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Abstract

We describe the constraints placed on the differential geometry of a surface by observing a surface curve from
a sequence of positions. In particular two new qualitative results are presented. First, it is shown that sign of nor-
mal curvature along the surface curve is determined by tracking image curve inflections. This result requires only
approximate knowledge of the direction of projected viewer translation. It is a generalization to surface curves
of Weinshall’s [28] result for surface texture. Second, it is shown that surface orientation at a transverse crossing
of surface curves is determined without knowledge of viewer translation. Results are demonstrated on real image

sequences.

1 Introduction

Imagine we have several views of a curve lying on a
surface. If the motion between the views and the camera
calbiration are known then in principle it is possible
to reconstruct this space curve from its projections. It
is also possible in principle to determine the curve’s
tangent and curvature. In practice this requires precise
calibration of epipolar geometry and subpixel accuracy
for edge localization and/or integrating information over
many views in order to reduce discretization errors.
However, even if perfect reconstruction could be
achieved, the end result would only be a space curve.
This delimits the surface only in the way that a rigid
net restricts a rubber plate [15]—the rubber can bulge
through the net, with varying surface orientation. If in-
stead of a net of space curves we have a net of surface
strips [20], where both position and normal are known,
the bulge of the plate is severely restricted. Conversely,
such information enables grouping of curves into coher-
ent surfaces.

Here we analyze the images of surface curves (con-
tours generated from internal surface markings or il-
lumination effects) and investigate the surface geometric
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information available from the temporal evolution of
their image under viewer motion. In particular we
determine constraints on surface geometry using only
qualitative knowledge of viewer motion, that is, using
only information that can be recovered efficiently and
robustly, without requiring exact knowledge of viewer
motion or accurate image measurements. The descrip-
tion is, however, incomplete.

Certain curves and tracked points are rich sources of
surface geometry. At an apparent contour (the image of
the points where the viewing direction lies in the tan-
gent plane) the surface normal is known [1]. Further,
the curvature of the apparent contour in a single view
determines the sign of the Gaussian curvature of the sur-
face projecting to the contour [6, 19]. From the defor-
mation of the apparent contour under viewer motion a
surface patch (first and second fundamental forms) can
be recovered [3, 11, 14, 26]. A self-shadow (where the
illuminant direction lies in the tangent plane) can be
exploited in a similar manner if the illuminant position
is known [20]. Tracking specular points [30] gives a
surface strip along which the surface normal is known.

Surface curves have three advantages over isolated
surface markings:

1. Sampling: Isolated texture only ‘“‘samples” the
surface at isolated points; between the points, the
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surface could have any shape. Conversely, a sur-
face curve conveys information at a particular scale
through its path.

2. Geometric Structure: Curves, unlike points, have
well-defined tangents which constrain surface
orientation.

3. Technological: There are now available reliable, ac-
curate edge detectors which localize surface mark-
ings to subpixel accuracy [9]. The technology for
isolated point detection is not at such an advanced
stage. Furtheremore, snakes [18] are ideally suited
to tracking curves through a sequence of images, and
thus measuring curve deformation.

Here we are not concerned with distinguishing sur-
face curves from other curves such as extremal bound-
aries (though this may be carried out by their differing
deformation under viewer motion [11, 26], rather than
on photometric grounds) or from surface creases or
space curves (such as a piece of wire), where surface
orientation is not defined. We analyze the spatiotem-
poral family of image contours generated under viewer
motion to derive constraints on surface shape. We do
not consider the complementary problem of determin-
ing constraints on the viewer motion from the visual
motion of the surface curve [10, 13].

This article is divided into three parts. First, in sec-
tion 2, the geometry of space curves is reviewed and
related to the perspective image. In particular, a sim-
ple expression for the curvature of the image contour
is derived. Second, in section 3, the information avail-
able from the deformation of the image curve under
viewer motion is investigated, making explicit the con-
straints that this imposes on the geometry of the space
curve. Third, in section 4, the aspects of the differen-
tial geometry of the surface that can be gleaned by
knowing that the curve lies on the surface are discussed.

It is shown that visibility of points on the curve con-
strains, but does not determine surface normal. This
constraint is tightened by including the restriction im-
posed by the tangent of the surface curve. Furthermore,
certain ‘events’ (inflections, transverse curve crossings)
are richer still in geometric information. In particular it
is shown that (1) tracking image curve inflections deter-
mines the sign of normal curvature in the direction of the
surface curve’s tangent vector; and (2) surface orienta-
tion at transverse curve crossing requires only knowledge
of viewer orientation, not position. The first result is a
generalization to surface curves of Weinshall’s [28, 29]
result for surface texture. Examples are included for
real-image sequences.

2 The Perspective Projection of Space Curves
2.1 Review of Space Curve Geometry

Consider a point P on a regular differentiable curve
r(s) in R? (figure 1). The local geometry of the curve
is uniquely determined in the neighborhood of P by the
basis of unit vectors {T, N, B}, the curvature, «, and
torsion, 7, of the space curve [12]. For an arbitrary
parameterization of the curve, r(s), these quantities are
defined in terms of the derivatives (up to third order)
of the curve with respect to the parameter s. The first-
order derivative (‘“velocity™) is used to define the tan-
gent to the space curve, T, a unit vector given by

T =_Ts_ (1)

Il
The second-order derivative—in particular the compo-
nent perpendicular to the tangent (“‘centripetal acceler-
ation”’)—is used to define the curvature, « (the
magnitude) and the curve normal, N (the direction):
- (T A rsx) AT

|r |2

kN (2)
The plane spanned by T and N is called the osculating
plane. This is the plane that r(s) is closest to lying in
(and does lie in if the curve has no torsion). These two
vectors define a natural frame for describing the geom-
etry of the space curve. A third vector, the binormal
B, is chosen to form a right-handed set:

B=TAN (3)

This leaves only the torsion of the curve, defined in
terms of the deviation of the curve out of the osculating
plane:

- Fogs * B

K |rgl?

“4)

The relationship between these quantitites and their
derivatives for movements along the curve can be con-
veniently packaged by the Frenet-Serret equations [12]
which for an arbitrary parameterization are given by

T, = |ry|«N 5
N, = |r,|(=«T + 7B) (6)
B, = —|r,|7N (7

The influence of curvature and torsion on the shape of
a curve are clearly demonstrated in the Taylor series
expansion about a point u, on the curve.
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r(u) = r(up) + ur,(ug)
2 3
+ L) + L ) + . (8)
2 6

where u is an arc length parameter of the curve. An
approximation for the curve with the lowest order in
u along each basis vector is given by [20]

r(u) = r() + w + ..)T

2 3
+ [“_+---] kN + [“_+---j k7B
2 6 9)

The zero-oder term is simply the fiducial point itself;
the first-order term is a straight line along the tangent
direction; the second-order term is a parabolic arc in
the osculating plane; and the third-order term describes
the deviation from the osculating plane. Projection on
to planes perpendicular to T, N, B give the local forms
shown in figure 1. It is easy to see from (9) that the
orthographic projection on to the T — N plane
(osculating plane) is a parabolic arc; on the T — B
plane an inflection; and the projection on the N — B
plane is a cusped curve. If k or 7 are zero then higher
order terms are important and the local forms must be
modified. These local forms illustrate how the apparent
shape of a space curve changes with different view-
points. The exact relationship between the space curve

geo‘metry and its image under perspective projection
will now be derived.

2.2 Imaging Model

A monocular observer can determine the orientation
of any ray projected on to its imaging surface. The
observer cannot however, determine the distance along
the ray of the object feature that generated it. A general
model for the imaging device is therefore to consider
it as determining the direction of an incoming ray which
we can choose to represent as a unit vector. The imag-
ing device is then equivalent to a spherical pin-hole
camera of unit radius. The advantage of this approach
(over planar representation) is that formulas under
perspective are often as simple as (or identical to) those
under orthographic projection [3, 11, 22].

Consider perspective projection on to a sphere of
unit radius as shown in figure 2. The image of a world
point, P, with position vector, r(s), is a unit vector
Q(s, t) such that

r(s) = v(t) + N, 1)Q(s, 1) (10)

where s is a parameter along the image curve; 1 is
chosen to index the view (corresponding to time or
viewer position); A(s, 7) is the distance along the ray
to P; and v(¢) is the viewer position (center of spherical

8) Space curve and Frenet trihedron at P
B ris)

T

b) Projection onto B-T plane

-

) Projection onto the Osculating plane

d) Projection onto the B-N plane

N

2
V\\

Fig. 1. Space curve geometry and local forms of its projection. The local geometry of a space curve can be completely specified by the
Frenet trihedron of vectors {T, N, B}, the curvature, «, and torsion, 7, of the curve. Projection of the space curve onto planes perpendicular
to these vectors (the local canonical forms [12]) illustrates how the apparent shape of a space curve changes with different viewpoints.
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spherical perspective image

Q(ste)

image conlour at time { ,

N

surface curve r(s)

Fig. 2. Viewing and surface geometry. The image defines the direction of a ray, (unit vector Q) to a point, P, on a surface cruve, r(s). The

distance from the viewer (center of projection sphere v(r)) to P is A .

spherical perspective image at t

spherical perspective image at t+&

v (1481)

epipolar plane

Fig. 3. Epipolar geometry. A moving observer at position v(r) sees a one-parameter family of image curves, Q(s, #)—the spherical perspec-

tive projections of a space curve, r(s), indexed by time.

pin-hole camera) at time 7. A moving monocular
observer at position v(r) sees a family of views of the
curve indexed by time, Q(s, ) (see figure 3).!

2.3 Relating Image and Space Curve Geometry

Equation (10) gives the relationship between a point
on the curve, r(s), and its spherical perspective pro-
jection, Q(s, 1), for a view indexed by time ¢. It can
be used to relate the space curve geometry (T, N, B,
k, 7) to the image and viewing geometry. The relation-

ship between the orientation of the curve and its image
tangent and the curvature of the space curve and its pro-
jection are now described.

2.3.1 Image Curve Tangent and Normal. At the pro-
jection of P, the tangent to the spherical image curve,
t”, is related to the space curve tangent T and the
viewing geometry by

o - T-@Q-1Q

(11)
[1 - @Q-TI"*
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This relationship is derived in appendix A.

The direction of the ray, Q, and the image curve
tangent, t”, determine the orientation of the spherical
image curve normal, n”:

n” =QAt’ (12)

2.3.2 Curvature of Projection. The curvature of the
image curve, «” defined as the geodesic curvature of
the spherical curve, Q(s, 7)—

kP = Qs.r *n’ (13)

QI

is related to the space curve curvature, «, and the view-
ing geometry by

[Q T, NI a0
[l - QD"

where [Q, T, N] represents the triple scalar product.?
(See appendix A for a derivation). Note that the numer-
ator depends on the angle between the ray and the
osculating plane. The denominator depends on the
angle between the ray and the curve tangent.

A similar result is described in [20]. Under ortho-
graphic projection the expression is the same apart from
the scaling factor of A . As expected, the image curvature
scales linearly with distance and is proportional to the
space curve curvature k. More importantly, the sign of
the curvature of the projection depends on which side of
the osculating plane the ray Q lies, that is, on the sign
of the scalar product B + Q. This is easily seen to be
true by viewing a curve drawn on a sheet of paper from
both sides. The case in which the vantage point is in
the osculating plane corresponds to a zero of curva-
ture in the projection. From equation (14) (see also
[27]) the projected curvature will be zero if and only if

kP = Nk

l.«k =0
The curvature of the space curve is zero. This does
not occur for generic curves [7]. The local form
depends on terms higher than second in the Taylor
expansion (9).

2.[Q, T,N] =0withQ-T # 0
The view direction lies in the osculating plane, but
not along the tangent to the curve (if the curve is
projected along the tangent the image is, in general,
a cusp). Provided the torsion is not zero, r(s) crosses
its osculating plane, seen in the image as a zero
crossing.

Inflections will occur generically (i.e., stable to a small
perturbation of the curve or viewing position) in any
view of a curve, but cusps only become generic in a
one-parameter family of views [7]°. Inflections in im-
age curves are therefore more likely to be consequences
of the viewing geometry (condition 2 above) than zeros
of the space curve curvature (condition 1). This severely
limits the power of inflections of image curves as in-
variants of perspective projection of space curves [27].

3 Deformation Due to Viewer Movements

As the viewer moves, the image of r(s) will deform.
The deformation is characterized by a change in im-
age position (image velocities), a change in image curve
orientation, and a change in the curvature of the pro-
jection. In appendix B we derive expressions relating
the deformation of the image curve to the space curve
geometry and then show how the space curve tangent
and curvature can be calculated directly from image
measurables when the viewer motion is known without
having to explicitly reconstruct the space curve and dif-
ferentiate. In particular the temporal derivature of the
image curve’s position (image velocity), orientation,
and curvature can be used to recover the space curves
position (depth, A\), tangent (T) and curvature (kN).
Here we investigate the relationship between the
temporal derivative of the image curvature, «/, and the
space curve geometry (derivation in appendix B):

kB - U _ 3«kP[(Q - (U - t7)]

T U-@Q-DF? NI -@Q-TA”
(15)

kP =

where U = v, is the viewer’s translational velocity.
Note that the measurement of «/ requires matching the
image of a point on the space curve over the sequence
of views/time.

In the special case of viewing a section of curve that
projects to an inflection, that is, x” = 0, or for viewer
motion in a direction perpendicular to the image curve’s
tangent, that is, U + t” = 0, the second term in (15)
is zero and

f=-—*B"U (16)
[1-@Q- - Dy”

that is, the sign of the deformation of the image curve

encodes the sign of B * U (since « and the denominator

are always positive). This is sufficient to determine what

the curve normal is doing qualitatively, that is, whether
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the curve is bending toward or away from the viewer.
This information is used in secction 4.3 to recover
qualitative properties of the underlying surface’s shape.

If the image curve at time ¢ has a zero of curvature
because Q lies in the osculating plane, the inflection
will not disappear in general under viewer motion but
will move along the image curve, corresponding to
movement of its preimage along the space curve (see
later, figure 8). Generically inflections can only be
created or annihilated in pairs [8].

4 Surface Geometry
4.1 Visibility Constraint

Since the curve is visible, the angle between the sur-
face normal and the line of sight must be less than or
equal to 90° (otherwise the local tangent plane would
occlude the curve). If the angle is 90° then the image
curve is coincident with the apparent contour of the
surface.

The visibility constraint can be utilized to constrain
surface orientation, n. Since,

-1=Q'n=0 (17)

if Q is taken as the south pole of the Gaussian sphere,
then the surface normal must lie on the northern hemis-
phere# Each position of the viewer generates a fresh
constraint hemisphere (see figure 4a). For known

(a)

viewer movements these hemispheres can be inter-
sected—the resultant patch on the Gaussian sphere
places a tighter constraint on n (figure 4b). Clearly,
motion that rotates by 180° about the object determines
the surface normal, provided, of course, the point is
always visible. The point will not be visible if another
part of the surface occludes it, or if it has reached the
extremal boundary (the back projection of the apparent
contour in the image). However, when it reaches the
extremal boundary the normal is fully determined [1].

The viewer motion must be accurately known in
order to fully utilize the visibility constraint over a se-
quence of views. Uncertainty in motion could be in-
cluded in a primitive fashion by intersecting regions
larger than a hemisphere. The excess over a hemisphere
can be bounded by estimates of error in viewer motion.

The constraint on the normal provided by the
visibility constraint is applicable to texture points as
well as smooth curves. The following constraint exploits
the continuity of the curve.

4.2 Tangency constraint

The space curve tangent lies in the surface tangent plane
and this constrains the surface normal n:
T:n=20 (18)

This orthogonality condition generates a constraint
curve which is a great circle on the Gaussian sphere

) N

/

viewer motion

Fig. 4. The visibility constraint. (a) The visibility constraint restricts the surface normal n to lie on a hemisphere of the (Gauss map) Gaussian
sphere. (b) By intersecting these constraint regions for known viewer motions a tighter constraint is placed on the normal.
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(a)

(b)

sSpace curve langent

T

constraint on surface normal n

Fig. 5. The tangency constraint. (a) The tangent constraint restricts the surface normal to lie on a great circle of the Gaussian sphere. (b)
By intersecting this curve with the constraint patch from the visibility constraint, the surface normal is further restricted to an arc of a great circle.

(figure 5a) [2]. If the curve tangent could be deter-
mined exactly, then intersecting the great circle with
the constraint patch from the visibility constraint would
restrict the normal to an arc of a great circle (figure
5b). In practice there will be errors in the tangent so
the constraint region will be a band rather than a curve.
Combining information from many views will more
accurately determine the tangent (and hence the con-
straint band). However, no ‘“new’ information is
generated in each view as it is using the visibility
constraint.

4.3 Sign of Normal Curvature at Inflections

Even if the curvature and Frenet frame of a space
curve lying on a surface are known, no constraint is
placed on the surface curvature because the relation of
the surface normal to the curve’s osculating plane is
unknown and arbitrary. However, it is shown below that
at an inflection in the image curve, the sign of the
normal curvature along the curve can be determined
without first determining the surface normal.® More-
over it can be determined without having to recover
the space curve. It is shown that by following the in-
flection through a sequence of images, the sign of
the normal curvature is determined along the curve.
This can be done with incomplete, qualitative knowl-
edge of viewer motion. The only requirement is know-
ing whether the viewer is translating to the left or
right of the image contour. This result is a general-
ization to surface curves of Weinshall’s [28] result for
surface texture.

Theorem 1 (Sign of normal curvatures from the
deformation of inflections)

Consider two views of a curve lying on a smooth sur-
face. If a point P on the curve projects to an inflection
in one view, but not in the other, then the normal cur-
vature (in the direction of the curve’s tangent) at P is
convex (concave) if the image of the curve at P has
positive (negative) image curvature, k”, in the second
view.® The parameterization of the curve is chosen so
that U? - n? > 0, where U is the projection in the
image of the translational velocity of the viewer. With
the parameterization sign (k") = — sign (k) where
k" is the normal cuvature and kf the time derivative
of image curvature at the inflection.

The proof below is in three stages. First, the view-
ing geometry is established (curve viewed in osculating
plane, so it may be thought of as a plane curve). This
determines B = +n” and hence constrains N. Sec-
ond, the sign of N  Q is determined from the time
derivative of image curvature (this determines whether
the curve bends toward or away from the viewing direc-
tion), see figure 6. Third, the visibility constraint is
utilized to relate space curve curvature (the bending)
to surface normal curvature, see figure 7.

Parameterization: The directions of the tangent vec-
tors, T, t” and the image curve normal, n”, are arbi-
trarily defined by choosing the parameterization direction
for the image curve. A convenient parameterization is
to choose the direction of the curve normal so that it
is on the same side of the image contour as the projec-
tion of the translational velocity, that is, U” + n” > 0.
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(a) The image plane

image contour at time t |

)

direction of viewer translation

image contour at time 1 ,

/’(

——————————————
U P
(b) The image plane
image contour at time 1 | t, image contour at time {

&”

direction of viewer translation
—————————————————

nD
x”<0

u®?

Fig. 6. Orientation of the space curve from the deformation at inflections. If the viewer crosses the osculating plane of the surface curve
the curvature of the image will change sign—projecting to an inflection when the viewer lies in osculating plane (time ,). Two possible cases
are shown. (a) If N+ Q > 0 the space curve is bending away from the viewer (see figure 7a) and the image curve changes locally from an
arc with negative image curvature via an inflection to an arc with positive image curvature, i.e., k > 0. (b) If N+ Q < 0 the space curve
is bending towards the viewer (see figure 7b) and the opposite transition is seen in the image, i.e., ¥/ < 0.

This is always a good choice since it only fails when
U” - n” = 0 in which case the viewer is moving in the
osculating plane and both views contain an inflection
for the same point on the space curve. Since {Q, t”,
n”} form an orthonormal right-handed system (with
Q into the image plane), fixing the direction of the
curve normal n” also fixes t” and hence T and the
sign of «”.

Proof: We first establish a relation between N * Q and
B - n”. From (11)

T=oatf +Q witha >0 (19)
Then
N-Q=Q-(BAT
=B-(TAQ
=aB-(t" A Q)
= —aB -+ n” (20)

The last steps follow from (19) and (12), and since
a > 0,
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(a)

(b)

Fig. 7. Sign of normal curvature from osculating plane geometry. The component of the surface normal in the osculating plane (n") is con-
strained to lie within 90° of the ray, Q, by the visibility constraint (n - Q < 0, shown shaded) and must be perpendicular to the surface curve
tangent, T by the tangency constraint (T * n = 0). The component of the surface normal in the osculating plane will therefore be parallel
to the curve normal N—either in opposite directions (a) if N + Q > 0, or (b) in the same direction if N+ Q < 0. The sign of the normal
curvature in the direction of the curve tangent is determined by the sign of N + Q which is obtained by noting the transition in image curvature
at an inflection (see figure 6).

sign (N *+ Q) = —sign (B - n”) (21) Since B + T = 0 we have, from (19),
1. Osculating plane constraints B:t’ =0 (23)
If a point on a surface curve projects to an inflec-
tion in one view, but not in another then (from sec- Thus, using the orthogonal triad {Q, t”, n”}

tion 2.3.1) the ray in the first view must lie in the
osculating plane, and from (14)

B-Q=0 (22) B

B =+QAtF) (24

+n” (25)
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2. Sign of N+ Q

The transition in image curvature at P from a point
of inflection in the first view (k” = 0) to an arc
with positive or negative image curvature, «”, in
the second view determines the sign of N - Q (figure
6). We can express U in the orthogonal triad {Q,
t?, n”} as

U = yn? + 6t + €Q withy > 0 (26)

the sign of v follows from the parameterization
choice that U” » n” > 0. Using (22) an (23) gives

B-U=+B-n’ @7

and hence from (16) (noting that « and the
denominator are positive),

—sign (B - U)

sign ()
= —sign (B - nP)
sign (N - Q) (28)

the last step following from (21). The result deter-
mines the orientation of the curve normal, N,
relative to the line of sign (figure 7).

3. Sign of k"
We express the surface normal n in the orthogonal
triad {T, N, B}:

n=aN + BB (29

since from (18) T-n = 0. Hence, Q*n = aN-Q
since from (22) B+ Q = 0. The visibility constraint
restricts the sign as Q * n < 0, and hence sign
(N + Q) = —sign (a). The sign of the normal cur-
vature k" then follows from the above and (28):

sign (k") = sign (N * n)

sign (@)
—sign (N * Q)
—sign («7) (30) O

Note that the test is only valid if the inflection in
the first view moves along the image curve in the next
view since an inflection corresponding to the same
point on the surface curve in both views can result from
either zero normal curvature or motion in the osculating
plane. Two views of a surface curve are then suffi-
cient to determine the sign of the normal curvature.
However, because of the numerical difficulties in deter-
mining a zero of curvature, the test can be applied with
greater confidence if a transition from (say) negative

to zero (an inflection) to positive image curvature is
observed. The component of viewer translation parallel
to the image plane is only used to determine the direc-
tion of the curve parameterization. No knowledge of
viewer rotations are required. The theorem is robust
in that only partial knowledge (or inaccurate knowledge
but with bounded errors) of translational velocity will
suffice. This can be estimated from image measure-
ments by motion parallax [21, 24] or is readily available
in the case of binocular vision (where the camera or
eye positions are constrained).

Applications

Figures 8-10 show examples of the application of this
result to real images.

1. Determining the sign of normal curvature by track-
ing inflections
Figure 8 shows a sequence of images taken by a
CCD camera mounted on an Adept robot arm rotat-
ing around a vase. Two image curves are selected—
the projection of surface curves on the neck (hyper-
bolic patch) and body (elliptic path) of the vase
respectively. These image curves are automatically
tracked using B-spline snakes [11]. Crosses mark
inflection points. As the viewer moves from left to
right the inflections moves smoothly along each
curve. For the curve on the hyperbolic section of the
vase the transition in image curvature is from posi-
tive to negative indicating a concave normal section.
For the curve on the elliptic section the transition
is the reverse indicating a convex normal section.
The main advantage is that provided the position of
the inflection in one view can be identified with a
convex or concave arc in the second—say by a near-
by texture point—then only partial knowledge of the
viewer motion is needed. In the case shown the only
knowledge required is whether the viewer transla-
tion is to the left or right of the image contours.

2. Convexity/concavity of test surface
The test directly rules out certain types of surfaces
as follows. If the normal curvature is negative then
the surface could be convex or hyperbolic—it can-
not be concave. Similarly, a positive normal cur-
vature rules out a convex surface. Thus the result
can be used as a test for nonconvexity or noncon-
cavity. This is similar to the information available
from the motion of a specularity when the light
source position is not known [30].
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Fig. & Tracking inflections to determine the sign of normal curvature. Four images are shown from an image sequence taken by a camera
moving (from left to right with fixation) around a smooth surface (a vase). The image contours are tracked by using B-spline snakes. Inflections
(marked by a cross) are generated for points whose osculating plane contains the vantage point. Under viewer motion the preimage of the
inflection moves along the surface curve. The change in the sign of image curvature is sufficient to determine the sign of the normal curvature
along the curve. For the top part of the curve on the neck of the vase the transition in image curvature is from positive to negative indicating
concave normal sections along the curve. For the bottom part of the curve on the body of the vase the transition is the opposite, indicating
convex normal sections. This information is consistent with the neck of the vase being hyperbolic and the body convex elliptic. Note that
this classification has been achieved with partial knowledge of the viewer motion. The only knowledge required is whether the component
of viewer translation parallel to the image plane is to the left or right of the image contours.

3. Combination with other cues This information can be used, for example, to in-

The test is most powerful when combined with other
cues. Extremal boundaries, for example, are an ex-
tremely rich source of surface shape information.
Unfortunately they cannot provide information on
concave surface patches since these will never ap-
pear as extremal boundaries. The information avail-
able from the deformation of surface curves is there-
fore extremely important even though it is not as
powerful a cue as the image of the extremal boun-
dary. For example at an extremal boundary the
Gaussian curvature of the surface is known from the
sign of the curvature of the apparent contour in the
image. Consider an elliptic region (this must be con-
vex to appear on the extremal contour, if there is
a point P inside the extremal boundary with con-
cave (positive) normal curvature (determined using
the test above), then there must be at least one
parabolic curve between P and the boundary.

dicate the presence of concavities for grasping.
Figure 9 shows an example of a Japanese tea cup.
The application of the test to the image contour of
the Chinese character (tracked by a B-spline snake)
in the indentation indicates the presence of concavity.
These concavities (thumb imprints) are deliberately
placed by Japanese potters when making tea cups
since they aid in grasping the cup.

. Interpreting single images of planar curves

It is well known that by making certain assumptions
about the nature of the surface curves humans can
interpret the shape of visible surfaces from single
images of surface curves. Typically this has been
used to infer the orientation of planar surfaces.
Stevens [25] has shown how the assumptions of
parallel contour generators (with the implicit as-
sumption that the curvature perpendicular to the con-
tour is a principal curvature with zero curvature)
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(b)

Fig. 9. Qualitative information for grasping. The left and right im-
ages of a Japanese tea cup are shown. The simple test can be used
for the Chinese characters painted in the indentations created by the
potter’s thumb imprints. The transition in the sign of image curvature
from positive to negative (the transitional view containing the inflec-
tions is not shown) indicates a concave section. These thumb im-
prints are created to aid in grasping the tea cup.

can be used to recover the shape of curved surfaces.
The result described above can be used to make
precise the intuition of Stevens that the appearance
of planar surface curves directly constrains the shape
of the surface. This is highlighted with a simple ex-
ample based on the qualitative interpretation of
range-finder images. Figure 10 shows two images
taken with a rangefinder system [4]. The images are
formed by the projection of planes of light on to the
workspace and viewing this scene with another
camera whose center is displaced away from the light
plane. The effect is to cover the untextured surface

(a)

(b)

= .'ll//,/

\

3
N
§:x

Fig. 10. Qualitative interpretation of rangefinder images. These im-
ages were formed by the projection of planes of light onto the
workspace and viewing the scene with a camera whose center is
displaced to the left of the light plane. The surface is covered artifi-
cially with a set of planar curves. If these surface curves were viewed
in their respective osculating plane (the light planes) their images
would simply be straight lines (degenerate case of an inflection). The
sign of the image curvature in the images shown is consistent with
the sign of the normal curvatures along the curve. Positive, negative
and zero image curvature indicate respectively convex, concave and
planar surface sections.

with planar surface curves. The osculating plane of
these curves is simply the light plane. If the camera
is placed in the osculating plane the light stripes
would appear as straight lines in the image. (The
straight line is simply a degenerate case of an in-
flection.) By taking an image with the camera on
one side of the osculating plane (the light plane) the
straight lines deform in a way predicting by the test
above. The sign of the image curvature is consis-
tently related to the sign of the normal curvature
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along the curve. In the examples of figure 10 the
camera is displaced to the left of the light-plane pro-
jector and positive, negative, and zero image curva-
ture (straight lines) indicate respectively convex,
concave, and zero normal curvatures. The cue is ex-
tremely powerful, giving a strong sense of the shape
of the visible surfaces without the need for accurate
image measurements, exact epipolar geometry, and
triangulation which are required in the established,
quantitative approach for interpreting rangefinder
images.

Similar effects can be observed in the shadows
cast by sunlight through venetian blinds.

4.4 Surface Curvature at Curve Intersections

If surface curves cross transversely, or the curve’s tan-
gent is discontinuous, more constraints can be placed
on the surface geometry. In principle from two views
it is possible to reconstruct both space curves and hence
determine their tangents and curvatures at the intersec-
tion. From these the normal curvatures k™", x"®
along the two tangent directions can be determined

"D = (OND . g (31
" = (ONO® . p (32)
where n is the surface normal
(1) )
n= 1L AT (33)
1T A T®|

and k', T? i = 1, 2 are the curvature, tangent, and
normals of the space curves at the intersection. An inter-
section of the two curves ensures sufficient informa-
tion to recover the surface normal. It has the added ad-
vantage that the exact epipolar geometry is not required
to match points in the two images since the intersection
can be tracked. It also has the advantage that the sur-
face normal can be computed by measuring the change
in curve normals; we need only know the orientation
of the viewer in order to compute Q(s, )—translation
is not required. This is done by applying (59) to recover
both space curve tangents and taking their vector prod-
uct to determine the surface normal (33).

However, the recovery of two normal curvatures is
not sufficient in general to determine the Gaussian cur-
vature of the surface (there are many convex and con-
cave directions on a hyperbolic patch). It can only con-
strain its sign. The problem is that although the angle
between the tangent vectors is known, the relation

between the tangent pair and the principle directions
is unknown. From Euler’s formula [12] we have

k"D = k; sin® § + K, cos® O (34)
K" = g sin® (@ + a) + Ky cos? (0 + @)  (35)

where « is the known angle between the tangents in
the tangent plane; 6 is the (unknown) angle between
the tangent, T, and the principal direction; k; and &,
are the principal curvatures. There are three unknowns,
K|, K2, 0, and only two constraints. If there is a triple
crossing or higher there are sufficient constraints to
uniquely determine the three unknowns. This is less
likely to occur. However, we can catalogue the surface
by the sign of the Gaussian curvature.

Sign of ™" and x"® Surface

not concave
not convex
hyperbolic

both negative
both positive
one negative, one positive

Furthermore, it is straighforward to show that there is
a lower bound on the difference of the principle curva-
tures, namely

(36)

[ky = k| =

-
K"(” _ Kn(-) ’
sin «

where « is the angle between the tangents in the tangent
plane and k") are measured normal curvatures.

Proof: Subtracting the two copies of (34) for the curva-
tures of the two curves and simple trigonometry gives

k"D — " = (x; — ky) (sin a sin (@ + 20)) (37

Rearranging and inspecting the magnitude of both sides
gives the required result.

This is simply repackaging the information con-
tained in the normal curvatures and the angle between
tangents. However, in this form it is better suited to a
first filter on a model data base. For example if it were
known that the model was convex a negative sign test
would reject it. Similarly if the principle curvatures
were known not to exceed certain limits, then the lower
bound test might exclude it.

5 Discussion

Surprisingly—even with exact epipolar geometry and
accurate image measurements—very little quantitative
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information about local surface shape is directly recov-
erable from surface curves. This is in sharp contrast to
the extremal boundaries of curved surfaces in which a
single image can provide strong constraints on surface
shape while a sequence of views allows the complete
specification of the surface. However the apparent con-
tours cannot directly indicate the presence of concav-
ities. The image of surface curves is therefore an im-
portant cue.

The information available from image curves is bet-
ter expressed in terms of incomplete, qualitative con-
straints on surface shape. It has been shown that visibil-
ity of the curve constrains surface orientation and more-
over that this constraint improves with viewer motion.
Furthermore, tracking image curve inflections deter-
mines the sign of normal curvature along the surface
curve’s tangent. This can also be used to interpret the
images of planar curves on surfaces—making precise
Stevens’ intuition that we can recover surface shape
from the deformed image of a planar curve. This in-
formation is robust in that it does not require accurate
measurements or the exact details of viewer motion.

Additional constraints may be derived by metric
information, as well as by the sign of curvature, and
by extending the visibility constraint to incorporate
multilocal events.
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Appendix A: Projection of Space Curves

Relationship Between Image Curve and Space Curve
Tangents

The image of a world point, P, with position vector,
r(s), is a unit vector Q(s, t) such that
r(s) = v(t) + Ns, 1)Q(s, 1)

Differentiating with respect to the curve parameter, s,

r, = NQ + NQ, (38)
and rearranging we derive the following relationships:
Q, = QA—(;\‘/\Q (39)

2 1/2
Q| = xl [l - [Q'—i] j (40)
A | rg]

Note that the mapping from space curve to the image
contour is singular (degenerate) when the ray and curve
tangent are aligned. The tangent to the space curve pro-
jects to a point in the image and a cusp is generated
in the image contour.

By expressing (39) in terms of unit tangent vectors,
t” (tangent to the spherical image curve) and T (space
curve tangent) we have

|Q|
_ QA(TAQ
(1 - @Q-TH"”
T -@Q-TQ

(1-(@Q-TH'"

Relationship Between Image and Space Curve
Curvature

Differentiating (38) with respect to s and collecting the
components parallel to the image curve normal, n”,
gives

r.\'." : nl)

A

Q- n’ = 41)

Substituting this and (40) into the expression for the
curvature of the image curve (13) gives

R n”
AQ,l2
- )\KN'—"p (42)
(1-@Q- T

Substituting (12) and (11) for n” gives the desired
relationship:

kP = Ak N-QA ? -~ (43)
(1 -@Q- 1"
= X __B-Q (44)

(1 = Q-1

Appendix B: Deformation of Image Curve Due to
Viewer Motion

Viewer and Reference Coordinate Systems

For a moving observer the viewer (camera) coordinate
is continuously changing with respect to the fixed coor-
dinate system used to describe R*. Note that Q is the
direction of the light ray in the fixed reference/world
frame for R*. It is determined by a spherical image
position vector Q (the direction of the ray in the
camera/viewer coordinate system) and the orientation
of the camera coordinate system relative to the reference
frame. The relationship between the measurements in
the two frames, Q and Q, can be conveniently expressed
in terms of a rotation operator R(r) [17]:

Q = R0Q @5)
The frames are defined so that instantaneously, at time
t = 0, they coincide:

QGs, 0) = QGs, 0) (46)

and have relative translational and rotational velocities
of U(r) and Q(r) respectively:

U=y, 47)
@AQ =RQ (48)

where subscripts denote differentiation with respect to
time. The relationship between temporal derivatives
of measurements made in the camera coordinate system
and those made in the reference frame is obtained by
differentiating (45) and substituting (46). In particular
the temporal derivative of the ray, the image curve
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tangent, and the image curve normal, {Q, t”, n”}, are
related to temporal derivatives of the image curve
measured in the viewer coordinate system, {Q t?,
n’}, by

Q = QI + Q) A Q (49)
7 = + Q) AtP (50)
n =1/ + Qi) AR’ (51

Quantifying the Deformation

For a static space curve (not an extremal boundary of
a curved surface) the position of a point P on the curve,
r(s), does not change with time:

r,=20 (52)

This can be used to derive the relationship between the
images of the point P in the sequence of views. Differ-
entiating (10) with respect to r and substituting the con-
dition (52) gives an infinitesimal analog of the epipolar
constraint in which the ray is constrained to lie in the
epipolar plane defined by the ray in the first view Q
and the viewer translation U (figure 3):

UA A
gpo {4 BH0 (53)
A
In terms of measurements on the image sphere,
~ UAQAQ ~
6 -C2222-018 o

where Q, is the image velocity of a point on the space
curve at a distance \. Equation (54) is the well known
equation of structure from motion [22]. Points on suc-
cessive image curves are “matched” by searching along
epipolar great circles on the image sphere (or epipolar
lines for planar image geometry) defined by the viewer
motion, U, @ and the image position Q. Note also that
the image velocity consists of two components. One
component is determined purely by the viewer’s rota-
tional velocity about camera center and is independent
of the structure of the scene (). The other component
is determined by the translational velocity of the viewer.

Depth from Image Velocities

Depth A (distance along the ray Q) can be computed
from the deformation (Q,) of the image contour under
known viewer motion [5, 16]. From (53),

13 Eam®

Q, - n?
This formula is an infinitesimal analog of triangulation
with stereo cameras. The numerator is analogous to
baseline and the denominator to disparity.

Equation (55) can also be re-expressed in terms of
spherical image position Q and the normal component
of image velocity Q, * n”:

-n?
A= —— L M (56)
Q- n”+@QAQ)-n”

A= (55)

Curve Tangent from Rate of Change of Orientation of
Image Tangent

Having recovered the depth of each point on the space
curve it is possible to recover the geometry of the space
curve by numerical differentiation. Here, an alternative
method is presented. This recovers the curve tangent
and normal directly from image measurables without
first explicitly recovering the space curve. The space
curve tangent, T, can be recovered from the temporal
derivative of the image curve normal, n”, as follows.
It is straightforward to shown from (11) that

T-n” =0 (57)
Differentiating (57) with respect to time ¢ gives
T-nf =0 (58)

since the space curve is assumed static and does not
change with time. Equations (57) and (58) allow the
recovery of the space curve tangent up to an arbitrary
sign. In terms of measurements on the image sphere,

n” A (nf + Q A nP)
[n? A @7 + @ A nP)|

T = (59)

The orientation of the space curve tangent is
recovered from the change in the image curve normal
and knowledge of the viewer’s rotational velocity. An
expression similar to (59) was derived by Navab,

Deriche, and Faugeras [23] for the image motion of
straight lines.

Curvature and Curve Normal

We now show how to recover the space curve’s curva-
ture, x and normal, N, directly from measurements on
the spatiotemporal image and known viewer motion.
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To simplify the derivation we choose a frame aligned
with the curve normal with basis vectors {n’, n/, T}.
(It is easy to see from (57) and (58) that these three
vectors are orthogonal. nf is not necessarily a unit
vector.) In this frame «N can be expressed as

kN = an’” + 8n? + yT (60)

From the definition of a space curve normal, y must
be zero. The other two orthogonal components of kN
kN +n” and kN * n?, can be recovered from the curva-
ture in the image (42) and its temporal derivative as
follows. By rearranging (42) we can solve for a. Dif-
ferentiating (42) and rearranging we can recover the
other component, 8 [10]. The space curve normal and
curvature can be recovered directly from measurements
in the image and known viewer motion.

Temporal Derivative of Image Curvature

We now relate the space curve’s curvature, «, to the tem-
poral derivative of the image curve’s curvature, «f.
Differentiating (14), substituting (53) and (14), and
noting that for a fixed space curve (from (52))

N+U-Q=0
we can derive
___«xB-U  %[Q-DQ- T
1-@Q@-DH?2 N1 -@Q-TH7?
Substituting (53) and (11) for Qr and T respectively:
G BT Q- TXU - #)
1-Q:-TH*? N - @Q-TH?7

kP =

The temporal change in the image curvature for a point
on a space curve depends on the viewer’s motion rela-
tive to the curve’s osculating plane.

Notes

1. The space curve r(s) is fixed on the surface and is view inde-
pendent. This is the only difference between this and the spatio-
temporal analysis of the family of contour generators (extremal
boundaries) of a smooth curved surface r(s, ¢) [3, 11].

2. The geodesic curvature is the magnitude of the component of kN
perpendicular to the surface normal [12]. For a curve on the im-
aging sphere this direction is parallel to the curve normal, n’,
and the geodesic curvature is equal to the curvature of the perspec-
tive projection onto a plane defined by the ray direction. It has
a well-defined sign whereas it is meaningless to refer to the sign
of curvature of a space curve.

3. An informal way to see this is to consider orthographic projec-
tion with the view direction defining a point Q on the Gaussian
sphere. The tangent at each point on the space curve also defines
a point on the Gaussian sphere, and so T (s) traces a curve. For
a cusp, Q must lie on T (s) and this will not occur in general.
However, a one parameter family of (orthographic) views Q(r)
also defines a curve on the Gaussian sphere. Provided these cross
(transversely) the intersection will be stable to perturbations in
r(s) and viewpoint. For an inflection Q must lie in the osculating
plane. This defines a great circle on the Gaussian sphere for each
point of the space curve, and so covers a region for the curve r(s).
If the point Q lies in this region the projection contains an inflec-
tion, and this will be stable to perturbations of r(s).

4. The convention used is that the surface normal is defined as be-
ing outward from the solid surface.

5. The normal curvature is the curvature of the planar section of the
surface through the normal and tangent vector.

6. If we define the surface normal as being outward from the solid
surface, the normal curvature will be negative in any direction
for a convex surface patch.



