Stereoscopic tracking of
bodies in motion

Roberto Cipolla and Masanobu Yamamoto®

A fast, highly efficient and robust visual tracking process
for multiple moving objects using stereo image se-
quences taken from a stationary pair of cameras is
presented. The algorithm assumes that object motion is
restricted to a horizontal plane (e.g. motion of cars on
roads or humans walking). Dense stereo image se-
quences and the visualized locus method'* (in which
each image sequence is first sampled to produce a 2D
spatio-temporal cross-section image) are used to ensure
temporal correspondence without search. Edge segments
in the left and right spatio-temporal images are then
matched. Additional stereo matching constraints are
derived by using motion and temporal continuity to
reduce the number of ambiguous matches. Speed is
achieved by only processing a single spatio-temperal
cross-section image from each image sequence. The
~ algorithm succeeds in tracking objects in space and time
moving against arbitrarily complex backgrounds and in
the presence of occlusion, disappearance and reappear-
ance of object features. The output of the algorithm is the
- 3D position of moving objects as a function of time.
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In real dynamic scene analysis the considerable changes
in image structure that can occur as a result of object
motion (such as the occlusion, disappearance and
reappearance of object features) are major obstacles to
the successful application of ex1st1ng ‘shape from
stereo’ and ‘structure from motion™* techniques to the
problem of 3D object tracking-from visual data.
Monocular image sequence analysis for example, has
the following inherent difficulties; the temporal corres-
pondence problem in obtaining optical flow locally* or
matching tokens in discrete views; a speed-scale
ambiguity which makes it impossible to determine 3D
structure and motion in absolute terms for a monocular
observer viewing unfamiliar object; and a restriction to
rigid body motions which usually require the segmenta-

tion of images into parts corresponding to objects with
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the same motion. These methods often perform poorly
with respect to accuracy, sens1t1v1?r to noise, and
robustness in the face of errors®®. An add1t10nal
practical problem is that most apphcatlons of visual
tracking require the real-time processing of large
volumes of data. For most existing algorithms this
requires special purpose hardware.

Stereo vision can be used independently of motion
analysis in a dynamic environment to determine the
trajectory of an object in space by taking successive
stereo snap shots, determining object locations at each
instant and combining these locations into a

“trajectory”® The most difficult part of the processing

concerns the correspondence problem: what to match
and how to match it>. ‘

The correspondence problem is particularly difficult
in the presence of occluding boundaries and semi-
transparent surfaces such as fences or windows. With
dynamic scenes the disappearance and reappearance of
image features may make matching and the interpreta-
tion of 3D structure instantaneously ambiguous or
impossible. An additional drawback in repeating the
stereco vision processing at each time instant is that
large amounts of data processing (both time and
volume) are required. A considerable saving in data
processing can be achieved by exploiting knowledge of
motion. Ideally, only the edges of objects in motion
need be matched. Of greater interest, however, is
whether motion can interact with stereopsis at the level
of matchln% to help disambiguate false matches. Poggio
and Poggio® have noted that image motion may be able
to aid stereo in the matching process.

MOTION AND STEREO FUSION

Both ’stereo vision’ and ’structure from motion’ have
typically been treated as separate parallel processes.
However, each has inherent difficulties, and so it seems
logical to attempt to combine them into a single system
Jenkin and Tsotsos’ and Waxman and Duncan'® have
attempted to unify stereo and motion analysis in a
manner which helps to overcome the others shortcom-
ings.

Jenkin and Tsotsos® describe a stereo vision system
which will track special extracted object feature points
in 3D space over time. It uses the 3D interpretation of
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the feature point. velocities to help in the stereo
matching process. Even with a sparse feature set
(extracted with the Moravec interest operator’) the
algorithm requires an extensive search in both time and
space, and this makes it unsuitable for realtime
processing.

Waxman and Duncan'® have proposed an integrated
stereo-motion analysis beginning with the determina-
tion of image flow and using correlation between
relative image flow (binocular difference flow) and
stereo disparity locally in establishing correspondence.

However, this method suffers from the problems of

estimating optical flow, and it requires finely textured
smooth surfaces which can be approximated locally as
planar. Its application to long real image sequences has
not been tested. ~ o

As mentioned above, temporal and stereo corres-
pondence are severe problems and limit the usefulness
of existing algorithms to applications of visual tracking.
An additional practical problem is the need for realtime
processing. If, however, we assume a restricted class of
motions and process a dense sequence of images so that
temporal continuity is guaranteed (as in Bolles’

epipolar-plane image analysis'!) it is possible to greatly

simplify (and in a special case avoid) the temporal
correspondence problem. If, in addition, we use
motion and temporal continuity as additional matching
constraints, the stereco correspondence problem can
also be considerably simplified.

In this paper we present a fast, highly efficient and
robust visual tracking process for multiple moving
objects, from stereo image sequences taken from a
stationary pair of cameras. Objects moving against
arbitrarily complex backgrounds and in the presence of
occlusion, disappearance and reappearance of object
features are tracked in space and time.

The algorithm presented assumes that object motion
is restricted so that its height above a horizontal plane is
constant (e.g. motion of cars on roads, humans
walking, etc.). We show that dense stereo image
sequences and the visualized locus method"? (in which
each image sequence is first sampled to produce 2D
spatio-temporal cross-section images) can be used to
ensure temporal correspondence automatically without
search. Additional stereo matching constraints are
derived by using motion and temporal continuity to
reduce the number of ambiguous matches. Computa-
tional speed is achieved by only processing a single
spatio-temporal cross—section image from each image
sequence.

TEMPORAL CORRESPONDENCE:
THE VISUALIZED LOCUS

Theory

Consider the perspective projection of an object point
onto a planar screen normal to the z-axis. We model
the camera as a pin hole with centre at C(0, H, f,), and
with focal length f. A point P(X, Y, Z) on an object will
be projected onto a point p(x, y) on the image plane
such that (see Figure 1a):
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Figure 1. Stereo visualized locus method. (a) camera
geometry, (b) 3D spatio-temporal images with cross-
‘sections showing visualized loci

If the object moves the projected point’s image position
is a function of time, p(x, y, #). The image co-ordinates,
x and y, as functions of time are given by:
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If a sequence of images is taken in rapid succession and
piled up sequentially with time, we can construct a 3-
dimensional spatio-temporal image with time as the
third dimension (see Figure 1b). If temporal continuity
from image to image is ensured, the image object point

P, p(x, y, t), in general draws a 3-dimensional locus in

this 3-D image. This locus is referred to as the
visualized locus, since it is the locus of the projection as
a function of time and if the object point P is occluded
or goes out of view of the camera the image point p

- disappears’.

Figure 2 Eight samples (1 second intervals) from left
camera image sequence (video rate)
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In the case in which the motion of P is constrained to
move on a plane Y(¢) = H (i.e. at the same height as the
optical centre), the visualized locus lies on a plane in
the 3D image. For this special case, the projection of P
is constrained to the same single scan line (raster) of the
image at all times. The 2D image synthesized by storing
this scan line from each image of the sequence and
arranging the set of scan lines sequentially in order of
time is a spatio-temporal image. It is an x—¢ cross-
section of the 3D spatio-temporal image. The visual-
ized loci of points at the same height as the camera
centre are constrained to this cross-section image and
are therefore 2-D loci.

Other researchers have constructed similar images
(e.g- sce References 11-13). As Bolles et al.'! noted,
even though the spatial images which were used to
construct it contain complex shapes and intensity
changes (see Figures 2 and 3), the spatio-temporal

Figure 3. Left and right 3D spatio-temporal images
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Figure 4. Left and right 2D cross-section spatio-
temporal images showing visualized loci of object
features at the same height as the camera cenires

image, as a consequence of smooth motion, is com-
posed of simpler image structures, regions and edge
segments (sce Figure 4).

Higher level properties can also be inferred from the
synthesized image. The relationship between loci of
points on different objects can be used to determine
their relative motions. The disappearance and
reappearance of a locus indicates occlusion and by
looking at neighbouring loci, the occluding object can
be determined.

Unlike Bolles’ epipolar-image analysis, however the
spatio-temporal cross-section images used in this
method are generated from a pair of stationary cameras
with multiple moving objects and non-linear motion.
Accurate knowledge of the motion is not required. The
original contribution of this paper is the stereo match-
ing of edge segments between spatio-temporal cross-
section images generated from the left and right camera
image sequences.

EXTRACTION OF VISUALIZED LOCI

The loci of points on the boundaries of regions with
high contrast in an image appear as edges in the
synthesized spatio-temporal corss-section image. The
extraction of these loci thus involve procedures for
edge detection and enhancement; the fitting of line and
curve segments to these edges; and the merging of
segments belonging to the same locus based on tem-
poral continuity, These algorithms are described in
Reference 2. The latter step is required because due to
occlusion, or camouflage (object has same intensity as
background), and noise the extracted loci may be
fragmented. Where possible, the fragments are linked
by linear interpolation across ‘missing’ segments. This
procedure is based on proximity of the fragment end
points and attempting to ensure smooth continuous
loci. This latter step is not always possible. It is not
essential, but as mentioned below, the disambiguating
power of the proposed stereo matching algorithm
increases with the length of the extracted loci.

The visualized loci of points on stationary objects
appear as straight edges with no time gradient in the
synthesized cross-section image. It is therefore very
easy to distinguish between the loci of stationary
objects and moving objects, regardless of the complex-
ity of the background.
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STEREO CORRESPONDENCE
Stereo visualized locus method

If we observe a scene with a stereo pair of cameras and
synthesize a spatio-temperal 3D image for both the left
and right image sequences there exist two visualized
loci corresponding to the same point P: pfx; (1), yi(9)]
~and p,[x,(t), y(1)]. If these left and right loci can be
correctly matched (stereo correspondence found) the
depth as a function of time Z(¢), and hence the position
(X(%) and Y(?)) can be determined for a calibrated
camera set by triangulation.

For the special case in which the motion of the body
is constrained to a horizontal plane and the cameras are
at the same height, the two visualized loci of an object
point at the same height as the optical centres are
constrained to a single plane in the 3D blocks of data
(see Figure 1). The visualized loci (x,(¢) and x,(t) can
then be automatically extracted from the 2D spatio-
temporal cross-section image for each image sequence.

The dynamic stereo correspondence problem is then
to match the visualized loci in the left spatio-temporal
cross-section image with those in the right image. The
stereo matching algorithm is an extension of edge-
based techniques to edges with time as an additional
dimension.

Paralle] camera geometry is not necessary. Any
camera geometry can be used that ensures scan lines
are horizontal (i.e. tilt and convergence are allowed).
This is because the epipolar plane for an object point at
the height of the optical centres will always be
horizontal.

Search for correspondence

For cameras with parallel optical axes, the relative
position of corresponding points in the left and right
image are geometrically constrained by the epipolar
constraint and by:

Xp1 = Xpy ' ‘ @

which is the ordering constraint relative to a point at
infinity. This constraint expresses the portion of the
epipolar line in the other image on which a potential
match may be found. An additional constraint is that of
uniqueness: each matching primitive should match at
most one primitive from the other image.

In the dynamic stereo problem the epipolar con-
straint is used to generate the left and right spatio-
temporal cross-section images — corresponding rasters
are epipolar lines for a given time (see Figure 3). The
matching primitives are portions of the visualized loci,
and we extend the above conventional constraints to
encompass temporal continuity, i.e. instead of matching
at a single time (matching edge pixels along corres-
ponding rasters of the cross-section images), we apply
the matching constraint to the visualized locus for all
time. The search for corresponding points in left and
right images is also considerably reduced by only
considering the loci of moving objects.

- The search initially finds portions of loci in the left
and right images which co—exist. (overlap) in time
(epipolar constraint); which satisfy the constraint of
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equation (4) for all common times, and which have
similar x-direction profiles. Multiple correspondences
are reduced by ensuring that each locus in the left
image has at least one corresponding candidate for
matching in the right image (uniqueness). If ambiguous
matches still exist, pairs are chosen which have
maximum time overlap and whose disparity changes
smoothly with time.

These matching constraints were sufficient for our
experiments. Unambiguous correspondence is not
guaranteed. ‘

Although it is possible for the matching strategy to be
used on static edges there is no advantage over existing
stereo algorithms in using the proposed matching
algorithm for static edges. In fact, the algorithm’s
disambiguating power will be poor with static edges,
since in this case it is strictly matching along epipolar
lines only, and it will be inferior to alﬁorithms which
use figural continuity or local support'?,

RESULTS

Eight frame samples of an office scene containing two
people moving along the floor are shown in Figure 2.
The scene was observed for 8.5 s (512 images (fields) at
video rate) with a stereo pair of calibrated TV
cameras™ with a long baseline of 0.340 m and optical
centres at a height of 1.2 m above the horizontal
ground plane. One person is occluded for part of the
observation period. 512x512 spatio-temporal cross-
section image are produced from one scan line (average
of a swath of seven lines for robustness to interlacing
and vertical motion) from each image for both left and
right camera image sequences (see Figure 4). This .
operation can be performed in realtime. For both left
and right cross-section images: edge detection (CPU
time 2-3 s); segment labelling and curve fitting (CPU
time 10 s); and the extraction and description of the
visualized loci (CPU time 3 s) are performed on a Sun-
3/260 workstation (see Figure 5). The extraction in-
cludes merging fragments of loci across ‘missing’ edges
to give long continuous loci (shown as dashed lines).
Stereo correspondence and determination of depth was
then carried out. The algorithm’s output is a plan view
of the 3D locus (X-position and depth, Z, Y-position
assumed fixed) as a function of time (shown in Figure
6). Solid lines correspond to visible features: dashed
lines correspond to features which disappear and

[\//

Figure 5. Extracted loci on left and right spatio-temporal

cross-section images. Full lines correspond to fragments

of the visualized loci, and are linked by dotted lines

where the visualized locus disappears due to occlusion,
camouflage or noise
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Figure 6. Output of tracking algorithm showing 3D loci
of moving objects (plan view) in scene of Figure 2. Two
loci are shown for each body. One person is moving
from left to right (labelled 1) while the other (labelled 2)
is moving from right to left and away from the camera.
Solid lines correspond to visible features. Dashed lines
correspond to features which are occluded or have the
same intensity as the background

reappear as a consequence of occlusion or camouflage
Or noise. ,

Additional examples of stereo image sequences of
office scenes and the tracking algorithm output are
presented in Figure 7 (left spatio-temporal image) and
Figure 8 (output) for a scene in which one person
overtakes the other, and Figure 9 (first and last frame
from left camera) and Figure 10 (output) for a person
moving towards the camera in front of a parallel bar
fence.

‘Figure 7. Left 3D spatio-temporal image for scene in
which one person overtakes the other
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Figure 8. 3D loci of moving bodies (plan view): one
person (labelled 1) overtakes the other (2). 4: progress
direction

Figure 9. First (left) and, last (right) image of left image
sequence of a person approaching the cameras behind a
fence
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Figure 10. 3D loci of a person approaching camera
behind a fence. The two loci shown correspond to the
extrema of the left and right arms. They are modulated
by an approximately periodic function due to arm
motion. 4: progress direction
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In the last example, the object features are contin-
ually disappearing and reappearing, and the loci are
modulated by an approximately periodic function as a
consequence of arm motion modulating the body width
as seen by the cameras. At any time instant most
existing static stereo matching algorithms would fail to
find the correct correspondence or produce ambiguous
results, because ordering constraints are not obeyed
and because of the lack of local support. The algorithm
presented successfully tracks the moving object behind
the fence by using temporal continuity to predict where
hidden points are based on the object’s motion history.

CONCLUSIONS

A method using stereo image sequences to automatic-
ally detect and track the 3D motion of objects has been
presented. It overcomes the problems of large data
storage and processing by processing the single spatio—
temporal cross—section image of the image sequence
which contains the visualized loci (the locus of image
points in time) of object points at the same height or
the optical centres of the cameras. This is possible if
. the motion is restricted to a horizontal plane, and
makes unnecessary the need for searching for temporal
correspondence. Stereo correspondence between left
and right camera images is also greatly simplified by
using motion as a cue to suppress the background, and
by modifying the stereo matching constraints to encom-
pass temporal continuity.

The algorithm succeeds in tracking objects in space
and time moving against arbitrarily complex back-
grounds and in the presence of occlusion, disappear-
ance and reappearance of object features. The corres-
pondence techniques used establish matches using only
partial information, and make predictions where invisi-
ble (hidden) points are given their past motion histories
and the motion of their visible neighbours. Stereo
matching in the presence of partly transparent objects
in the foreground (e.g. fences with parallel bars) has
been demonstrated. ;

The algorithm is robust to calibration errors, image
noise and deviations from perfect rigidity f(e.g.
presence of external boundaries of curved surfaces or
the motion of human body). It also works well with
large stereo baselines and for long image sequences. It
was tested on a variety of scenes to track the 3D
motions of humans moving along the ground in various
directions relative to the camera.

The motion tracking scheme presented will only
correctly track points whose true motion is in-the
horizontal plane containing the camera optical centres.
The resulting algorithms are simple and fast, and can
handle object occlusion, disappearance and reappear-
ance. The output is sufficient for determining the
number of moving objects in a scene and their general
motions.

The methods presented can be extended to general
3D motions. This however, involves a more difficult
temporal correspondence problem to extract the 3D
visualized loci from the spatio-temporal block of data.
The stereo correspondence problem will, however, be
simplified.
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