2.8Ghz Pentium 4 processor with 4Gb of RAM and
an nVidia GeForce 8800.

-
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A. Quantitative comparisons
To evaluate the accuracy of the per-frame depth-m _ . . - .
. . . . . . . 7. Cylinder reconstruction evaluation. A rigid cylinder was
esfumatlon, we first reconstructed a _Sta“C Oble_Ct (a jackelkbved in front of the camera and the geometry estimation was evaluated
using classic photometric stereo with three images eaghuantitatively. A best-fit cylinder geometry is computed for the sequence,

taken under different illumination. The same object qubo that for the cylinder's pose in each frame, we know the ideal normal-
) ield. The plot shows the per-frame mean and standard deviation of the

reconStrU.Cted_USi':‘g a single image, capt_ured Und_er SiMilhance between the ideal and the estimated normals in degrees, as a
taneous illumination by three colored lights, using ouftinction of time. The overall mean error wass7°.

technique. Figure 6 shows the two reconstructions side by
side. The results look very similar and the average distance o
between the two meshes is orily4% of the bounding box B- Qualitative tests of cloth and face
diagonal. This demonstrates that equation (1) works well For the third experiment shown here, a model wearing a
in practice. It is worth noting that even though photometrighite sweater was filmed dancing under our multispectral
stereo achieves comparable accuracy, it cannot be usedliomination setup (see first row of Figure 10). For qualita-
a non-static object whose shape will change while the thriiee purposes, in Figure 9 we show several views of frame
different images are captured. #380 without the texture map and in high resolution (the
We have a further measure to quantitatively evaluateesh consists 080k vertices). The images clearly show
our technique. A rigid cylindrical object was wrapped irthe high frequency detail of the sweater. To the best of
smooth paper, and moved in front of the camera 3or our knowledge, this is the only method able to reconstruct
seconds, exploring all six degrees of freedom. A besteforming cloth with such detail. However, as expected,
fit cylinder geometry is computed for the sequence, svaterials that are far from Lambertian exhibit noticeable
that for the cylinder's pose in each frame, we know thartifacts, as in Figure 5C-D.
ideal normal-field, against which the Video Normals field We used this sequence to evaluate the original mesh
is measured. In Figure 7, each frame’s mean normal-vectegularization algorithm of Section V by texture mapping
error in degrees and standard deviation are plotted. Overétle deforming sweater. Figure 10 shows several approaches
the mean error wa8.67°, and the standard deviation wado mesh registration starting with no registration at all
4.29. Our test-frames, code for evaluating them, and pefsecond row), registration using the advected optical flow
frame scores are online, with the aim of encouraging moadone (third row) and the effect of regularizing optical flow
meaningful algorithm comparisons, when possible. with the rigidity constraint (fourth row), as we propose.
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Fig. 9. Cloth reconstruction results of a deforming sweater.
Multispectral photometric reconstruction of a single frame of a longer
video sequence using the technique described in Section Ill. Multiple
viewing angles (frontal£25 degrees+50 degrees) of frame 380 of

the sweater sequence. This frame is representative of the quality of detail
reconstruction for this and other tested videos.

#0 #250 #340 #380 #427  #463 #508
Bl il T t

Fig. 8. Registering with different regularizations. Treating the first in-
tegrated Video Normals surface as a template that receives a checkerbi
texture, we automatically register that shape throughout a long seque
by tracking flow frame-to-frame. The rows feature frame #10, #87, #11
and #290 out of 1000. The left column uses the original translatic
regularization from [14], while the middle column was registered usin
the alternative Laplacian coordinates regularizer. Results on the right
generated like the middle column, but with the benefit of slits for th
mouth and eyes, so some domain-specific input from a user.

. . Fig. 10. Cloth tracking results of a sweater sequencerirst row: input
This last approach is seen to outperform all others asyjfieo sequence of a person wearing a white sweater while being illu-

manages to track the surface for more than 500 framesminated by three colored lights from three different orientations. Second

The fourth experiment explores tracking the much mofaw: vide_o of depth-mapebtained b_y the techniqu_e de_scribed in Section

. . . Il and directly texture mapped without any registration. The approach

challenging deforming face sequence from Figure 3. ROWSquickly seen to fail after a few frames. Third row: texture-mapping is
of Figure 8 show different frames from among a sequenobtained by advecting frame-by-frame 2D optical flow [33]. Error in the
of over 1000 frames. The Video Normals surfaces are r tical flow advection causes artifacts after about 380 frames.‘Last row:
. . . .. . oposed method (Section V) where 2D optical flow is regularized with
istered using the two different regularization algorithms dg-rigidity constraint to reduce advection errors. Please see the video.
scribed in Section V. In this experiment, the first depthmap
of the face sequence is used as a template for the rest
of the sequence. The left column of Figure 8 shows thehibit nearly as much deformation as this face sequence.
result of using the same rigidity constraint on the translatigfinally, with human supervision, some of the deformation
vectors as for the white sweater, and as described originadlitifacts due to the eyes and mouth opening and closing can
in [14]. The performance of this algorithm degenerates masé alleviated by introducing seams on the template at the
quickly. This is expected since the face undergoes mugiouth and eye positions (see Figure 8 right). The seams
bigger deformations than the cloth sequence, so, imposiagpw better tracking of large deformations, but the added
rigidity on the translation vectors is not enough. Theegrees of freedom can also negatively affect the overall
middle column of Figure 8 shows the tracking results usinghape. Naturally, eventually, even the right-most registration
our alternative regularization, the Laplacian coordinategcumulates too much error.
algorithm similar to [63]. This algorithm is better able to
impose rigidity constraints. However, the results show the | o ) )
limitations of using optical flow for large deformationsC- ‘Dressing’ a virtual character with moving cloth
The optical flow easily accumulates errors, and even thoughTo demonstrate the potential of our method for capturing
rigidity does help in recovering from flow errors, it even<loth for animation, we attach a captured moving mesh to
tually cannot cope with the amount of deformation showan articulated skeleton. Skinning algorithms have varying
in this sequence. One possible avenue is to incorporate tegrees of realism and complexity, e.g. [68]. We apply a
work of [45], though memory limitation hinder this. Theirversion of smooth skinning in which each vertex in the
algorithm is also targeted at deforming point clouds, whicmesh is attached to one or more skeleton joints and a link to
is a harder problem than ours. Their example results do rjoint ¢ is weighted byw; ;. The weights control how much
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Tracking of folds and parting surfaces like eyelids is

inherently underconstrained, and continue to be a challenge,
and special templates may help [34], as may other domain-
specific constraints about the subject’s surface. Our system
could be extended for some scenes to to incorporate the

/.
d

Fig. 11. Attaching captured moving cloth to an animated character.
We apply smooth skinning to attach a moving mesh to an articulat
skeleton that can be animated with mocap data. The mesh is sim
animated by playing back the captured and registered dancing cl
sequence (please also see the video).

the

gradual-change prior of [71]. Also, a different mathemat-
ical model will need to be explored for non-Lambertian
materials. Another limitation is that in-the-round capture
would be challenging to arrange, because multiple triples of
hts would have to be set up, and they would need to have
n-overlapping wavelengths of light. Registration remains

biggest limitation when making use of our monocular

capture system, as illustrated in our long sequences. This
problem is not singular to Video Normals, so we hope that

each joint; affects the transformation of the vertex [69] our

Vtk = Zwi,kSTlefl , Zw’%k‘ =1, (8)
% [ [
where the matrixS! represents the transformation from
joint ¢'s local space to world space at time instanfThe
mesh is attached to the skeleton by first aligning both ing;
a fixed pose and then finding, for each mesh vertex, a set
of nearest neighbors on the skeleton. The weights are sgt
inversely proportional to these distances. The skeleton i%]
animated using publicly available mocap data [70] while
the mesh is animated by playing back one of our capture§!

shared data proves useful to other researchers as well.
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