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ABSTRACT

Recurrent neural network language models (RNNLMs) are pow:

erful language modeling techniques. Significant perforreaim-
provements have been reported in a range of tasks inclugieech
recognition compared te-gram language models. Conventional

gram and neural network language models are trained to gbredi

the probability of the next word given its preceding conthig-
tory. In contrast, bidirectional recurrent neural netwbdsed lan-
guage models consider the context from future words as \Walk
complicates the inference process, but has theoreticafitefior
tasks such as speech recognition as additional contexiiatton

can be used. However to date, very limited or no gains in $peec

recognition performance have been reported with this fdrmaxlel.
This paper examines the issues of training bidirectioneliment

neural network language models (bi-RNNLMs) for speech geco

nition. A bi-RNNLM probability smoothing technique is proged,
that addresses the very sharp posteriors that are oftemvelsia

these models. The performance of the bi-RNNLMs is evaluate

on three speech recognition tasks: broadcast news; meesing
scription (AMI); and low-resource systems (Babel data). &n
tasks gains are observed by applying the smoothing tecértigu
the bi-RNNLM. In addition consistent performance gains barob-

tained by combining bi-RNNLMs with n-gram and uni-directa

RNNLMs.

The task of language model then becomes that of calculating
the probability of wordw, given its previous wordsv!™* =<
w1, ..., ws—1 >. A variety of statistical language models have been
proposed to comput® (w|w!~"), including n-gram LMs [1] and
neural network LMs [2, 3]. n-gram LMs have been the domi-
nant language modeling approach for several decades dusotb g
performance and efficient implementation. Recently, $icgt
improvements have been reported with recurrent neural arktw
(RNN) LMs over standardi-gram LMs in many fields including
speech recognition [4, 5, 6, 7]. Long short-term memory (M3T
based LMs [8] can further improve performance by handliredgr
ent vanishing issue existed in sigmoid activation RNNLMs.

More recently, bidirectional RNNs (bi-RNNSs) [9] have outpe
formed unidirectional RNNs (uni-RNNSs) in application aseang-
ing from acoustic modeling [10] to machine translation [1Bi-
RNNs incorporate both the previous and future informatimiini-
prove prediction. However to date, in the field of languageleho
ing, very limited or no gains in speech recognition perfancehave

een reported with bi-RNNLMs over uni-RNNLMs. Several elte
native approaches have attempted to use succeeding worldsfo
guage modeling [12, 13, 14, 15]. The backward RNNLMs were in-
terpolated with the forward RNNLMs for speech recognitioifli2]
and [15]. [14] investigated the training of bi-RNNLMs usingise
contrastive estimation for NLP tasks. [13] applied bi-RNW4.on a
broadcast news transcription task and it was reporteditjratsgd bi-

Index Terms— language model, bidirectional recurrent neural RNNLMs gave small gains, while no improvements were obthine

network, speech recognition, interpolation

1. INTRODUCTION

Language models (LM) are crucial components in many appica
areas including speech recognition. They aim to estimatbb-
ability of any given word sequendd’ =< w1, wa, ..., wr, >. The
sequence probability can be computed using

L
PW) = P(w,ws, ..., wr) = [ [ Pwilwe—s,..wn) (1)
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from bi-LSTM LMs. This paper investigates the use of bi-RNWg.
for speech recognition, following the work in [13]. The issuin
training these bidirectional models is discussed, andilplessom-
bination approaches. This paper further investigates skefithese
bi-directional RNNLMs, showing that by appropriately naiising
the language posteriors of these models and combining thi#m w
other state-of-art language models consistent gains cabth@eed.

This paper is organised as: Section 2 gives a brief review of
RNNLMs, including unidirectional and bidirectional RNNLSVIThe
interpolation of RNNLMs andn-gram LMs is discussed in Sec-
tion 3, followed by the proposed smoothing method for bictienal
RNNLMs in Section 4. Experimental results are presentedeic+ S
tion 5 and conclusion drawn in Section 6.

2. RECURRENT NEURAL NETWORK LMS

Traditionally, language models are trained to predict thhedyprob-
ability based on the current histo,(w|wi™'). For these form of
model, whether an-gram or uni-directional RNNLM, the probabil-
ity of word sequenc@V can then be computed using Equation (1).
This form of language model will be referred to as unidirec4l
LMs (uni-LMs).



Incorporating future information into the prediction oktlur-
rent word complicates the calculation of the sentence mitha

The simple decomposition shown in Equation (1) cannot bel use

with these bidirectional LMs (bi-LMs). The probability ofvaord
now takes the formP (w;|w!™* wf ). To address this issues, the
individual word probabilities are combined within a Protlat Ex-
perts (PoE) framework to yield the total sentence probgbilihus
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Whereﬁbi(W) is the product of word probabilities from bi-RNNLMs
over sequenc®y andZ,; is a sentence-level normalisation term,

Zyi = Z Py(W
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Fig. 2. An example bidirectional RNNLMs.

boundaries as history vectors are reset in the middle oftesea. In
this paper, the bi-RNNLMs are trained in a more consistesttita.
Multiple sentences are aligned from left to right to form ibaiches
during bi-RNNLM training. In order to handle issues caused b
variable sentence lengthislULL tokens are appended to the end of
sentences to ensure that the aligned sentences have théesapthe

where© denotes the set of all possible word sequences. UnfortuTheseNULL tokens are not used for parameter update.

nately, it is impractical to calculatg,;, complicating the calculation
of perplexity for bi-LMs.

2.1. Unidirectional RNNLMs
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Fig. 1. An example unidirectional RNNLM.

Figure 1 shows a typical unidirectional RNNLM. The operatio
of this model is as follows. First, each word in the input laigepro-
jected to a low-dimensional, continuous, space via a lipegection
layer. This projected, word vectar;_; is then combined with the
history vectorh; _», which represents the word histary| ~* to form
a new history vectoh;_». This is then fed to a softmax function
to yield the probability distribution over the word at time Thus
the prediction of the current word;., is dependent on a representa-
tion of the complete history of words®™*. A range of non-linear
functions have been used in the recurrent layer. Sigmoidri@]Jlong
short-term memory (LSTM) [16] activations are two populboices
for language modeling.

2.2. Bidirectional RNNLMs

To incorporate future information into the word predictian ad-
ditional hidden unit is incorporated into the model. Thipdmgy
is shown in Figure 2. This second history vector encodes ¢he c
plete future historyuf+1, and allows the bidirectional RNNLMy;,
P(we|wi™" wiy,), to be computed.

The training of bi-RNNLMs is more complicated than uni-

RNNLMs as the future information must be taken into account.

In [13], all sentences in the training corpus were concaehto

Although the perplexity of bi-RNNLMs is difficult to obtaithe
log-likelihood of P(w:|w!™", wi ) can still be used as objective
function during training. An unnormalised, “pseudo”, PRina&lso
be calculated by using®(w:|w!™" wf 1) in a similar fashion to
the uni-LMs. However, the pseudo PPL of bi-RNNLMs cannot be
directly compared with PPL of uni-LMs as the unnormalisedbpr
ability is used in bi-RNNLMs. Note, in this paper, (uni- and b
) RNNLMs with an unclustered, full output layer are traindt-e
ciently on GPU [17] with a modified version of the CUED-RNNLM
toolkit [18].

3. INTERPOLATION OF RNNLMS AND N-GRAM LMS

n-gram and uni-RNN LMs have different, complementary, modgl
ability [19]. Improved performance is possible by inteigialg these
two models together. The same should be true for bi-LMs. i& th
section, two possible interpolation methods for bi-LMs briefly
described.

3.1. Linear Interpolation

linear interpolation of two uni-LMs (e.gz-gram and RNN LMs) is
commonly used. Here

P(wewi™") = XPran (we|wi ™) + (1= X) Pag(wewi ™) (4)

where) is the interpolation weight of RNNLM. The resulting inter-
polated probability is a valid probability mass functiorMP) and
can be to calculate sequence, sentence, probabilitieslyiAgpghe
same approach to bi-LMs would yield
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As previously discussed it is not practical to compute thenadisa-
tion termZ,;. Thus linear interpolation is challenging for bi-LMs.

7th+l)

3.2. Log-linear Interpolation

An alternative approach is to apply linear interpolatiorthie log

form a single sequence. This sequence was then “choppedl” intdomain, log-linear interpolation [20]. For two uni-LMs ghyields

sub-sequences with the averaged sentence length.

ple sequences. This allows bi-RNNLMs to be efficiently teain
However, consistency issues can arise when not cuttingnérsee

Bi-RNMNLM
were trained with minibatch mode on GPU by processing multi-

P(w|wi™") =
b
Z(wi™)

(6)
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whereZ(w!™") is the history-dependent normalisation term. It canwherey; is the activation before softmax function in the output laye
be computed by summing over the vocabulety « is set empirically set after training the bi-RNNLM as presty
The output distribution is smoothed and flattened whésless than
Z(wi™) =Y Pran(wlwi ) Pag(wlwi™)"™  (7) 1. Inthis papera was set to 0.7 for all tasks.
weV

8 T

Log-linear model combination with bi-LMs is again more com-
plicated due to the need to compute normalisation termsfwitire 7
words. To address this the models can be combined at the werd s
quencelV level.Thus considering a uni-LM and bi-LM

1 3 5
POW) = Zpum(W)*Pbi(W)l A
1 Ap 1-A

1A
I uni-RNNLMS
‘ bi-RNNLMs with no smoothing

whereZ is the sentence-level normalisation term dhg(WV) is de- bi-RNNLM with smoothing facior 0.1 ——
fined in Equation (2). The log of LM probabilities are nornyalsed

in speech recognition, thus Equation 8 becomes 0
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log P(W) = C + Alog Puns(W) + (1 = A)log B (W) (9)
Fig. 3. Entropy of uni-RNN, bi-RNN and smoothed bi-RNN LMs on

whereC' is a constant and does not alter the rank ordering of hyAMI. The counter is ordered by the entropy values of uni-RMNL

potheses. Thus, sentence level log-linear interpolatfaameLMs
and bi-LMs is valid, and the unnormalised form (witf) used for
speech recognition. Hence, though the performance of HHRNs
cannot be evaluated using perplexity, it can be evaluatddWER.
Itis also worth noting that the sentence level log-line&eiipolation
can be re-expressed as word level log-linear interpolatfdhe two

To further illustrate the sharpness, low entropy, of theviidd
ual word probabilities, the average sentence word-priedientropy
was computed for the for uni-RNNLM, bi-RNNLM and smoothed
bi-RNNLM (a = 0.7) on held out data from the AMI corpus. These
averages are shown in Figure 3. To help interpretability stbie-

models. .
tences are ordered by the average entropy of the uni-RNNLM. A
plots follow the same general trend. The unsmoothed bi-RMNL
4. BIDIRECTIONAL RNNLMS PROBABILITY has a significantly lower average entropy than the otheesyst It

SMOOTHING is interesting that the operating point & 0.7) has a higher average
entropy than the uni-RNNLM. This is not unsurprising as camb
ing models in a PoE framework (to yield the bi-RNNLM sentence
probabilities) is known to “over-sharpen” the distribuitto

To investigate the performance of bi-RNNLMs, an initial trast of
the pseudo-perplexity of the bi-RNNLM was compared to the pe
plexity of a uni-RNNLM, both trained on the AMI data. Table 1
shows the results. Though the two numbers are not directhpee
rable, the dramatically lower pseudo-perplexity of theRDINLM 5. EXPERIMENTS

indicates that the individual predicted word probabititief the bi- )

RNNLM are much higher than that of uni-RNNLM. Thus the pre- The performance of the bi-RNNLMs was evaluated on three cor-

dicted word probability distribution of bi-RNNLMs is expled to ~ Pora: broadcast news (BN); AMI meeting data (multiple distai-
much sharper (lower entropy) than that of uni-RNNLMs. A ¢imi  ¢rophone (MDM) configuration); and Dholuo ( IARPA-babel#03
trend was also observed on other tasks. v1.0b) from the Babel project. A DNN-based hybrid systenhsi-

guence training [21] was built for BN; joint decoding of Tamd and

[[RNNLM _ Dir. || (Pseudo) PPL] DNN-HMM systems [22] were used on the AMI and Babel tasks.
uni 850 CMLLR-based speaker adaptation were applied for all tadkse
sigm bi 27.8 vocabularies of BN, AMI and Babel are 59K, 41K and 18K respec-

tively. The sizes of words for-gram LM training in BN, AMI and
Babel are 1.5G, 2G and 467K; the number of word for RNNLMs
training are 15M, 2.4M and 467K. A 4-gram LM was trained for
. . ) . ) . AMI and 3-gram LMs for BN and Babel. All RNNLMs were trained
Itis interesting to consider the impact of having a Signiitba it 4 modified version of CUED-RNNLM Toolkit [18]. For uni-
lower entropy on the word predictions of the bi-RNNLM. Thddie RNNLMs, the hidden layer sizes of BN, AMI and Babel corpora
out evaluation data will not have exactly the same form asrtie- | .o 512: 256 and 100 hidden, while for bi-RNNLMs, 256, 128 an
ing data. Furthermore, speech recognition systems willneators, g piggen nodes were used for each direction. In this papegin-

for example due to unusual acoustic data or word sequencebith terpolation was used betweergram LMs and uni-RNNLMS and
RNLLM will give low probability to these error-full, unusliavords log-linear interpolation between uni-LMs and bi-LMs.

sequences. In standard systems this issue would be adtilBssp- Itis not easy to do lattice rescoring for bi-RNNLMs, thouglsi
timising the language model scale factor. An alternativeraach o agjple for uni-RNNLMs as shown in [23]. For simplicity, &®est
adopted here is to_l_ntro_duc_e an additional tunable pfa_rametm rescoring was used for speech recognition for all RNNLMs.e Th
smooth the probability distribution. Thus word probaln oracle WERs of 100-best list for the tasks are shown in Table 2

Table 1. (Pseudo) PPLs of uni-RNN and bi-RNN LMs on AMI data

P(w;|w! ™t wk ) = exp(ayi) (10) Llog-linear interpolation did not outperform linear intetation according
s Z;’ exp(ay;) to our experiments for uni-LMs



WER BN AMI Babel
dev | eval || dev [ eval

1-best 128 | 11.8| 30.4| 31.0 || 47.9

100-best oraclg| 10.0 | 9.5 || 17.7 | 17.7 || 32.6

Table 2. Oracle WERs of 100-best list on three corpora

Task RNNLM || PPL WER
dev | eval
— 1510 12.8] 11.8
BN sigm || 112.8 || 12.1 | 11.2
LSTM || 104.4| 11.9 | 11.0
AN — 182.1 30.4 ] 31.0
sigm 143.3 || 29.1 | 29.6

— 1153 479 —

Babel  gigm || 81.0 || 466 | —

Table 3. PPL and WER results of uni-RNNLMs on three tasks

Table 3 shows the PPL and WER results fegram LMs and
uni-RNNLMs on the tasks. In addition to the baseline sigmoid

ity predictions to errors when no bi-RNNLM smoothing is dpgl

Task  RNNLM Dir. WER
dev [ eval
uni 12.1| 11.2
sigm bi 121 111
uni+bi || 11.8 | 10.9
BN uni 11.9| 11.0
LSTM bi 11.9 | 10.9
uni+bi || 11.6 | 10.6
uni 29.1| 29.6
AMI sigm bi 29.0 | 29.6
uni+bi || 28.5 | 29.2
uni 466 | —
Babel sigm bi 46.5| —
unitbi | 46.2 | —

Table 5. WERSs of smoothed bi-RNNLM on three tasks

The final experiments examine the impact of bi-RNNLM
smoothing & = 0.7), discussed in Section 4, on performance.
The results can be found in Table 5. Using this simple smooth-

based RNNLMs, the performance of an LSTM-based system on thiag approach, consistent and significant performance gaimbe

BN task is shown. Note more training data was available for BN
compared to AMI and Babel where no gains over the sigmoi@édas
baseline were obtained. For these baseline, uni-LM, systénear
interpolation was used\(= 0.5). The uni-RNNLMs shows signifi-
cant gains in terms of both PPLs and WERs. The LSTM LM yields
moderate additional gains over the sigmoid RNNLM on BN.

Task  RNNLM Dir. WER
dev | eval
uni 12.1| 11.2
sigm bi 12.3 | 11.3
uni+bi || 11.7 | 10.8
BN uni 11.9| 11.0
LSTM bi 11.8| 11.0
uni+bi || 11.5| 10.5
uni 29.1| 29.6
AMI sigm bi 29.7| 30.2
uni+bi || 29.0 | 29.6
uni 46.6 | —
Babel sigm bi 475 | —
uni+bi || 46.5| —

Table 4. WERs of bi-RNNLM on three tasks

Table 4 shows WER results of bi-RNNLMs, compared to the
uni-RNNLM: “uni” is the baseline for linear interpolatiorf @-gram
and uni-RNN LMs from Table 3; “bi” indicates log-linear imfeo-
lation of n-gram and bi-RNN LMs X = 0.5)); and “uni+bi” in-
dicatesn-gram LM is linearly interpolated with the uni-RNNLM
followed by log-linearly interpolated with the bi-RNNLMHKe in-
terpolation weights ofi-gram, uni-RNN, bi-RNN were 0.35, 0.35
and 0.3 respectively). From Table 4, bi-RNNLMs yield congpar
ble performance to uni-RNNLMs on the BN data. This is coesist
with the observations in [13]. The combinatiomoefyram LMs, uni-
RNNLMs and bi-RNNLMs yields 0.4%-0.5% WER reduction over
the baseline uni-RNNLMs. However, for the other tasks, AMda
Babel, which have higher WERs, only marginal improvemereasev
obtained. One possible reason is the sensitivity of the wootabil-

lachieved on all three tasks by using bi-RNNLMs. Comparedhéo t
baseline systemnftgram + uni-RNN LMs), bi-RNNLMs provide
an additional 0.4% to 0.6% WER reduction. It is also worthimmpt
that a fixed language model scale was used for each task ir-all e
periments. Tuning the language model scale factor did net tie
performance. Note the use of smoothing with uni-RNNLMs pites
optimising«, yielded no performance gains.

6. CONCLUSION

In this paper, bidirectional RNNLMs are investigated foesph
recognition. Compared to previous work [13], where the bi-
RNNLMs were examined on a broadcast news transcription task
with a low word error rate and combined witihgram LMs only,
a more complete study was performed: three corpora witlerdiff
ent WERs were investigated; and the combination of bi-RNNLM
n-gram and uni-RNN LMs was investigated. Bi-RNNLMs yielded
good performance improvements on broadcast data, whichahas
relatively low WER. However, for the other two corpora whitdwe
higher WERs, only marginal improvements were obtained. rin o
der to overcome the sensitivity issue of bi-RNNLMs to redtign
errors, a simple smoothing method was proposed. Consiateht
significant WER improvements can be obtained on the all three
tasks.

It is clear that succeeding words are helpful to improve spee
recognition performance. However, there are issues thed te
be addressed to make these forms of bi-directional modeisrge
ally applicable: better distribution smoothing approaghmproved
combination schemes; more efficient training approacheslatice
rescoring techniques. These will be explored in future work
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