
Engineering Tripos Part IB SECOND YEAR

Paper 8 Information Engineering Part B: Image Features and Matching

Solutions to Examples Paper

1. Images

Each frame requires 512 × 512 × 1 = 2.62 × 105 Bytes. A 25Hz stereo image stream
requires 2.62 × 105 × 25 × 2 = 1.3 × 107 Bytes/s. Assuming an average A4 page of
text contains 50 lines, with about 80 characters on each line, and that a character is
represented (using an ASCII code) as a single byte, a page of text requires 80×50×1
= 4000 Bytes. So, instead of one second of stereo video, we could alternatively store
1.3 × 107/4000 ≈ 3000 pages of text — enough for a small encyclopaedia!

2. Smoothing by convolution with a Gaussian

Consider smoothing an image, first with a Gaussian of standard deviation σ1, then
with a Gaussian of standard deviation σ2:

s(x) = gσ2(x) ∗ (gσ1(x) ∗ I(x))

Since convolution is associative, we can write this as the convolution of the image
with the kernel gσ2(x) ∗ gσ1(x):

s(x) = (gσ2(x) ∗ gσ1(x)) ∗ I(x)

The easiest way to evaluate the convolution of two Gaussians is to find their Fourier
transforms and then multiply the transforms in the frequency domain. If gσ(x) ↔
Gσ(ω), then:

Gσ(ω) =
1

σ
√

2π

∫

∞

−∞

exp

(

− x2

2σ2

)

e−jωxdx

=
1

σ
√

2π

∫

∞

−∞

exp

[

−
(

x2

2σ2
+ jωx

)]

dx

=
1

σ
√

2π

∫

∞

−∞

exp
[

− 1

2σ2

(

x2 + 2jωσ2x
)

]

dx

=
1

σ
√

2π

∫

∞

−∞

exp
[

− 1

2σ2

(

(x + jωσ2)2 − j2ω2σ4
)

]

dx

= exp

(

−ω2σ2

2

)

× 1

σ
√

2π

∫

∞

−∞

exp

(

−(x + jωσ2)2

2σ2

)

dx

= exp

(

−ω2σ2

2

)

(since the integral is a standard Gaussian)

1



Hence

gσ2(x) ∗ gσ1(x) ↔ Gσ2(ω) × Gσ1(ω) = exp

(

−ω2σ2
2

2

)

× exp

(

−ω2σ2
1

2

)

⇔ gσ2(x) ∗ gσ1(x) ↔ exp

(

−ω2(σ2
2 + σ2

1)

2

)

The expression on the right is the Fourier transforms of a Gaussian with standard

deviation
√

σ2
2 + σ2

1 . So the convolution of two Gaussians with variances σ2
1 and σ2

2

is a Gaussian with variance σ2
1 + σ2

2 . It follows that consecutive smoothing with a
series of 1D Gaussians, each with a particular standard deviation σi, is equivalent to
a single convolution with a Gaussian of variance

∑

i σ
2
i .

Spatial domain convolution

Alternatively, we can convolve in the spatial domain. The trick, once again, is to
complete the square:

gσ2(x) ∗ gσ1(x) =
1

2πσ1σ2

∫

∞

−∞

exp

(

− u2

2σ2
2

)

exp

(

−(x − u)2

2σ2
1

)

du

=
1

2πσ1σ2

∫

∞

−∞

exp

(

−u2σ2
1 − x2σ2

2 − u2σ2
2 + 2uxσ2

2

2σ2
1σ

2
2

)

du

=
1

2πσ1σ2

∫

∞

−∞

exp







−(σ2
1 + σ2

2)
(

u − xσ2

2

σ2

1
+σ2

2

)2

+
x2σ4

2

σ2

1
+σ2

2

− x2σ2
2

2σ2
1σ

2
2





 du

=
1

2πσ1σ2

∫

∞

−∞

exp







−
(

u − xσ2

2

σ2

1
+σ2

2

)2

2σ2

1
σ2

2

σ2

1
+σ2

2





 exp

(

−x2σ2
1σ

2
2

2(σ2
1 + σ2

2)σ
2
1σ

2
2

)

du

=
1

2πσ1σ2

exp

(

−x2

2(σ2
1 + σ2

2)

)

∫

∞

−∞

exp











−
(

u − xσ2

2

σ2

1
+σ2

2

)2

2
(

σ1σ2√
σ2

1
+σ2

2

)2











du

=
1

√
2π
√

σ2
1 + σ2

2

exp

(

−x2

2(σ2
1 + σ2

2)

)

1
√

2π
(

σ1σ2√
σ2

1
+σ2

2

)

∫

∞

−∞

exp











−
(

u − xσ2

2

σ2

1
+σ2

2

)2

2
(

σ1σ2√
σ2

1
+σ2

2

)2











du

=
1

√
2π
√

σ2
1 + σ2

2

exp

(

−x2

2(σ2
1 + σ2

2)

)

(since the integral is a standard Gaussian)

This expression is a Gaussian with standard deviation
√

σ2
2 + σ2

1 .

2



3. Generating the Gaussian filter kernel

In general, if we discard the sample (n + 1) pixels from the center of the kernel, the
size of the kernel will be 2n + 1 pixels. We can find n by solving:

exp

[

−(n + 1)2

2σ2

]

<
1

1000

⇔ n > 3.7σ − 1

So n must be the nearest integer to 3.7σ − 0.5.

(a) Applying this formula for σ = 1 gives n = 3 and a kernel size of 2n+1 = 7 pixels.
The filter coefficients can be found by sampling the 1D Gaussian g1(x) at the points
x = {−3,−2,−1, 0, 1, 2, 3}. The sum of the coefficients is one, so regions of uniform
intensity are unaffected by smoothing.

(b) For σ = 5 we get n = 18 and a kernel size of 37 pixels.

(c) The choice of σ depends on the scale at which the image is to be analysed. Modest
smoothing (a Gaussian kernel with small σ) brings out edges at a fine scale. More
smoothing (larger σ) identifies edges at larger scales, suppressing the finer detail.
There is no right or wrong size for the kernel: it all depends on the scale we’re
interested in. Another factor is image noise: the smoothing suppresses noise. It may
be difficult to detect fine scale edges, since a kernel large enough to suppress the noise
may also suppress the fine detail. Finally, computation time may be an issue: large
σ means a large kernel and computationally expensive convolutions.

4. Discrete convolution

The image and filter kernels are discrete quantities and convolutions are performed
as truncated summations:

s(x) =
n
∑

u=−n

gσ(u)I(x − u)

Applying this to the pixel with intensity 118, which is the 11th pixel in the row, we
obtain

s(x) =
3
∑

u=−3

gσ(u)I(11 − u)

= 0.004 × 57 + 0.054 × 77 + 0.242 × 99 + 0.399 × 118 . . .

+0.242 × 130 + 0.054 × 133 + 0.004 × 134

= 115 (to the nearest integer)

5. Differentiation and 1D edge detection

An approximation to the first-order spatial derivative of I(x) mid-way between the
nth and (n + 1)th sample is I(n + 1) − I(n). This can be computed by convolving

3



with the kernel 1 -1 (remember that the kernel is flipped before the multiply and
accumulate operation).

Applying this kernel to the smoothed row of pixels gives

2 3 3 8 15 19 17 11 6 1 0 - 1

The intensity discontinuity is at the maximum of the first-order spatial derivative.
The maximum derivative (19) occurs between the pixel with intensity 79 and the
pixel with intensity 981.

6. Decomposition of 2D convolution

The 2D convolution can be decomposed into two 1D convolutions as follows:

Gσ(x, y) ∗ I(x, y) =
1

2πσ2

∫ ∫

I(x − u, y − v) exp−
(

u2 + v2

2σ2

)

du dv

=
1√
2πσ

∫

exp−
(

u2

2σ2

)[

1√
2πσ

∫

I(x − u, y − v) exp−
(

v2

2σ2

)

dv

]

du

=
1√
2πσ

∫

exp−
(

u2

2σ2

)

[gσ(y) ∗ I(x − u, y)]du

= gσ(x) ∗ [gσ(y) ∗ I(x, y)]

Performing two 1D convolutions is much quicker than performing a single 2D convo-
lution. A discrete 1D convolution with a kernel of size n requires n multiply and add
operations. A discrete 2D convolution with a kernel of size n×n requires n2 multiply
and add operations. The speed-up offered by decomposing the 2D convolution is
n2/2n = n/2.

7. Corner detection

(a) Since the eigenvectors u1 . . .un of the real, symmetric matrix A form an orthonor-
mal basis, we can decompose any vector n as follows:

n =
n
∑

i=1

ciui

If the corresponding eigenvalues are λ1 . . . λn, then

An =
n
∑

i=1

ciλiui

1If you want to be more precise, you can localise the discontinuity to sub-pixel accuracy by calculating

the second order derivatives and then interpolating to find the zero-crossing. You’ll find that the intensity

discontinuity is two thirds of the way between the pixel with intensity 79 and the pixel with intensity 98.

4



and

nT An =
n
∑

i=1

c2

i λi

Also

nTn =
n
∑

i=1

c2

i

Putting all this together, we get

C =
nT An

nTn
=

∑n
i=1 c2

i λi
∑n

i=1 c2
i

If λ1 is the minimum eigenvalue of A, then

∑n
i=1 c2

i λi
∑n

i=1 c2
i

≥
∑n

i=1 c2
i λ1

∑n
i=1 c2

i

Likewise, if λn is the maximum eigenvalue of A, then

∑n
i=1 c2

i λi
∑n

i=1 c2
i

≤
∑n

i=1 c2
i λn

∑n
i=1 c2

i

Hence we conclude that
λ1 ≤ C ≤ λn

(b) A corner detector needs to find points in the image where local values of ∇I(x, y).n
are not zero (or small) in any direction n. First we calculate the change in intensity
in direction n:

In ≡ ∇I(x, y).n̂ ⇒ I2

n =
nT ∇I ∇IT n

nTn
=

nT





I2
x IxIy

IxIy I2
y



n

nT n

where Ix ≡ ∂I/∂x, etc. The directional derivatives Ix and Iy are estimated by
convolving with kernels like the one in question 5. Next we smooth I2

n by convolution
with a Gaussian kernel:

Cn(x, y) ≡ Gσ(x, y) ∗ I2

n =

nT





〈I2
x〉 〈IxIy〉

〈IxIy〉
〈

I2
y

〉



n

nT n

where 〈 〉 is the smoothed value. The smoothed values are obtained by discrete
convolution with a truncated Gaussian kernel, as illustrated in question 4.

The smoothed change in intensity in direction n is therefore given by

Cn(x, y) =
nT An

nTn

5



where A is the 2 × 2 matrix





〈I2
x〉 〈IxIy〉

〈IxIy〉
〈

I2
y

〉





The result proved in (a) tells us that

λ1 ≤ Cn(x, y) ≤ λ2

where λ1 and λ2 are the eigenvalues of A. So, if we try every possible orientation n,
the maximum change in intensity we will find is λ2, and the minimum value is λ1.

We can therefore classify image structure at each pixel by looking at the eigenvalues
of A:

No structure: (smooth variation) λ1 ≈ λ2 ≈ 0

1D structure: (edge) λ1 ≈ 0 (direction of edge), λ2 large (normal to edge)

2D structure: (corner) λ1 and λ2 both large

It is necessary to calculate A at every pixel and mark corners where the quantity
λ1λ2 − κ(λ1 + λ2)

2 exceeds some threshold (κ ≈ 0.04 makes the detector a little
edge-phobic, overcoming the “staircase effect” which makes corner detectors respond
to discretised edges). Note that det A = λ1λ2 and trace A = λ1 + λ2.

8. Texture description - See cribs for Tripos IB 2006.

9. Interest point descriptors - See handout 3.

Roberto Cipolla
May 2006

6


