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Solutions to Examples Paper

1. Images

Each frame requires 512× 512× 1 = 2.62× 105 Bytes. A 25Hz stereo image stream
requires 2.62 × 105 × 25 × 2 = 1.3 × 107 Bytes/s. Assuming an average A4 page of
text contains 50 lines, with about 80 characters on each line, and that a character is
represented (using an ASCII code) as a single byte, a page of text requires 80×50×1
= 4000 Bytes. So, instead of one second of stereo video, we could alternatively store
1.3× 107/4000 ≈ 3000 pages of text — enough for a small encyclopaedia!

2. Smoothing by convolution with a Gaussian

Consider smoothing an image, first with a Gaussian of standard deviation σ1, then
with a Gaussian of standard deviation σ2:

s(x) = gσ2(x) ∗ (gσ1(x) ∗ I(x))

Since convolution is associative, we can write this as the convolution of the image
with the kernel gσ2(x) ∗ gσ1(x):

s(x) = (gσ2(x) ∗ gσ1(x)) ∗ I(x)

The easiest way to evaluate the convolution of two Gaussians is to find their Fourier
transforms and then multiply the transforms in the frequency domain. If gσ(x) ↔
Gσ(ω), then:
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Hence
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Spatial domain convolution

Alternatively, we can convolve in the spatial domain. The trick, once again, is to
complete the square:

gσ2(x) ∗ gσ1(x) =
1

2πσ1σ2

∫ ∞
−∞

exp

(
− u2

2σ2
2

)
exp

(
−(x− u)2

2σ2
1

)
du

=
1

2πσ1σ2

∫ ∞
−∞

exp

(
−u2σ2

1 − x2σ2
2 − u2σ2

2 + 2uxσ2
2

2σ2
1σ

2
2

)
du

=
1

2πσ1σ2

∫ ∞
−∞

exp

−(σ2
1 + σ2

2)
(
u− xσ2

2

σ2
1+σ

2
2

)2
+

x2σ4
2

σ2
1+σ

2
2
− x2σ2

2

2σ2
1σ

2
2

 du

=
1

2πσ1σ2

∫ ∞
−∞

exp

−
(
u− xσ2

2

σ2
1+σ

2
2

)2
2σ2

1σ
2
2

σ2
1+σ

2
2

 exp

(
−x2σ2

1σ
2
2

2(σ2
1 + σ2

2)σ2
1σ

2
2

)
du

=
1

2πσ1σ2
exp

(
−x2

2(σ2
1 + σ2

2)

)∫ ∞
−∞

exp

−
(
u− xσ2

2

σ2
1+σ

2
2

)2
2
(

σ1σ2√
σ2
1+σ

2
2

)2

 du

=
1

√
2π
√
σ2
1 + σ2

2

exp

(
−x2

2(σ2
1 + σ2

2)

)
1

√
2π
(

σ1σ2√
σ2
1+σ

2
2

) ∫ ∞
−∞

exp

−
(
u− xσ2

2

σ2
1+σ

2
2

)2
2
(

σ1σ2√
σ2
1+σ

2
2

)2

 du

=
1

√
2π
√
σ2
1 + σ2

2

exp

(
−x2

2(σ2
1 + σ2

2)

)
(since the integral is a standard Gaussian)

This expression is a Gaussian with standard deviation
√
σ2
2 + σ2

1.

2



3. Generating the Gaussian filter kernel

In general, if we discard the sample (n+ 1) pixels from the center of the kernel, the
size of the kernel will be 2n+ 1 pixels. We can find n by solving:

exp

[
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2σ2

]
<
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1000

⇔ n > 3.7σ − 1

So n must be the nearest integer to 3.7σ − 0.5.

(a) Applying this formula for σ = 1 gives n = 3 and a kernel size of 2n+1 = 7 pixels.
The filter coefficients can be found by sampling the 1D Gaussian g1(x) at the points
x = {−3,−2,−1, 0, 1, 2, 3}. The sum of the coefficients is one, so regions of uniform
intensity are unaffected by smoothing.

(b) For σ = 5 we get n = 18 and a kernel size of 37 pixels.

(c) The choice of σ depends on the scale at which the image is to be analysed. Modest
smoothing (a Gaussian kernel with small σ) brings out edges at a fine scale. More
smoothing (larger σ) identifies edges at larger scales, suppressing the finer detail.
There is no right or wrong size for the kernel: it all depends on the scale we’re
interested in. Another factor is image noise: the smoothing suppresses noise. It may
be difficult to detect fine scale edges, since a kernel large enough to suppress the noise
may also suppress the fine detail. Finally, computation time may be an issue: large
σ means a large kernel and computationally expensive convolutions.

4. Discrete convolution

The image and filter kernels are discrete quantities and convolutions are performed
as truncated summations:

s(x) =
n∑

u=−n
gσ(u)I(x− u)

Applying this to the pixel with intensity 118, which is the 11th pixel in the row, we
obtain

s(x) =
3∑

u=−3
gσ(u)I(11− u)

= 0.004× 57 + 0.054× 77 + 0.242× 99 + 0.399× 118 . . .

+0.242× 130 + 0.054× 133 + 0.004× 134

= 115 (to the nearest integer)

5. Differentiation and 1D edge detection

An approximation to the first-order spatial derivative of I(x) mid-way between the
(n − 1) and (n + 1) sample is 0.5(I(n + 1) − I(n − 1)). This can be computed by
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convolving with the kernel 1/2 0 -1/2 (remember that the kernel is flipped before
the multiply and accumulate operation).

Applying this kernel to the smoothed row of pixels gives the approximation to the
first-order spatial derivative:

x x x x 2.5 3 5.5 11.5 17 18 14 8.5 3.5 0.5 -.05 x x x x

The intensity discontinuity is at the maximum of the first-order spatial derivative.
The maximum derivative (18) occurs at the tenth pixel - between the pixel with
smoothed intensity 79 and the pixel with intensity 981.

6. Decomposition of 2D convolution

The 2D convolution can be decomposed into two 1D convolutions as follows:
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Performing two 1D convolutions is much quicker than performing a single 2D convo-
lution. A discrete 1D convolution with a kernel of size n requires n multiply and add
operations. A discrete 2D convolution with a kernel of size n×n requires n2 multiply
and add operations. The speed-up offered by decomposing the 2D convolution is
n2/2n = n/2.

7. Correlation and Convolution

Convolution involves a reflection. They are identical if the kernel is symmetric.

8. Feature detection and scale space - see handout 2 and cribs for Tripos IB Paper 8 (F)
2010-2021.

9. Interest point and Keypoint descriptors - See handout 2 and cribs for Tripos IB Paper
8 (F) 2010-2021 on SIFT and normalised cross-correlation.

10. Matching keypoints - See handout 2 and cribs for Tripos IB Paper 8 (F) 2010-2021

Roberto Cipolla
April 2024

1If you want to be more precise, you can localise the discontinuity to sub-pixel accuracy by calculating
the second order derivatives and then interpolating to find the zero-crossing.
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