Engineering Tripos Part IB SECOND YEAR

Paper 8 Information Engineering Part A: Image Features and Matching

Solutions to Examples Paper

1. Images

Each frame requires 512 x 512 x 1 = 2.62 x 10° Bytes. A 25Hz stereo image stream
requires 2.62 x 105 x 25 x 2 = 1.3 x 107 Bytes/s. Assuming an average A4 page of
text contains 50 lines, with about 80 characters on each line, and that a character is
represented (using an ASCII code) as a single byte, a page of text requires 80 x 50 x 1
= 4000 Bytes. So, instead of one second of stereo video, we could alternatively store
1.3 x 107/4000 = 3000 pages of text — enough for a small encyclopaedial

2. Smoothing by convolution with a Gaussian

Consider smoothing an image, first with a Gaussian of standard deviation oy, then
with a Gaussian of standard deviation os:

§(1) = goa () * (gor(2) * [(2))

Since convolution is associative, we can write this as the convolution of the image
with the kernel g,2(z) * g,1():

§(2) = (9o2(7) * gor (2)) I ()

The easiest way to evaluate the convolution of two Gaussians is to find their Fourier

transforms and then multiply the transforms in the frequency domain. If g,(z) <
Gy (w), then:
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Hence
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The expression on the right is the Fourier transforms of a Gaussian with standard
deviation /a2 + 02. So the convolution of two Gaussians with variances 7 and o3
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is a Gaussian with variance o? + 2. It follows that consecutive smoothing with a
series of 1D Gaussians, each with a particular standard deviation o;, is equivalent to

a single convolution with a Gaussian of variance 3, o2.

Spatial domain convolution

Alternatively, we can convolve in the spatial domain. The trick, once again, is to

complete the square:
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This expression is a Gaussian with standard deviation /03 + o%.




3. Generating the Gaussian filter kernel

In general, if we discard the sample (n + 1) pixels from the center of the kernel, the
size of the kernel will be 2n + 1 pixels. We can find n by solving:
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So n must be the nearest integer to 3.70 — 0.5.

(a) Applying this formula for o = 1 gives n = 3 and a kernel size of 2n+1 = 7 pixels.
The filter coefficients can be found by sampling the 1D Gaussian g;(z) at the points
x={-3,-2,-1,0,1,2,3}. The sum of the coefficients is one, so regions of uniform
intensity are unaffected by smoothing.

(b) For 0 = 5 we get n = 18 and a kernel size of 37 pixels.

(¢) The choice of o depends on the scale at which the image is to be analysed. Modest
smoothing (a Gaussian kernel with small o) brings out edges at a fine scale. More
smoothing (larger o) identifies edges at larger scales, suppressing the finer detail.
There is no right or wrong size for the kernel: it all depends on the scale we're
interested in. Another factor is image noise: the smoothing suppresses noise. It may
be difficult to detect fine scale edges, since a kernel large enough to suppress the noise
may also suppress the fine detail. Finally, computation time may be an issue: large
o means a large kernel and computationally expensive convolutions.

4. Discrete convolution

The image and filter kernels are discrete quantities and convolutions are performed
as truncated summations:

@)= Y golw)I @~

Applying this to the pixel with intensity 118, which is the 11th pixel in the row, we
obtain

s@) = 3 gl —u)

u=-—3

= 0.004 x 57+ 0.054 x 77+ 0.242 x 99 + 0.399 x 118...
+0.242 x 130 4 0.054 x 133 4+ 0.004 x 134
= 115 (to the nearest integer)

5. Differentiation and 1D edge detection

An approximation to the first-order spatial derivative of I(z) mid-way between the
(n —1) and (n + 1) sample is 0.5(/(n + 1) — I(n — 1)). This can be computed by
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convolving with the kernel[ 1/2 7 0 | -1/2 | (remember that the kernel is flipped before
the multiply and accumulate operation).

Applying this kernel to the smoothed row of pixels gives the approximation to the
first-order spatial derivative:

[x[x[x[x[25[3[55[115 17 [18[14[85[35]05[-05 [ x[x][x][x]

The intensity discontinuity is at the maximum of the first-order spatial derivative.
The maximum derivative (18) occurs at the tenth pixel - between the pixel with
smoothed intensity 79 and the pixel with intensity 981

6. Decomposition of 2D convolution
The 2D convolution can be decomposed into two 1D convolutions as follows:
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Performing two 1D convolutions is much quicker than performing a single 2D convo-
lution. A discrete 1D convolution with a kernel of size n requires n multiply and add
operations. A discrete 2D convolution with a kernel of size n x n requires n? multiply
and add operations. The speed-up offered by decomposing the 2D convolution is
n?/2n = n/2.

7. Correlation and Convolution

Convolution involves a reflection. They are identical if the kernel is symmetric.

8. Feature detection and scale space - see handout 2 and cribs for Tripos IB Paper 8 (F)
2010-2021.

9. Interest point and Keypoint descriptors - See handout 2 and cribs for Tripos IB Paper
8 (F) 2010-2021 on SIFT and normalised cross-correlation.

10. Matching keypoints - See handout 2 and cribs for Tripos IB Paper 8 (F) 2010-2021

Roberto Cipolla
April 2024

'Tf you want to be more precise, you can localise the discontinuity to sub-pixel accuracy by calculating
the second order derivatives and then interpolating to find the zero-crossing.
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