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ABSTRACT

Recurrent neural network language models (RNNLMs) are pow-
erful language modeling techniques. Significant performance im-
provements have been reported in a range of tasks including speech
recognition compared ton-gram language models. Conventionaln-
gram and neural network language models are trained to predict
the probability of the next word given its preceding contexthis-
tory. In contrast, bidirectional recurrent neural networkbased lan-
guage models consider the context from future words as well.This
complicates the inference process, but has theoretical benefits for
tasks such as speech recognition as additional context information
can be used. However to date, very limited or no gains in speech
recognition performance have been reported with this form of model.
This paper examines the issues of training bidirectional recurrent
neural network language models (bi-RNNLMs) for speech recog-
nition. A bi-RNNLM probability smoothing technique is proposed,
that addresses the very sharp posteriors that are often observed in
these models. The performance of the bi-RNNLMs is evaluated
on three speech recognition tasks: broadcast news; meetingtran-
scription (AMI); and low-resource systems (Babel data). Onall
tasks gains are observed by applying the smoothing technique to
the bi-RNNLM. In addition consistent performance gains canbe ob-
tained by combining bi-RNNLMs with n-gram and uni-directional
RNNLMs.

Index Terms— language model, bidirectional recurrent neural
network, speech recognition, interpolation

1. INTRODUCTION

Language models (LM) are crucial components in many application
areas including speech recognition. They aim to estimate the prob-
ability of any given word sequenceW =< w1, w2, ..., wL >. The
sequence probability can be computed using

P (W) = P (w1, w2, ..., wL) =
L∏

t=1

P (wt|wt−1, ..., w1) (1)
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The task of language model then becomes that of calculating
the probability of wordwt given its previous wordswt−1

1 =<

w1, ..., wt−1 >. A variety of statistical language models have been
proposed to computeP (wt|w

t−1
1 ), includingn-gram LMs [1] and

neural network LMs [2, 3]. n-gram LMs have been the domi-
nant language modeling approach for several decades due to good
performance and efficient implementation. Recently, significant
improvements have been reported with recurrent neural network
(RNN) LMs over standardn-gram LMs in many fields including
speech recognition [4, 5, 6, 7]. Long short-term memory (LSTM)
based LMs [8] can further improve performance by handling gradi-
ent vanishing issue existed in sigmoid activation RNNLMs.

More recently, bidirectional RNNs (bi-RNNs) [9] have outper-
formed unidirectional RNNs (uni-RNNs) in application areas rang-
ing from acoustic modeling [10] to machine translation [11]. Bi-
RNNs incorporate both the previous and future information to im-
prove prediction. However to date, in the field of language model-
ing, very limited or no gains in speech recognition performance have
been reported with bi-RNNLMs over uni-RNNLMs. Several alter-
native approaches have attempted to use succeeding words for lan-
guage modeling [12, 13, 14, 15]. The backward RNNLMs were in-
terpolated with the forward RNNLMs for speech recognition in [12]
and [15]. [14] investigated the training of bi-RNNLMs usingnoise
contrastive estimation for NLP tasks. [13] applied bi-RNNLMs on a
broadcast news transcription task and it was reported that sigmoid bi-
RNNLMs gave small gains, while no improvements were obtained
from bi-LSTM LMs. This paper investigates the use of bi-RNNLMs
for speech recognition, following the work in [13]. The issues in
training these bidirectional models is discussed, and possible com-
bination approaches. This paper further investigates the use of these
bi-directional RNNLMs, showing that by appropriately normalising
the language posteriors of these models and combining them with
other state-of-art language models consistent gains can beobtained.

This paper is organised as: Section 2 gives a brief review of
RNNLMs, including unidirectional and bidirectional RNNLMs. The
interpolation of RNNLMs andn-gram LMs is discussed in Sec-
tion 3, followed by the proposed smoothing method for bidirectional
RNNLMs in Section 4. Experimental results are presented in Sec-
tion 5 and conclusion drawn in Section 6.

2. RECURRENT NEURAL NETWORK LMS

Traditionally, language models are trained to predict the word prob-
ability based on the current history,P (wt|w

t−1
1 ). For these form of

model, whether ann-gram or uni-directional RNNLM, the probabil-
ity of word sequenceW can then be computed using Equation (1).
This form of language model will be referred to as unidirectional
LMs (uni-LMs).



Incorporating future information into the prediction of the cur-
rent word complicates the calculation of the sentence probability.
The simple decomposition shown in Equation (1) cannot be used
with these bidirectional LMs (bi-LMs). The probability of aword
now takes the formP (wt|w

t−1
1 , wL

t+1). To address this issues, the
individual word probabilities are combined within a Product of Ex-
perts (PoE) framework to yield the total sentence probability. Thus

Pbi(W) =
1

Zbi

L∏

i=1

P (wt|w
t−1
1 , w

L
t+1) =

1

Zbi

P̂bi(W) (2)

whereP̂bi(W) is the product of word probabilities from bi-RNNLMs
over sequenceW andZbi is a sentence-level normalisation term,

Zbi =
∑

W∈Θ

P̂bi(W) (3)

whereΘ denotes the set of all possible word sequences. Unfortu-
nately, it is impractical to calculateZbi, complicating the calculation
of perplexity for bi-LMs.

2.1. Unidirectional RNNLMs
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Fig. 1. An example unidirectional RNNLM.

Figure 1 shows a typical unidirectional RNNLM. The operation
of this model is as follows. First, each word in the input layer is pro-
jected to a low-dimensional, continuous, space via a linearprojection
layer. This projected, word vectorxt−1 is then combined with the
history vectorht−2, which represents the word historywt−2

1 to form
a new history vectorht−2. This is then fed to a softmax function
to yield the probability distribution over the word at timet. Thus
the prediction of the current word,wt, is dependent on a representa-
tion of the complete history of wordswt−1

1 . A range of non-linear
functions have been used in the recurrent layer. Sigmoid [3]and long
short-term memory (LSTM) [16] activations are two popular choices
for language modeling.

2.2. Bidirectional RNNLMs

To incorporate future information into the word predictionan ad-
ditional hidden unit is incorporated into the model. This topology
is shown in Figure 2. This second history vector encodes the com-
plete future historywL

t+1, and allows the bidirectional RNNLM,wt,
P (wt|w

t−1
1 , wL

t+1), to be computed.
The training of bi-RNNLMs is more complicated than uni-

RNNLMs as the future information must be taken into account.
In [13], all sentences in the training corpus were concatenated to
form a single sequence. This sequence was then “chopped” into
sub-sequences with the averaged sentence length. Bi-RNNLMs
were trained with minibatch mode on GPU by processing multi-
ple sequences. This allows bi-RNNLMs to be efficiently trained.
However, consistency issues can arise when not cutting at sentence
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Fig. 2. An example bidirectional RNNLMs.

boundaries as history vectors are reset in the middle of a sentence. In
this paper, the bi-RNNLMs are trained in a more consistent fashion.
Multiple sentences are aligned from left to right to form minibatches
during bi-RNNLM training. In order to handle issues caused by
variable sentence lengths,NULL tokens are appended to the end of
sentences to ensure that the aligned sentences have the samelength.
TheseNULL tokens are not used for parameter update.

Although the perplexity of bi-RNNLMs is difficult to obtain,the
log-likelihood ofP (wt|w

t−1
1 , wL

t+1) can still be used as objective
function during training. An unnormalised, “pseudo”, PPL can also
be calculated by usingP (wt|w

t−1
1 , wL

t+1) in a similar fashion to
the uni-LMs. However, the pseudo PPL of bi-RNNLMs cannot be
directly compared with PPL of uni-LMs as the unnormalised prob-
ability is used in bi-RNNLMs. Note, in this paper, (uni- and bi-
) RNNLMs with an unclustered, full output layer are trained effi-
ciently on GPU [17] with a modified version of the CUED-RNNLM
toolkit [18].

3. INTERPOLATION OF RNNLMS AND N -GRAM LMS

n-gram and uni-RNN LMs have different, complementary, modeling
ability [19]. Improved performance is possible by interpolating these
two models together. The same should be true for bi-LMs. In this
section, two possible interpolation methods for bi-LMs arebriefly
described.

3.1. Linear Interpolation

linear interpolation of two uni-LMs (e.g.n-gram and RNN LMs) is
commonly used. Here

P (wt|w
t−1
1 ) = λPrnn(wt|w

t−1
1 ) + (1− λ)Png(wt|w

t−1
1 ) (4)

whereλ is the interpolation weight of RNNLM. The resulting inter-
polated probability is a valid probability mass function (PMF) and
can be to calculate sequence, sentence, probabilities. Applying the
same approach to bi-LMs would yield

P (wt|w
t−1
1 , w

L
t+1) = (5)

λPuni(wt|w
t−1
1 ) +

1

Zbi

(1− λ)Pbi(wt|w
t−1
1 , w

L
t+1)

As previously discussed it is not practical to compute the normalisa-
tion termZbi. Thus linear interpolation is challenging for bi-LMs.

3.2. Log-linear Interpolation

An alternative approach is to apply linear interpolation inthe log
domain, log-linear interpolation [20]. For two uni-LMs this yields

P (wt|w
t−1
1 ) = (6)
1

Z(wt−1
1 )

Prnn(wt|w
t−1
1 )λPng(wt|w

t−1
1 )1−λ



whereZ(wt−1
1 ) is the history-dependent normalisation term. It can

be computed by summing over the vocabularyV,

Z(wt−1
1 ) =

∑

w∈V

Prnn(w|wt−1
1 )λPng(w|wt−1

1 )1−λ (7)

Log-linear model combination with bi-LMs is again more com-
plicated due to the need to compute normalisation terms withfuture
words. To address this the models can be combined at the word se-
quenceŴ level.Thus considering a uni-LM and bi-LM

P (W) =
1

Z
Puni(W)λPbi(W)1−λ

=
1

Z̄
Puni(W)λP̂bi(W)1−λ (8)

whereZ̄ is the sentence-level normalisation term andP̂bi(W) is de-
fined in Equation (2). The log of LM probabilities are normally used
in speech recognition, thus Equation 8 becomes

logP (W) = C + λ logPuni(W) + (1− λ) log P̂bi(W) (9)

whereC is a constant and does not alter the rank ordering of hy-
potheses. Thus, sentence level log-linear interpolation of uni-LMs
and bi-LMs is valid, and the unnormalised form (withC) used for
speech recognition. Hence, though the performance of bi-RNNLMs
cannot be evaluated using perplexity, it can be evaluated with WER.
It is also worth noting that the sentence level log-linear interpolation
can be re-expressed as word level log-linear interpolationof the two
models.

4. BIDIRECTIONAL RNNLMS PROBABILITY
SMOOTHING

To investigate the performance of bi-RNNLMs, an initial contrast of
the pseudo-perplexity of the bi-RNNLM was compared to the per-
plexity of a uni-RNNLM, both trained on the AMI data. Table 1
shows the results. Though the two numbers are not directly compa-
rable, the dramatically lower pseudo-perplexity of the bi-RNNLM
indicates that the individual predicted word probabilities of the bi-
RNNLM are much higher than that of uni-RNNLM. Thus the pre-
dicted word probability distribution of bi-RNNLMs is expected to
much sharper (lower entropy) than that of uni-RNNLMs. A similar
trend was also observed on other tasks.

RNNLM Dir. (Pseudo) PPL

sigm
uni 85.2
bi 27.8

Table 1. (Pseudo) PPLs of uni-RNN and bi-RNN LMs on AMI data

It is interesting to consider the impact of having a significantly
lower entropy on the word predictions of the bi-RNNLM. The held-
out evaluation data will not have exactly the same form as thetrain-
ing data. Furthermore, speech recognition systems will make errors,
for example due to unusual acoustic data or word sequence. The bi-
RNLLM will give low probability to these error-full, unusual, words
sequences. In standard systems this issue would be addressed by op-
timising the language model scale factor. An alternative approach
adopted here is to introduce an additional tunable parameter, α to
smooth the probability distribution. Thus word probability is

P (wi|w
t−1
1 , w

L
t+1) =

exp(αyi)∑
V

j
exp(αyj)

(10)

whereyi is the activation before softmax function in the output layer.
α is set empirically set after training the bi-RNNLM as previously
The output distribution is smoothed and flattened whenα is less than
1. In this paper,α was set to 0.7 for all tasks.
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To further illustrate the sharpness, low entropy, of the individ-
ual word probabilities, the average sentence word-prediction entropy
was computed for the for uni-RNNLM, bi-RNNLM and smoothed
bi-RNNLM (α = 0.7) on held out data from the AMI corpus. These
averages are shown in Figure 3. To help interpretability thesen-
tences are ordered by the average entropy of the uni-RNNLM. All
plots follow the same general trend. The unsmoothed bi-RNNLM
has a significantly lower average entropy than the other systems. It
is interesting that the operating point (α = 0.7) has a higher average
entropy than the uni-RNNLM. This is not unsurprising as combin-
ing models in a PoE framework (to yield the bi-RNNLM sentence
probabilities) is known to “over-sharpen” the distributions.

5. EXPERIMENTS

The performance of the bi-RNNLMs was evaluated on three cor-
pora: broadcast news (BN); AMI meeting data (multiple distant mi-
crophone (MDM) configuration); and Dholuo ( IARPA-babel403b-
v1.0b) from the Babel project. A DNN-based hybrid system with se-
quence training [21] was built for BN; joint decoding of Tandem and
DNN-HMM systems [22] were used on the AMI and Babel tasks.
CMLLR-based speaker adaptation were applied for all tasks.The
vocabularies of BN, AMI and Babel are 59K, 41K and 18K respec-
tively. The sizes of words forn-gram LM training in BN, AMI and
Babel are 1.5G, 2G and 467K; the number of word for RNNLMs
training are 15M, 2.4M and 467K. A 4-gram LM was trained for
AMI and 3-gram LMs for BN and Babel. All RNNLMs were trained
with a modified version of CUED-RNNLM Toolkit [18]. For uni-
RNNLMs, the hidden layer sizes of BN, AMI and Babel corpora
were 512, 256 and 100 hidden, while for bi-RNNLMs, 256, 128 and
50 hidden nodes were used for each direction. In this paper, linear in-
terpolation was used betweenn-gram LMs and uni-RNNLMs1, and
log-linear interpolation between uni-LMs and bi-LMs.

It is not easy to do lattice rescoring for bi-RNNLMs, though it is
feasible for uni-RNNLMs as shown in [23]. For simplicity, 100-best
rescoring was used for speech recognition for all RNNLMs. The
oracle WERs of 100-best list for the tasks are shown in Table 2.

1log-linear interpolation did not outperform linear interpolation according
to our experiments for uni-LMs



WER
BN AMI

Babel
dev eval dev eval

1-best 12.8 11.8 30.4 31.0 47.9
100-best oracle 10.0 9.5 17.7 17.7 32.6

Table 2. Oracle WERs of 100-best list on three corpora

Task RNNLM PPL WER
dev eval

BN
— 151.9 12.8 11.8

sigm 112.8 12.1 11.2
LSTM 104.4 11.9 11.0

AMI
— 182.1 30.4 31.0

sigm 143.3 29.1 29.6

Babel
— 115.3 47.9 —

sigm 81.0 46.6 —

Table 3. PPL and WER results of uni-RNNLMs on three tasks

Table 3 shows the PPL and WER results forn-gram LMs and
uni-RNNLMs on the tasks. In addition to the baseline sigmoid-
based RNNLMs, the performance of an LSTM-based system on the
BN task is shown. Note more training data was available for BN
compared to AMI and Babel where no gains over the sigmoid-based
baseline were obtained. For these baseline, uni-LM, systems, linear
interpolation was used (λ = 0.5). The uni-RNNLMs shows signifi-
cant gains in terms of both PPLs and WERs. The LSTM LM yields
moderate additional gains over the sigmoid RNNLM on BN.

Task RNNLM Dir. WER
dev eval

BN

sigm
uni 12.1 11.2
bi 12.3 11.3

uni+bi 11.7 10.8

LSTM
uni 11.9 11.0
bi 11.8 11.0

uni+bi 11.5 10.5

AMI sigm
uni 29.1 29.6
bi 29.7 30.2

uni+bi 29.0 29.6

Babel sigm
uni 46.6 —
bi 47.5 —

uni+bi 46.5 —

Table 4. WERs of bi-RNNLM on three tasks

Table 4 shows WER results of bi-RNNLMs, compared to the
uni-RNNLM: “uni” is the baseline for linear interpolation of n-gram
and uni-RNN LMs from Table 3; “bi” indicates log-linear interpo-
lation of n-gram and bi-RNN LMs (λ = 0.5)); and “uni+bi” in-
dicatesn-gram LM is linearly interpolated with the uni-RNNLM
followed by log-linearly interpolated with the bi-RNNLM (the in-
terpolation weights ofn-gram, uni-RNN, bi-RNN were 0.35, 0.35
and 0.3 respectively). From Table 4, bi-RNNLMs yield compara-
ble performance to uni-RNNLMs on the BN data. This is consistent
with the observations in [13]. The combination ofn-gram LMs, uni-
RNNLMs and bi-RNNLMs yields 0.4%-0.5% WER reduction over
the baseline uni-RNNLMs. However, for the other tasks, AMI and
Babel, which have higher WERs, only marginal improvements were
obtained. One possible reason is the sensitivity of the wordprobabil-

ity predictions to errors when no bi-RNNLM smoothing is applied.

Task RNNLM Dir. WER
dev eval

BN

sigm
uni 12.1 11.2
bi 12.1 11.1

uni+bi 11.8 10.9

LSTM
uni 11.9 11.0
bi 11.9 10.9

uni+bi 11.6 10.6

AMI sigm
uni 29.1 29.6
bi 29.0 29.6

uni+bi 28.5 29.2

Babel sigm
uni 46.6 —
bi 46.5 —

uni+bi 46.2 —

Table 5. WERs of smoothed bi-RNNLM on three tasks

The final experiments examine the impact of bi-RNNLM
smoothing (α = 0.7), discussed in Section 4, on performance.
The results can be found in Table 5. Using this simple smooth-
ing approach, consistent and significant performance gain can be
achieved on all three tasks by using bi-RNNLMs. Compared to the
baseline system (n-gram + uni-RNN LMs), bi-RNNLMs provide
an additional 0.4% to 0.6% WER reduction. It is also worth noting
that a fixed language model scale was used for each task in all ex-
periments. Tuning the language model scale factor did not alter the
performance. Note the use of smoothing with uni-RNNLMs, despite
optimisingα, yielded no performance gains.

6. CONCLUSION

In this paper, bidirectional RNNLMs are investigated for speech
recognition. Compared to previous work [13], where the bi-
RNNLMs were examined on a broadcast news transcription task
with a low word error rate and combined withn-gram LMs only,
a more complete study was performed: three corpora with differ-
ent WERs were investigated; and the combination of bi-RNNLMs,
n-gram and uni-RNN LMs was investigated. Bi-RNNLMs yielded
good performance improvements on broadcast data, which hasa
relatively low WER. However, for the other two corpora whichhave
higher WERs, only marginal improvements were obtained. In or-
der to overcome the sensitivity issue of bi-RNNLMs to recognition
errors, a simple smoothing method was proposed. Consistentand
significant WER improvements can be obtained on the all three
tasks.

It is clear that succeeding words are helpful to improve speech
recognition performance. However, there are issues that need to
be addressed to make these forms of bi-directional models gener-
ally applicable: better distribution smoothing approaches; improved
combination schemes; more efficient training approaches; and lattice
rescoring techniques. These will be explored in future work.
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[2] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Chris-
tian Jauvin, “A neural probabilistic language model,” Journal
of Machine Learning Research, vol. 3, pp. 1137–1155, 2003.

[3] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ,
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