
University of Cambridge

Engineering Part IIB

Module 4F12: Computer Vision

Image Structure:

Feature Detection and Matching

Roberto Cipolla

October 2024

2 Engineering Part IIB: 4F12 Feature extraction

Image Intensities

We can represent a monochrome image as a matrix I(x, y) of

intensity values. The size of the matrix is typically 320× 240

(QVGA) , 640 × 480 (VGA), 1280 × 720 (HD) or even as

large as 4096×2160 (4K) and the intensity values are usually

sampled to an accuracy of 8 bits for monochrome images (256

grey levels) or for each the 3 RGB colour channels.

If a point on an object is visible in view, the corresponding

pixel intensity, I(x, y) is a function of many geometric and

photometric variables, including:

1. The position and orientation of the camera;

2. The geometry of the scene (3D shapes and layout);

3. The nature and distribution of light sources;

4. The reflectance properties of the surfaces: specular ↔
Lambertian, albedo 0 (black) ↔ 1 (white);

5. The properties of the lens and the CCD.

In practice the point may also only be partially visible or

its appearance may be also be affected by occlusion.

Feature Extraction 3

Data reduction

With current computer technology, it is necessary to discard

most of the data coming from the camera before any attempt

is made at real-time image interpretation.

images → generic salient features

100 MBytes/s 100 KBytes/s

(mono CCD)

All subsequent interpretation is performed on the generic rep-

resentation, not the original image. We aim to:

• Dramatically reduce the amount of data.

• Preserve the useful information in the images (such as the

albedo changes and 2D shape of objects in the scene).

• Discard the redundant information in the images (such

as the lighting conditions).

We would also like to arrive at a generic representation, so

the same processing will be useful across a wide range of

applications.

4 Engineering Part IIB: 4F12 Feature extraction

Image structure

The answer becomes apparent if we look at the structure of

a typical image. In this photo of “Claire”, we’ll examine the

pixel data around several patches: a featureless region, an

edge and a corner.

0D

The featureless region is characterized by a smooth variation

of intensities.

Feature Extraction 5

Edges and corners

1D

The patch containing the edge reveals an intensity disconti-

nuity in one direction.

2D

The patch containing the corner reveals an intensity discon-

tinuity in two directions.

Note that an edge or corner representation imparts a desirable

invariance to lighting: the intensity discontinuities are likely

to be prominent, whatever the lighting conditions.

6 Engineering Part IIB: 4F12 Feature extraction

1D edge detection

We start with the simple case of edge detection in one di-

mension. When developing an edge detection algorithm, it is

important to bear in mind the invariable presence of image

noise. Consider this signal I(x) with an obvious edge.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
ig

na
l

An intuitive approach to edge detection might be to look for

maxima and minima in I ′(x).

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

D
iff

er
en

tia
te

d
si

gn
al

This simple strategy is defeated by noise. For this reason,

all edge detectors start by smoothing the signal to suppress

noise. The most common approach is to use a Gaussian filter.

Feature Extraction 7

1D edge detection

A broad overview of 1D edge detection is:

1. Convolve the signal I(x) with a Gaussian kernel gσ(x).

Call the smoothed signal s(x).

gσ(x) =
1

σ
√
2π

exp

(

− x2

2σ2

)

2. Compute s′(x), the derivative of s(x).

3. Find maxima and minima of s′(x).

4. Use thresholding on the magnitude of the extrema to

mark edges.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
ig

na
l

Sigma = 50

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

K
er

ne
l

0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
on

vo
lu

tio
n

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0D

iff
er

en
tia

tio
n

8 Engineering Part IIB: 4F12 Feature extraction

1D edge detection

The smoothing in step (1) is performed by a 1D convolution:

s(x) = gσ(x) ∗ I(x) =

∫ +∞

−∞
gσ(u)I(x− u) du

=

∫ +∞

−∞
gσ(x− u)I(u) du

The differentiation in step (2) is also performed by a 1D con-

volution. Thus edge detection would appear to require two

computationally expensive convolutions.

However, the derivative theorem of convolution tells us that

s′(x) =
d

dx
[gσ(x) ∗ I(x)] = g′σ(x) ∗ I(x)

so we can compute s′(x) by convolving only once — a con-

siderable computational saving.

gσ(x) g′σ(x)

Feature Extraction 9

1D edge detection

0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
ig

na
l

Sigma = 50

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

K
er

ne
l

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

C
on

vo
lu

tio
n

Having obtained the convolved signal s′(x), interpolation can

be used to locate any maxima or minima to sub-pixel accu-

racy. Finally, an edge is marked at each maximum or mini-

mum whose magnitude exceeds some threshold.

Looking for maxima and minima of s′(x) is the same as look-

ing for zero-crossings of s′′(x). In many implementations of

edge detection algorithms, the signal is convolved with the

Laplacian of a Gaussian, g′′σ(x):

s′′(x) = g′′σ(x) ∗ I(x)

10 Engineering Part IIB: 4F12 Feature extraction

Zero-crossings

0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
ig

na
l

Sigma = 50

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

K
er

ne
l

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

C
on

vo
lu

tio
n

The zero-crossings of s′′(x) mark possible edges.

We have not yet addressed the issue of what value of σ to

use. Consider this signal:

0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
ig

na
l

Does the signal have one positive edge or a number of positive

and negative edges?

Feature Extraction 11

Multi-scale edge detection

Using a small σ brings out all the edges.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

K
er

ne
l

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

C
on

vo
lu

tio
n

0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
ig

na
l

Sigma = 20

As σ increases, the signal is smoothed more and more, and

only the central edge survives.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

K
er

ne
l

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0C
on

vo
lu

tio
n

0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
ig

na
l

Sigma = 50

12 Engineering Part IIB: 4F12 Feature extraction

Multi-scale edge detection

The amount of smoothing controls the scale at which we

analyse the image. There is no right or wrong size for the

Gaussian kernel: it all depends on the scale we’re interested

in.

Modest smoothing (a Gaussian kernel with small σ) brings

out edges at a fine scale. More smoothing (larger σ) identifies

edges at larger scales, suppressing the finer detail.

This is an image of a dish cloth. Af-

ter edge detection, we see different

features at different scales.

σ = 1 σ = 5

Fine scale edge detection is particularly sensitive to noise.

This is less of an issue when analysing images at coarse scales.

Feature Extraction 13

2D edge detection

The 1D edge detection scheme can be extended to work in two

dimensions. First we smooth the image I(x, y) by convolving

with a 2D Gaussian Gσ(x, y):

Gσ(x, y) =
1

2πσ2
exp−

(

x2 + y2

2σ2

)

S(x, y) = Gσ(x, y) ∗ I(x, y)

=

∫ ∞

−∞

∫ ∞

−∞
Gσ(u, v)I(x− u, y − v) du dv

The effects of this blurring on a typical image:

Unsmoothed σ = 3 pixels σ = 4 pixels

14 Engineering Part IIB: 4F12 Feature extraction

2D edge detection

The next step is to find the gradient of the smoothed image

S(x, y) at every pixel:

∇S = ∇(Gσ ∗ I)

=





∂(Gσ∗I)
∂x

∂(Gσ∗I)
∂y



 =





∂Gσ

∂x ∗ I
∂Gσ

∂y
∗ I





The following example shows |∇S| for a fruity image:

(a) Original image (b) Edge strength |∇S|

Feature Extraction 15

2D edge detection

The next stage of the edge detection algorithm is non-maximal

suppression. Edge elements, or edgels, are placed at lo-

cations where |∇S| is greater than local values of |∇S| in
the directions ±∇S. This aims to ensure that all edgels are

located at ridge-points of the surface |∇S|.

(c) Non-maximal suppression

Next, the edgels are thresholded, so that only those with

|∇S| above a certain value are retained.

(d) Thresholding

16 Engineering Part IIB: 4F12 Feature extraction

2D edge detection

The edge detection algorithm we have been describing is due

to Canny (1986). The output is a list of edgel positions, each

with a strength |∇S| and an orientation ∇S/ |∇S|.

An alternative approach to edge detection was developed by

Marr and Hildreth (1980). While the Canny detector is a di-

rectional edge finder (both the gradient magnitude and direc-

tion are computed), the Marr-Hildreth operator is isotropic.

It finds zero-crossings of∇2Gσ∗I , where∇2Gσ is the Lapla-

cian of Gσ (∇2 = ∂2/∂x2 + ∂2/∂y2).

Gσ ∇2Gσ

Feature Extraction 17

Implementation details

In practice, the image and filter kernels are discrete quantities

and the convolutions are performed as truncated summations:

S(x, y) =

n
∑

u=−n

n
∑

v=−n

Gσ(u, v)I(x− u, y − v)

g (x)

n0-n

σ

2n+1 pixel filter kernel

For acceptable accuracy, kernels are generally truncated so

that the discarded samples are less than 1/1000 of the peak

value.

σ 1.0 1.5 3 6

2n + 1 7 11 23 45

The 2D convolutions would appear to be computationally

expensive. However, they can be decomposed into two 1D

convolutions:

Gσ(x, y) ∗ I(x, y) = gσ(x) ∗ [gσ(y) ∗ I(x, y)]

The computational saving is (2n + 1)2/2(2n + 1).

18 Engineering Part IIB: 4F12 Feature extraction

Implementation details

Differentiation of the smoothed image is also implemented

with a discrete convolution.

By considering the Taylor-series expansion of S(x, y) it is

easy to show that a simple finite-difference approximation to

the first-order spatial derivative of S(x, y) is given by:

∂S

∂x
≈ S(x + 1, y)− S(x− 1, y)

2

This is equivalent to convolving the rows of image samples,

S(x, y), with the kernel

1/2 0 -1/2

Feature Extraction 19

Corners

While edges are a powerful intermediate representation, they

are sometimes insufficient. This is especially the case when

image motion is being analysed. The motion of an edge

is rendered ambiguous by the aperture problem: when

viewing a moving edge, it is only possible to measure the

motion normal to the edge locally.

P
?

P

P

P

’’

’

CornerEdge

To measure image motion completely, we really need to look

at corner features. We saw earlier that a corner is charac-

terized by an intensity discontinuity in two directions. This

discontinuity can be detected using correlation.

20 Engineering Part IIB: 4F12 Feature extraction

Correlation

The normalized cross-correlation function measures how

well an image patch P (x, y) matches other portions of the

image, I(x, y), as it is shifted from its original location. It

entails sliding the patch over the image, computing the sum

of the products of the pixels and normalizing the result:

c(x, y) =

n
∑

u=−n

n
∑

v=−n

P (u, v) I(x+ u, y + v)

√

√

√

√

n
∑

u=−n

n
∑

v−n

P 2(u, v)

n
∑

u=−n

n
∑

v−n

I2(x + u, y + v)

A patch which has a well-defined peak in its correlation func-

tion can be classified as a “corner”.

Image,I & patch,P Correlation c(x, y)

Note that the cross-correlation is fully normalised to [−1, 1]

by computed it from the covariance and variances of the

two signals/patches (i.e. by subtracting means).

Feature Extraction 21

Corner detection

A practical corner detection algorithm needs to do something

more efficient than calculate correlation functions for every

pixel! We must begin with a smoothed image, S(x, y), before

differentiating.

1. Calculate change in intensity in direction n:

Sn ≡ ∇S(x, y).n̂ ≡ [Sx Sy]
T .n̂

S2
n =

nT ∇S∇ST n

nTn

=

nT

[

S2
x SxSy

SxSy S2
y

]

n

nTn

where Sx ≡ ∂S/∂x and Sy ≡ ∂S/∂y.

2. Smooth S2
n by convolution with a Gaussian kernel of size

σI :

Cn(x, y) = GσI (x, y) ∗ S2
n

=

nT

[

〈

S2
x

〉

〈SxSy〉
〈SxSy〉

〈

S2
y

〉

]

n

nTn

where 〈 〉 is the smoothed value. This equivalent to weight-

ing the intensity differences squared, S2
n, in the local

neighbourhood by Gaussian weights centred at (x, y).

22 Engineering Part IIB: 4F12 Feature extraction

Corner detection

The smoothed (weighted sum of) intensity changes around

(x,y) in direction n is therefore given by

Cn(x, y) =
nTAn

nTn

where A is the 2× 2 symmetric matrix
[

〈

S2
x

〉

〈SxSy〉
〈SxSy〉

〈

S2
y

〉

]

Elementary eigenvector theory tells us that

λ1 ≤ Cn(x, y) ≤ λ2

where λ1 and λ2 are the eigenvalues of A. So, if we try

every possible orientation n, the maximum smoothed change

in intensity we will find is λ2, and the minimum value is λ1.

We can therefore classify image structure around each pixel

by looking at the eigenvalues of A:

No structure: (smooth variation) λ1 ≈ λ2 ≈ 0

1D structure: (edge) λ1 ≈ 0 (direction of edge), λ2 large

(normal to edge)

2D structure: (corner) λ1 and λ2 both large and distinct

Feature Extraction 23

Corner detection

It is necessary to calculate A at every pixel by first computing

3 images of smoothed gradients. We avoid computing the

actual eigenvalues by evaluating the determinant (det A =

λ1λ2) and trace of the matrix A (trace A= λ1+λ2) instead.

The corner detection algorithm we have been describing is

due to Harris (1987). We mark corners where the quantity

λ1λ2 − κ(λ1 + λ2)
2 exceeds some threshold (κ ≈ 0.04 makes

the detector a little “edge-phobic”).

Low threshold High threshold

Corners are most useful for tracking in image sequences or

matching in stereo pairs. Unlike edges, the displacement of

a corner is not ambiguous. Corner detectors must be judged

on their ability to detect the same corners in similar images.

Current detectors are not too reliable, and higher-level visual

routines must be designed to tolerate a significant number of

outliers in the output of the corner detector.

24 Engineering Part IIB: 4F12 Feature extraction

Blobs

A blob is an area of uniform intensity in the image. Whereas

edges and corners are features which are found at disconti-

nuities, blobs are localised in the middle of areas of similar

intensity which are surrounded by pixels of a different inten-

sity on their boundaries.

Polka Dots

∗ =

Detected Blobs

The 1D signal is a scan line running across one of the polka

dots above. The result shows how, even though the signal is

quite noisy, the local extrema of the convolution with Lapla-

cian of the Gaussian at the correct scale, σ, localises the

centre of the dots perfectly.

sigma = 20

Feature Extraction 25

Blobs and Band-pass filtering

The size of the blob detected depends on the sigma of the

detector used. As the sigma is increased, larger and larger

image features are detected, ranging from small boxes to en-

tire buildings. Each time the blob detector will fire on the

center of the blob in question, making it ideal for extracting

texture from the inside of an object or for fixing location of

an object in the scene.

σ = 1 σ = 3

σ = 7 σ = 19

26 Engineering Part IIB: 4F12 Feature extraction

From edge to bar/blob detection

Convolution with the Laplacian of a Gaussian (LoG) kernel

produces a band-bass filtered output with zero-crossings at

intensity edges. When the scale, σ, is matched to the size

of the pulse (bar) in 1D there is a strong response with an

extrema at the centre of the pulse/bar.

The response falls with increasing scale, σ, and needs to be

scale-normalised (by convolution with σ2∇2Gσ instead) so

that the strongest response corresponds to the centre of bars

at different scales.

Feature Extraction 27

Finding blobs at different scales

In 2D the maximum of the magnitude of the scaled Laplacian

of Gaussian response localises the centre of a blob whilst the

scale determines its size (radius of blob is
√
2σ).

Original Level 0

σ = 5

σ = 10

Level 1 Level 2
σ = 20

Level 3 Level 4

σ = 40

σ = 80

28 Engineering Part IIB: 4F12 Feature extraction

Finding the scale of a blob

The (scale-normalised) Laplacian of a Gaussian response as

recorded at a particular location is a smooth function over

scale. The ideal scale of a keypoint is the scale corresponding

to the maximum of the scale space function at that point. For

example, with a blob, we would want to find the maximum

of the magnitude of the Laplacian of a Gaussian over scale.

The image location of this local max response gives the blob

centre position whilst the scale, σ, defines its size (radius of

blob is
√
2σ).

1: σ = 1 2: σ = 7 3: σ = 12 4: σ = 18

To help find the exact point and scale efficiently, a set of

discrete scales are sampled (from an Image Pyramid) and the

largest value is found by interpolation and then the exact

point interpolated.

Feature Extraction 29

Scale Space

We achieve scale independence by look-

ing at the different resolutions (low-pass

filtered at different scales) of an image.

There are an infinite number of possi-

ble resolutions for any image, a three-

dimensional function of intensity over lo-

cation and scale known as the scale

space of the image, denoted S(x, y, σ).

This can be calculated by convolving the

original image I(x, y) with Gaussians of

different scale σ, thus the scale space

function can be written as

S(x, y, σ) = G(x, y, σ) ∗ I(x, y)

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

It is impractical to examine all possible

resolutions, and indeed impossible to do

so when we are restricted by digital im-

age representation. Thus, we sample the

space by choosing particular resolutions

to examine.

30 Engineering Part IIB: 4F12 Feature extraction

Scale Space, cont.

We produce a discrete set of low-pass fil-

tered images by smoothing with gaussians

with a scale satisfying

σi = 2
i

sσ0

so that it doubles after s intervals. The s images in each oc-

tave are spaced logarithmically with the scale of neighbouring

images satisfying

σi+1 = 2
1

sσi

Blurring with large scales is avoided in 2 ways: subsam-

pling the image after each octave (i.e. scale has doubled) and

by using a finite set of incremental Gaussian blurrs.

The resulting sampling of spaces is called an image pyra-

mid, for which we compute scales ranging from σ to 2σ (an

octave), and then subsample the image for the next octave.

Feature Extraction 31

Scale Space, cont.

Within each octave, as we convolve images repeatedly with

Gaussian filters, the resulting image has a σ calculated as

G(σ1) ∗G(σ2) = G

(

√

σ2
1 + σ2

2

)

At every interval i of the pyramid, we want σi = 2
i

sσ0 (so

that it doubles after s intervals). We need to achieve this

incrementally, thus

G(σi+1) = G(σi) ∗G(σki)

So, what is σki?

σki =
√

σ2
i+1 − σ2

i

σi+1 = 2
1

sσi

σki =

√

2
2

sσ2
i − σ2

i

σki = σi

√

2
2

s − 1

The s distinct and small incremental Gaussian (low-pass) fil-

ters, σki, need only be computed once and can be reused in

each subsequent octave but on sub-sampled images to achieve

the larger scales.

32 Engineering Part IIB: 4F12 Feature extraction

Difference of Gaussian

The difference of Gaussians interest point, or DoG as it

is often called, is a blob detector. The points are taken from

the minima and maxima of the DoG response over an image.

It takes its name from the fact that it is calculated as the

difference of two Gaussians, which approximates the scale-

normalised Laplacian of a Gaussian (see Lowe reference).

G(x, y, kσ)−G(x, y, σ) ≈ (k − 1)σ2∇2G(x, y, σ)

In a system which utilizes a scale space pyramid (such as the

one we will consider), the DoG point is a useful entity, as a

response can be computed simply subtracting one member of

a pyramid level from the one directly above it.

Feature Extraction 33

Keypoint detection and scale

Keypoint locations (the blob centres) are found by first com-

puting an approximation for the Laplacian of the Gaussian

pyramid by using Difference of Gaussians - i.e. subtracting

neighbouring images of same dimension in the Image Pyra-

mid. The image location of the local maximum/minimum of

the this response (in image position and over scale) gives the

feature/keypoint centre and characteristic scale. This will re-

quire a local search of 26 neighbour responses to determine if

a pixel is a blob-centre and to find the scale.

34 Engineering Part IIB: 4F12 Feature extraction

Keypoint detection - scale/orientation

For image matching, blob centres give keypoints which are

particularly useful features to concentrate on, as they are

usually found inside of objects as opposed to at their edges

and thus are less likely to contain part of the background

in queries, in addition to other properties such as stability,

repeatability, and a definite optimal scale.

The blob centre gives the keypoint image location and the

blob scale can be used to normalise for the size/scale of the

image feature by sampling the pixels (typically 16×16) in the

neighbourhood of the blob centre at the appropriate image of

the Image Pyramid.

To compute the orientation of the keypoint we begin by com-

puting the gradients (orientation and magnitude) for each

pixel. We find the keypoint’s dominant orientation by

looking at the histogram of oriented gradients in the

patch of pixels around the keypoint centre.

Feature Extraction 35

Keypoint dominant orientation

We can build a histogram (typically with 36 bins covering

360 degrees) of all of the edge orientations weighted by their

gradient magnitudes in the neighbourhood (typically 16×16)

of the keypoint. This needs to be smoothed (low-pass filtered

with a 2D gaussian of size 1.5σ scale for the keypoint).

The highest peak in the histogram will approximate the dom-

inant orientation - a better estimate can be found through

interpolation (by fitting a parabola to the values of the bin

and its two neighbours). If there is no clear maximum, then

the keypoint/interest point is given several dominant orienta-

tions (i.e. several copies of the keypoint/interest point with

different orientations are used).

Source Image

Orientation Histogram

36 Engineering Part IIB: 4F12 Feature extraction

Keypoint detection - scale/orientation

To produce a descriptor which is invariant to scale we first

normalize for size/scale in the image (by sampling 16 × 16

patch of image intensities at the appropriate level of the image

pyramid)

We can then normalize for image orientation (by sampling

pixels after computing a characteristic reference/dominant

orientation for the patch of pixels using a histogram of gra-

dients).

After this geometric size and orientation normalisation we

can then compute an appropriate descriptor for each feature

by either raw or normalised intensities, edges or the Scale

Invariant Feature Transform (SIFT).

Feature Extraction 37

Matching intensity patches

The simplest way to describe a patch of an image is just to

store the N intensity values, P [i]. You can then compare

patches directly using cross correlation to find a match.

CC(P1, P2) =
N
∑

i

P1[i]P2[i]. (1)

In this raw form the description is not very robust to changes,

however.

Original Patch and Intensity Values

Brightness Decreased, CC = 0.262720397078039

Contrast increased, CC = 0.380413705374859

Various changes, CC = 0.297579822063629

38 Engineering Part IIB: 4F12 Feature extraction

Zero Normalized Patches

Brightness changes are essentially changes in the mean bright-

ness value. While the mean changes, the distribution of the

intensity values around the mean stays the same. Thus, by

giving the intensity values a zero mean, they become immune

to brightness change.

µ =
1

N

∑

x,y

I(x, y)

Z(x, y) = I(x, y)− µ

However, the intensity values are still affected by contrast

changes. Contrast is essentially a change in the variance of

the distribution of the intensity values around the mean.

Thus, to deal with contrast all that is required is to divide

each value by the standard deviation of the intensity value

distribution.

σ2 =
1

N

∑

x,y

Z(x, y)2

ZN(x, y) =
Z(x, y)

σ

Feature Extraction 39

Zero Normalized Patches, cont.

The resulting collection of zero-mean, unit variance intensity

values is known as a zero-normalized patch, and can be accu-

rately matched using simple cross-correlation. The size of the

descriptor grows with the size of the patch, and thus can be

quite big. Even so, while not a data reduction, it is a useful

way to represent these areas.

Original Patch and Intensity Values

Brightness Decreased, CC = 0.999988956295594

Contrast increased, CC = 0.969868160814465

Various changes, CC = 0.985010389868036

40 Engineering Part IIB: 4F12 Feature extraction

Histogram of Gradients

Gradient Grid

If you look at the gradient of each pixel in the patch, each

will have its own distinct orientation/direction, or way that it

is facing, and each will have a size/strength (gradient magni-

tude).

These can in turn be binned together into

an orientation histogram, as shown on the

right. Since this histogram is built using gra-

dients/edges, which are robust to contrast

and brightness changes and can be detected

at different scales, and also incorporates ori-

entation data (thus adding robustness to ori-

entation) this makes them a very strong can-

didate for a descriptor.

Feature Extraction 41

The SIFT keypoint descriptor

SIFT stands for Scale-Invariant Feature Transform. It uses

a collection of orientation histograms to create a robust and

descriptive representation of a patch. This N × N patch

(typically, N = 16) is extracted at the scale of the interest

point. Thus, while the patch size never changes the area of

the actual image it represents changes depending on scale.

The N×N patch is split into c cells, and within each cell the

intensity gradient at every pixel is calculated and the direc-

tions binned into a histogram weighted by their magnitude

and a Gaussian window with a σ of .5 times the scale of the

feature centered on the patch. This weights the inner pixels

(those closer to the interest point) to avoid possible occlusion

problems.

42 Engineering Part IIB: 4F12 Feature extraction

The SIFT keypoint descriptor

If the bins are centered on d directions (typically 8) in each

of c cells (typically 16) , the resulting descriptor is a d × c

vector (typically 128D).

By dividing the patch into cells, a particular gradient can

move around to some degree within the descriptor window

and still contribute to the same directional histogram. Once

the d×c vector has been extracted, it is normalized to provide

invariance to gradient magnitude change. One final step is

performed to help minimize the effects of non-affine lighting

changes by thresholding so that all values in the unit vec-

tor are less than .2 (to reduce the effect of single elements

such as those coming from very strong highlights) and then

renormalizing.

Feature Extraction 43

Matching features over multiple views

We can use our design of keypoints and their descriptors

to build a system to recognize a target object (specified by a

reference image) in another viewpoint (query image):

Reference
Images

Query
Image

BA

Result: A

Database

PREPARATION

OPERATION

So, one way of solving the correspondence problem is to search

through all the feature points (keypoint descriptors) in the

database images for the best match of a query feature.

A good match is usually defined as one which is small dis-

tance away in feature descriptor space (d=128 for SIFT) as

measured by an Euclidean distance metric: following formula

E(~x, ~y) =

√

∑

d

(~xd − ~yd)2

44 Engineering Part IIB: 4F12 Feature extraction

Finding correspondences - Search

This is called a linear search, and is prohibitively expensive

to compute. Instead, we must find a way of storing the data

to make searching faster.

A data structure organizes data such that it is more efficient

to store, access and search. The simplest data structure is a

list of items, such as an array of numbers. The most complex

are almost impossible to visualize. One solution is to use tree-

based data structures such as k-d trees to tackle the problem

of nearest neighbour retrieval.

Feature Extraction 45

Image Structure: Texture

Image texture arises from large numbers of small objects

such as grass, brush, pebbles and hair and surfaces with or-

derly and repetitive patterns such as the spots or stripes on

animals, wood and skin. They typically consist of organised

patterns of regular sub-elements called textons. A natural

way to describe texture is to find these textons and describe

how they are distributed.

Image textures can be described by their response to a col-

lection of filters to represent the patterns of spots, bars etc.

46 Engineering Part IIB: 4F12 Feature extraction

Characterising Texture

This is an example filter bank. It consists of 8 Laplacian of

Gaussian filters and 4 Gaussian filters at different scales to

provided non-oriented responses, and 36 oriented filters at 6

different angles, 3 different scales, and 2 different phases. The

two phases of oriented filters are first and second derivatives

of Gaussians on the minor axis and elongated Gaussians on

the major axis, and thus detect edges or bars respectively

along their major axes.

The descriptor is simply the concatenated responses of all of

the filters in the filter bank at a pixel.

Feature Extraction 47

Filter Banks

Bar

Brightness

Edge

Blob

Bar Filter Response Edge Filter Response

Intensity Filter Response Blob Filter Response

48 Engineering Part IIB: 4F12 Feature extraction

Learning feature hierarchies

In the previous sections the raw image has been pre-processed

through hand-crafted feature extraction (edges, corners, tex-

tons). The features were not learned. In many recognition

tasks in computer vision we will learn a hierarchy of features

just by looking at examples - from low level to mid-level in-

variant representations to object identities. This is called

Deep Learning.

Feature Extraction 49

Bibliography

Some of the illustrations in this handout were taken from the follow-

ing publications, which also make good further reading.

Edge detection

J. Canny. A computational approach to edge detection. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 8(6):679–698,

1986.

Corner detection

C. Harris. Geometry from visual motion. In A. Blake and A. Yuille,
editors, Active Vision, pages 263–284. MIT Press, Cambridge MA,

1992.

Blobs and SIFT descriptor

D.G. Lowe, ”Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, 60, 2 (2004), pp.

91-110.

