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Abstract

The spatiotemporal analysis of deforming silhouettes (apparent contours) is here extended using the mathematics
of perspective projections and tools from differential geometry. Analysis of the image motion of a silhouette or
apparent contour enables computation of local surface curvature along the corresponding contour generator on
the surface, assuming viewer motion is known. To perform the analysis, a spatiotemporal parameterization of image-
curve motion is needed, but is underconstrained (a manifestation of the well-known aperture problem). It is shown
that an epipolar parameterization is most naturally matched to the recovery of surface curvature.

One immediate facility afforded by the analysis is that surface patches can be reconstructed in the vicinity of
contour generators. Once surface curvature is known, it is possible to discriminate extremal contours from other
fixed curves in space. Furthermore, the known robustness of parallax as a cue to depth extends to the case of
surface curvature. Its derivative—rate of parallax—is shown theoretically to be a curvature cue that is robust to
. uncertainties in the known viewer motion. This robustness has been confirmed in experiments.

Finally, the power of the new analysis for robotics applications is demonstrated. Illustrations are given of an
Adept robot, equipped with a CCD camera, circumnavigating curved obstacles. When further equipped with a
suction gripper the robot manipulator can pick up an object by its curved surface, under visual guidance.

1 Introduction

For a smooth arbitrarily curved surface—especially in
man-made environments where surface texture may be
sparse—the dominant image feature is the apparent
contour or silhouette. The apparent contour is the pro-
Jjection of the locus of points on the object—the contour
generator or extremal boundary—which separates the
visible from the occluded parts of a smooth, opaque,
curved surface.

The apparent contour and its deformation under
viewer motion are potentially rich sources of geometric
information for navigation, object manipulation, motion
planning, and object recognition. Barrow and Tenen-
baum [4] pointed out that surface orientation along the
apparent contour can be computed directly from image
data. Koenderink [29] related the curvature of an appar-
ent contour to the intrinsic curvature of the surface

(Gaussian curvature); the sign of Gaussian curvature
is equal to the sign of the curvature of the image con-
tour. Convexities, concavities, and inflections of an ap-
parent contour indicate, respectively, convex, hyper-
bolic, and parabolic surface points. Giblin and Weiss
[23] extended this by adding viewer motions to obtain
quantitative estimates of surface curvature. A surface
(excluding concavities in opaque objects) can be recon-
structed from the envelope of all its tangent planes,
which in turn are computed directly from the family
of apparent contours/sithouettes of the surface, obtained
under motion of the viewer. By assuming that the
viewer follows a great circle of viewer directions around
the object, they restricted the problem of analyzing the
envelope of tangent planes to the less general problem
of computing the envelope of a family of lines in a
plane. Their algorithm was tested on noise-free, syn-
thetic data (on the assumption that apparent contours
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had been distinguished from other image contours)
demonstrating the reconstruction of a planar curve
under orthographic projection.

In the first part of this article this will be extended
to the general case or arbitrary nonplanar, curvilinear
viewer motion under perspective projection. The geom-
etry of apparent contours and their deformation under
viewer-motion are related to the differential geometry
of the observed object’s surface. In particular it is shown
how to recover the position, orientation and 3D shape
of visible surfaces in the vicinity of their contour gen-
erators from the deformation of apparent contours and
known viewer motion. The theory for small, local
viewer motions is developed to detect extremal bound-
aries and distinguish them from occluding edges (dis-
continuities in depth or orientation), surface markings
or shadow boundaries.!

A consequence of the theory concerns the robustness
of relative measurements of surface curvature based on
the relative image motion of nearby points in the im-
age—parallax-based measurements. Intuitively it is rel-
atively difficult to judge, moving around a smooth,
featureless object, whether its silhouette is extremal or
not—that is, whether curvature along the ray is bounded
or not. This judgement is much easier to make for ob-
jects which have at least a few surface features. Under
small viewer motions, features are “sucked” over the
extremal boundary, at a rate that depends on surface
curvature. Our theoretical findings exactly reflect the
intuition that the “sucking” effect is a reliable indicator
of relative curvature, regardless of the exact details of
the viewer’s motion. Relative measurements of curva-
ture across two adjacent points are shown to be entirely
immune to uncertainties in the viewer’s rotational veloc-
ity. The dependency on the viewer’s translational veloc-
ity is also greatly reduced.

The second part of this article describes the imple-
mentation of these theories and results of experiments
performed with a CCD camera mounted on the wrist
joint of a 5-axis Adept 1 SCARA robot arm. A compu-
tationally efficient method for extracting and tracking
image contours based on B-spline snakes is presented.
Measurement of image velocities and accelerations at
image contours is used to recover surface position and
3D shape of surfaces in the vicinity of their apparent
contours. Error and sensitivity analysis substantiate the
claims that parallax methods are orders of magnitude
less sensitive to the details of the viewer’s motion than
single-point measurements. The techniques are also
used to detect apparent contours and discriminate them

from other fixed image features. We describe the real-
time implementaions of these algorithms for use in tasks
involving the active exploration of visible surface geom-
etry. The visually derived shape information is suc-
cessfully used in modeling, navigation, and the manipu-
lation of piecewise smooth curved objects.

2 Theoretical Framework

In this section the theoretical framework for the subse-
quent analysis of apparent contours and their deforma-
tion under viewer motion is presented. We begin with
the properties of apparent contours and their contour
generators and then relate these first to the descriptions
of local 3D shape developed from the differential geom-
etry of surfaces, and then to the analysis of visual
motion of apparent contours.

2.1 The Apparent Contour and Its Contour Generator

Consider a smooth object. For each vantage point, all
the rays through the vantage point that are tangent to
the surface can be constructed. They touch the object
along a smooth curve on its surface which we call the
contour generator [38] or alternatively the extremal
boundary [3], the rim [29], the fold [6] or the critical
set of the visual mapping [12, 23] (figure 1).

For generic situations (situations that do not change
qualitatively under arbitrarily small excursions of the
vantage point) the contour generator is part of a smooth
space curve (not a planar curve) whose direction is not
in general perpendicular to the ray direction. The con-
tour generator is dependent on the local surface geom-
etry and on the vantage point in a simple way which
will be elucidated below. Moreover, each vantage point
will, in general, generate a different contour generator.
Movement of the viewer causes the contour generator
to “slip” over the visible surface.

The image of the contour generator—here called the
apparent contour but elsewhere also known as the oc-
cluding contour, profile, outline, silhouette, or limb—
will usually be smooth (figure 1). However, as a conse-~
quence of the contour generator being a space curve,
there may exist a finite number of rays that are tangent
not only to the surface but also to the contour generator.
At these points, the apparent contour of a transparent
object will cusp. For opaque surfaces, however, only
one branch of the cusp is visible and the contour ends
abruptly [34, 29].
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spherical perspective image

apparent contour Q(s,t0)

r (so,t)

conlowr generator r(s,to)

Fig. 1. Surface and viewing geometry. P lies on a smooth surface which is parameterized locally by r(s, £). For a given vantage point, v(t,),
the family of rays emanating from the viewer’s optical center (C) that touch the surface defines an s-parameter curve r(s, ty)—the contour
generator from vantage point #%. The spherical perspective projection of this contour generator—the apparent contour, Q(s, to)—determines
the direction of rays which graze the surface. The distance along each ray, CP, is A.

2.2 Surface Geometry

In the following, descriptions of local 3D shape are
developed directly from the differential geometry of
surfaces [18, 20, 31].

Consider a point P on the contour generator of a
smooth, curved surface in R® and parameterized locally
by a vector-valued function r(s, 7). The parametric rep-
resentation can be considered as covering the surface
with two families of curves [35): r(s, #p) and r(sy, )
where s, or #, are fixed for a given curve in the family.
For the analysis of apparent contours and their defor-
mation with viewer motion it is necessary to choose the
one-parameter family of views to be indexed by a time
parameter ¢, which will also parameterize viewer posi-
tion for a moving observer. The s and ¢ parameters are
defined so that the s-parameter curve, r(s, 1), is the
contour generator from a particular view £, (figure 1).
A t-parameter curve r(sy, #) can be thought of as the
3D locus of points grazed by a light ray from the viewer,
under viewer motion. Such a locus is not uniquely
defined. Given a starting point s = s, ¢ = #,, the cor-
respondence, as the viewer moves, between “succes-
sive” (in an infinitesimal sense) contour generators is

not unique. Hence there is considerable freedom to
choose a spatiotemporal parameterization of the sur-
face, r(s, ©).

The local surface geometry at P is determined by
the tangent plane (surface normal) and a description
of how the tangent plane turns as we move in arbitrary
directions over the surface (figure 2). This can be spec-
ified in terms of the basis {r;, r,} for the tangent plane
(where for convenience r; and r, denote dr/ds and
dr/ot, the tangents to the s- and z-parameter: curves
respectively)? the surface normal (a unit vector, n)
defined so that

r,em=0 (1)
r,'n=0 @

and the derivatives of these quantities with respect to
movement over the surface. These are conveniently
packaged in the first and second fundamental forms as
follows. For a tangent-plane vector at P, w, the first fun-
damental form, I(w, w), is used to express the length
of any infinitesimal element in the tangent plane ([18],
p. 92):

Iw,w)=w-+w 3
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surface normal
n

s-parameter curve (thé contour generator)

Fig. 2. The tangent plane. Local surface geometry can be specified
in terms of the basis {r,, r,} for the tangent plane (where r, and
r, denote the tangents to the s and s-parameter curves respectively

and are not in general orthogonal) and the surface normal n (a unit .

vector). In differential surface geometry the derivative of these quan-
tities with respect to movement over the surface is used to describe
surface shape.

It can be represented by a matrix of coefficients, G,
with respect to the basis {r;, r,} where

G=|:rs-rs rs-r,:I @
'r, 'L

The second fundamental form II(w, w), quantifies
the “bending away” of the surface from the tangent
plane. It is defined by ([18], p. M4D:

II(w, w) = — w* L(w) )]

where L(w) is the derivative of the surface normal, n,
in the direction w. L is in fact a linear transformation
on the tangent plane. It is also called the shape operator
[43] or the Weingarten map [42]. In particular for the
basis vectors {r;, r,}:

L(r,) = ny (6)
L(r;) = m, Q)

and the coefficients of the second fundamental are given
by matrix D, where

I'ND Iy'n
D= 55 st :| 8
[r,s-n ry'n ®

The geometry of the surface is completely deter-
mined locally up to a rigid motion in R® by these two
quadratic forms. It is, however, sometimes more con-
venient to characterize the surface by normal curvatures

in specific directions in the tangent plane.? The normal
curvature in the direction w, ", is defined by [20]:

n _ H(w, W)
= I(w, w)

The maximum and minimum normal curvatures are
called the principal curvatures. The corresponding
directions are called the principal directions?

It will now be shown how to make these quadratic
forms explicit from image measurable quantities. This
requires relating the differential geometry of the surface
to the analysis of visual motion.

)

2.3 Imaging Model

A monocular observer can determine the orientation
of any ray projected onto its imaging surface. The
observer cannot, however, determine the distance along
the ray of the object feature that generated it. A general
model for the imaging device is therefore to consider
it as determining the direction of an incoming ray,
which we can choose to represent as a unit vector. This
is equivalent to considering the imaging device as a
spherical pin-hole camera of unit radius (figure 1). The
use of spherical projection (rather than planar), which
has previously proven to be a powerful tool in structure-
from-motion [32, 39], makes it feasible to extend the
theory of Giblin and Weiss [23] to allow for perspec-
tive. Its simplicity arises from the fact that there are
no special points on the image surface, whereas the
origin of the perspective plane is special and the con-
sequent loss of symmetry tends to complicate mathe-
matical arguments.

For perspective projection the direction of a ray to
a world point, P, with position vector (s, ¢), is a unit
vector on the image sphere Q(s, ¢) defined at time ¢ by

r(s, ) = v(®) + N, HQ(s, ) (10

where A(s, ?) is the distance along the ray to the viewed
point P and v(¢) is the viewer’s position (figure 1).

For a given vantage position f,, the apparent con-
tour determines a continuous family of rays Q(s, #)
emanating from the camera’s optical center, which
touch the surface so that

Q'n=0 (11)

where n is the surface normal. Equation (11) defines
both the contour generator and the apparent contour.
The moving monocular observer at position v() sees



Surface Shape from the Deformation of Apparent Contours 87

a family of apparent contours swept over the image
sphere. These determine a two-parameter family of rays
in R?, Q(s, ). As before with r(s, 7), the parameteri-
zation is underdetermined but that will be fixed later.

2.4 Viewer and Reference Coordinate Systems

Note that Q is the direction of the light ray in the fixed
reference/world frame for R®. It is determined by a
spherical image position vector Q (the direction of the
ray in the camera/viewer coordinate system) and the
orientation of the camera coordinate system relative to
the reference frame. For a moving observer the viewer
coordinate system is continuously moving with respect
to the reference frame. The relationship between Q and
Qcanbe conveniently expressed in terms of a rotation
operation R(¥) [27]:

Q = ROQ 12)
The frames are defined so that instantaneously, at time
t = 0, they coincide,

QGs, 0) = QGs, 0) (13)
and have relative translational and rotational velocities
of U(?) and Q(f) respectively:

U=y, (14

2AQ=RQ (15)

The relationship between temporal derivatives of
measurements made in the camera coordinate system
and those made in the reference frame is then given
instantaneously at time ¢ = 0 by (differentiating (12)):

Q=Q+2AQ (16)

where (as before) the subscripts denote differentiation
with respect to time and A denotes a vector product.

3 The Static Analysis of Apparent Contours

3.1 Geometric Properties of the Contour Generator and
Its Projection

We now establish why the contour generator is a rich
source of information about surface geometry. The
physical constraints of tangency (all rays at a contour
generator are in the surface’s tangent plane) and con-
Jugacy (the special relationship between the direction
of the contour generator and the ray direction) provide

powerful constraints on the local geometry of the sur-
face being viewed and allow the recovery of surface
orientation and the sign of Gaussian curvature directly
from a single image of the contour generator.

3.11 Tangency. Both the tangent to the contour
generator, r,, (obtained by differentiating (10)),

r, = AQ + NQ; a7

and the ray, Q, must (by definition) lie in the tangent
plane of the surface. From the tangency conditions

rsen=0
Q'n=0

and (17), we see that the tangent to the apparent contour
also lies in the tangent plane of the surface

Q- 'n=0 18)

This allows the recovery of the surface orientation n
(defined up to a sign) directly from a single view
Q(s, %)) using the direction of the ray and the tangent
to the apparent (image) contour

QAQ
= <0 19
" 1Q A Q] ®

This result is also valid for projection onto the plane.
It is a trivial generalization to perspective projection
of the well-known observation of Barrow and Tenen-
baum [3, 4].

3.1.2 Conjugate Direction Relationship of Ray and
Contour Generator. The tangency conditions con-
strain the contour generator to the tangent plane of the
surface. In which direction does the contour generator
run? The direction is determined by the second funda-
mental form and the direction of the ray. In particular,
the ray direction, Q, and the tangent to the contour gen-
erator, ry, are in conjugate directions with respect to
the second fundamental form [33, 29]. That is, the
change in surface normal (orientation of the tangent
plane) for an infinitesimal movement in the direction
of the contour generator is orthogonal to the direction
of the ray. This is intuitively obvious for orthographic
projection since the normal will continue to be or-
thogonal to the line of sight as we move along the con-
tour generator.

This is immediately apparent in the current frame-
work for perspective projection since the second funda-
mental form has the property that
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1IQ, r,) = —Q - L(ry)
=-Q-n 20

which, by differentiating (11) and substituting (18), is
Zero:

Q'n, =0 21

The ray direction, Q, and the contour generator are not
in general perpendicular but in conjugate directions.
Let 8 be the angle between the ray direction Q and the
tangent r; to the extremal contour. In general —7/2 <
6 < /2. For example, for any point on a sphere, the
contour generator will be perpendicular to the ray.
However for any point on a cylinder, the conjugate
direction of any ray is in the asymptotic direction, (i.e.,
parallel to the axis of a cylinder), and the contour gen-
erator will then run along this direction. The special
case 8 = 0 occurs when the ray Q lies along an asymp-
totic direction of the surface. The tangent to the contour
generator and the ray are parallel—asymptotic direc-
tions are self-conjugate. A cusp is generated in the pro-
jection of the contour generator, seen as an ending of
the apparent contour for an opaque surface [34].

3.2 Static Properties of Apparent Contours

It is now well established that static views of extremal
boundaries are rich sources of surface geometry [4, 29,
11, 23]. The main results are summarized below. Sim-
ple derivations can be found in [14].

3.2.1 Surface Normal. Computation of orientation on
a textured surface patch would usually require (known)
viewer motion to obtain depth, followed by spatial dif-
ferentiation. In the case of a contour generator however,
the tangency condition (11), (18) means that surface
orientation n(s, #,) can be recovered directly from a
single view of an apparent contour Q(s, ) from the
ray (Q) and image tangent directions (Q;):

QAQ
QA Q

The temporal and spatial differentiation that, for the
textured patch, would have to be computed with atten-
dant problems of numerical conditioning, is done, for
extremal boundaries, by the physical constraint of
tangency.

Note that the sign of the orientation can only be
determined if it is known on which side of the apparent

ll(S ’ tO) =

contour the surface lies. This information may not be
reliably available in a single view. It is shown below,
however, that the “sidedness” of the contour generator
can be unambiguously determined from the deforma-
tion of the apparent contour under known viewer
motion. In the following, we choose the convention that
the surface normal is defined to point away from the
solid surface. This arbitrarily fixes the direction of in-
creasing s-parameter of the apparent contours so that
{Q, Q,, n} form a right-handed orthogonal frame.

3.2.2 Sign of Normal Curvature Along the Contour
Generator. 'The curvature of the apparent (image) con-
tour has the same sign as the normal curvature along
the contour generator.

The curvature of the apparent contour, x”, com-
puted as the geodesic curvature of the curve, Q(s, ),
on the image sphere:>°

p=QSS.n 22
SRTNE @2

is simply related to the normal curvature of the contour
generator, «°, by [14]:
Ak’

P =
« sin? (23)

where (as before) 0 is the angle between the ray and
the contour generator. Since surface depth A must be
positive, the sign of x° must, in fact, be the same as
the sign of «”.

In the case of viewing a parabolic point, k° = Q,
and an inflection is generated in the apparent contour.
A similar result was derived for orthographic projec-
tion by Brady et al. [11]. In the special case of a cusp,
6 = 0 and the apparent contour has infinite curvature
while the contour generator has zero normal curvature.
This can be considered in the limit.

3.2.3 Sign of Gaussian Curvature. For opaque sur-
faces the sign of the Gaussian curvature, K, can be in-
ferred from a single view of an extremal boundary from
the sign of the curvature of the apparent contour. This
follows from a simple relationship between the Gaus-
sian curvature, K the curvature «* of the normal sec-
tion at P containing the ray direction; the curvature x?
of the apparent contour (perspective projection) and the
depth A [29, 31] (derived in section 4.3.4):

_ kPK!
K =5k 4)
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The sign of «’ is always the same at a contour gener-
ator. For P to be visible, the normal section must be
convex at a contour generator—a concave surface point
can never appear on a contour generator of an opaque
object.” Distance to the contour generator, A, is always
positive. Hence the sign of «” determines the sign of
Gaussian curvature. Convexities, concavities, and in-
flections of an apparent contour indicate, respectively,
convex, hyperbolic, and parabolic surface points.

As before when we considered the surface normal,
the ability to determine the sign of the Gaussian curva-
ture relies on being able to determine on which side
of the apparent contour the surface lies. This informa-
tion is not readily available from image contour data.
It is however available if it is possible to detect a
contour-ending since the local surface is then hyperbolic
(since the surface is being viewed along an asymptotic
direction) and the apparent contour must be concave
at its endpoint [34]. Detecting cusps by photometric
analysis is a nontrivial exercise.

4 The Dynamic Analysis of Apparent Contours

4.1 Spatiotemporal Parametrization

The previous section showed that static views of appar-
ent contours provide useful qualitative constraints on

spherical perspective image at t

spherical perspective image at t+8t

v (t43t)

local surface shape. The viewer must however have dis-
criminated apparent contours from the images of other
surface curves (such as surface markings or disconti-
nuities in surface orientation) and have determined on
which side of the image contour the surface lies.
‘When the viewer executes a known motion, then sur-
face depth can, of course, be computed from image
velocities [10, 26]. This is correct for static space curves
but it will be shown that it also holds for extremal con-
tour generators even though they are not fixed in space.
Furthermore, if image accelerations are also computed,
then full surface curvature (local 3D shape) can be com-
puted along a contour generator. Giblin and Weiss
demonstrated this for orthographic projection and
planar motion [23]. We now generalize these results
to arbitrary nonplanar, curvilinear viewer motion and
perspective projection. This requires the choice of a
suitable spatiotemporal parameterization for the image,
Q(s, 1), and surface, r(s, o).
_ As the viewer moves the family of apparent contours,
Q(s, ¥), is swept out on the image sphere (figure 3).
However the spatiotemporal parameterization of the
family is not unique. The mapping between contour
generators, and hence between apparent contours, at
successive instants is underdetermined. This is essen-
tially the “aperture problem” for contours, considered
either on the spherical perspective image Q(s, ), or
on the Gauss sphere n(s, ¢), or between space curves

epipolar plane

r(s()lt)

T(s,t481)

Fig. 3. Epipolar parameterization. A moving observer at position v(#) sees a family of contour generators r(s, #) indexed by the time parameter
t. Their spherical perspective projections are represented by a two-parameter family of apparent contours Q(s, 7). For the epipolar parameterization
t-parameter curves (r(sg, #) and Q(sy, #)) are defined by choosing the correspondence between successive contours to be in an epipolar plane
that is determined by the translational velocity, U and the direction of the ray, Q.
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on the surface r(s, £). The choice is arbitrary since the
image contours are projections of different 3D space
curves.

4.2 Epipolar Parameterization

A natural choice of parameterization (for both the
spatiotemporal image and the surface), is the epipolar
parameterization defined by

LAQ=0 @5)

The tangent to the -parameter curve is chosen to be
in the direction of the ray, Q. The physical interpreta-
tion is that the grazing/contact point is chosen to ““slip”
along the ray. The tangent-plane basis vectors, r; and
r,, are therefore in conjugate directions. The advantage
of the parameterization is clear later, when it leads to
a simplified treatment of surface curvature and a unified
treatment of the projection of rigid space curves and
apparent contours.

A natural correspondence between points on succes-
sive snapshots of an apparent contour can now be set
up. These are the lines of constant s on the image
sphere. Differentiating (10) with respect to time and
enforcing (25) leads to a “matching” condition

Q = _@Lg)__/\Q (26)

The corresponding ray in the next viewpoint (in an in-
finitesimal sense), Q(sy, ¢ + &), is chosen so that it
lies in the plane defined by (U A Q)—the epipolar
plane. This is also the osculating plane of the t-parameter
curve on the surface, r(sq, #) (figure 3). This is the in-
finitesimal analogue to epipolar-plane matching in
stereo [2, 10]. For a general motion, however, the epi-
polar plane structure rotates continuously as the direc-
tion of translation, U, changes and the space curve,
x(so, ), generated by the movement of a contact point
will be nonplanar.

Substituting (16) into (26), the tangents to the -
parameter curves on the spatiotemporal image, Q(so,
t), are defined at ¢ = O by

0=-UrBr8 9,6 @

Note that Q, is equal to the image velocity of a point
on the projection of a static space curve at depth A [39].
This is not surprising since instantaneously image
velocities are dependent only on depth and not surface
curvature. Points on successive apparent contours are

“matched” by searching along epipolar great circles
on the image sphere (or epipolar lines for planar image
geometry) defined by the viewer motion, U, @ and the
image position Q. This induces a natural correspon-
dence between the contour generators from successive
viewpoints on the surface.

The contact point on a contour generator moves/slips
along the line of sight Q with a speed, r, determined
by the distance and surface curvature.

‘n
r, = [tht ] Q 28)
where ' is the normal curvature of the space curve,
r(SO: t):

t Iy D
K LT, 29)

Derivation 1. Substituting the matching constraint of
(26) into the time derivative of (10) we obtain:

rr=0MN+Q-U0Q (30

Differentiating (30) with respect to time and substituting
this into (29) we obtain the relationship between sur-
face curvature and viewer motion.

__Q-n
TR+ QD =

Combining (31) and (30) gives the required result.

K

The numerator, Q, + m, of (28) is analogous to
stereo disparity (as appears below in the denominator
of the depth formula (32)). It depends only on the dis-
tance of the contact point and the “stereo baseline.” The
denominator is the curvature (normal) of the space curve
generated as the viewer moves in time. The speed of the
contact point is therefore inversely proportional to the
surface curvature. The contour generator “clings” to
points with high curvature and speeds up as the curva-
ture is reduced. This property will be used later to dis-
tinguish surface markings or creases from the contour
generators of curved surfaces (extremal boundaries).

4.3 Dynamic Properties of Apparent Contours

The choice of a suitable (although arbitrary) spatiotem-
poral parameterization permits us to make measure-
ments on the spatiotemporal image, Q(s, ?), and to
recover an exact specification of the visible surface.
This includes position, orientation and 3D shape as well
as qualitative cues such as to which side of the image
contour the occluding surface lies.
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4.3.1 Recovery of Depth from Image Velocities. Depth
A (distance along the ray Q—see figure 1) can be com-
puted from the deformation (Q,) of the apparent con-
tour under known viewer motion (translational velocity
U) [10]: From (26),

_U-'n
Q-n

This formula is an infinitesimal analogue of triangula-
tion with stereo cameras (figure 3). The numerator is
analogous to baseline and the denominator (the normal
component of image velocity) to disparity. In the infini-
tesimal limit, stereo will, in principle, correctly deter-
mine the depth of the contour generator.

Equation (32) can also be reexpressed in terms of
spherical image position Q and the normal component
of image velocity Q, * n:

A= — U'n
(:')_,-n+(ﬂ/\Q)-n

Clearly, absolute depth can only be recovered if rota-
tional velocity @ is known.

A= 32)

(33)

4.3.2 Surface Curvature from Deformation of the Ap-
parent Contour. Surface curvature (3D shape) is to
be expressed in terms of the first and second fundamen-
tal forms, G and D ((4) and (8)), which in the epipolar
parameterization and for unit basis vectors can be sim-
plified to

G=l: 1 cose} 34)

cos 6 1

¥ 0

D= l: 0 Ktil (35)
where &’ is the normal curvature of the #-parameter
curve r(sg, ¢) and «® is the normal curvature of the
contour generator r(s, %) at P. Equivalently &’ is the
curvature of the normal section at P in the direction

of the ray, Q.
Note that D is diagonal, This is a result of choosing,
in the epipolar parameterization, basis directions, {r,,
r;} that are conjugate. From (21) it is easy to show that
the off-diagonal components are both equal to zero:

' = —I*ng = "lrtIQ'ns=0

How, in summary, can the components of G and D
be computed from the deformation of apparent contours
under viewer motion?

4.3.2.1 Angle Between Ray and Contour Generator,
0(s, t). First 6(s, tg) can be recovered from the con-
tour generator r(s, f;) which is itself obtained from
image velocities along the apparent contour via (33).
This requires the numerical differentiation of depths
along the contour generator. From (17) and simple
trigonometry,

MOl
, (36)

tan § =

4.3.2.2 Normal Curvature Along the Contour Gener-
ator, x°. Then normal curvature along the contour
generator, «*, is computed from the curvature «” of the
apparent contour. Rearranging (23),

P ¢in2
o=k s;\n 0 37)

4.3.2.3 Normal Curvature Along the Line of Sight,
«’. Finally the normal curvature «’, along the line of
sight, can be recovered from image accelerations, as
explained below:

The normal curvature at P in the direction of the
ray Q, «* can be computed from the rate of deforma-
tion of the apparent contour under viewer motion. From
(31) and (32),

ro___ Urm
AN+ Q1)

Since «* depends on \,, it is clear from (33) that «’ is
a function of viewer acceleration (U ¢ and ) and the
second derivative of image position, Q,, that is, image
acceleration. By differentiating (33) and substituting
(38) we find that the normal component of image accel-
eration at an apparent contour is determined by viewer
motion (including translational and rotational accelera-
tions) in addition to a dependency on depth and surface

(38

curvature:
G, on=-C 1] _,Q U m
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~0 @AY n
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The details of equation (39) are not important. It merely
demonstrates that the recovery of ’ requires knowl-
edge of viewer motion (including translational and rota-
tional accelerations) together with measurement of
image accelerations. In section 5 it will be shown how
to cancel the undesirable dependency on viewer accel-
erations and rotations.
Note two important points:

— As a result of the conjugacy relationship between
the direction of the contour generator and the ray,
surface curvature at a contour generator is com-
pletely determined by the normal curvatures in these
two directions and the angle between them, 8. Com-
pare this to a general surface point which requires
the normal curvatures in three directions.

— Determining surface curvature usually requires the
computation of second-order spatial derivatives of
depth, A. At extremal boundaries, however, only
first-order spatial derivatives, A, and temporal
derivatives, A;, need be computed. One derivative
is performed, effectively, by the physical system.
This is also the case with specularities [8].

4.3.3 Sidedness of Apparent Contour and Contour
Generator. In the static analysis of the apparent con-
tour it was assumed that the “sidedness” of the contour
generator—on which side of the image contour the
obscuring surface lies—was known. Up to now in the
dynamic analysis of apparent contours an arbitrary
direction has been chosen for the s-parameter curve
(and hence the image tangent Q) and the surface ori-
entation, n, has been recovered up to an unknown sign
from (19). The actual sign can now be determined from
the deformation of the apparent contour. Equation (38)
determines both a sign and magnitude for normal cur-
vature along the ray, «’. This must, however, be con-
vex and so its sign given by equation (38) allows us
to infer the correct orientation of the tangent plane. This
is an important qualitative geometric cue. The distinc-
tion between free space and solid surface is extremely
useful in visual navigation and manipulation.

4.3.4 Gaussian and Mean Curvature. Although the
first and second fundamental forms completely charac-
terize the local 3D shape of the surface, it is sometimes
more convenient to express the geometry of the surface
by its principal curvatures and their geometric and
arithmetic means: the Gaussian and mean curvature.

The Gaussian curvature, K, at a point is given by
the product of the two principal curvatures [18]. With
the epipolar parameterization, Gaussian curvature can
be expressed as a product of two curvatures: the normal
curvature «’ and the curvature of the apparent contour,
kP scaled by inverse-depth 8

kP i’
k=5
This is the well-known result of Koenderink [29, 31]
extended here to recover the magnitude as well as the
sign of Gaussian curvature. The mean curvature, H,
and the principal curvatures k;, k, can similarly be ex-
pressed by

P
H = % I:L;\— + &' cosec? 0:| (40)
Ki2 = H + VH? — K. (41)

4.4 Degenerate Cases of the Epipolar Parameterization

In the previous section we introduced the epipolar
parameterization and showed how to recover the 3D
local shape of surfaces from the deformation of appar-
ent contours.

There are two possible cases where degeneracy of
the parameterization arises. These occur when {r,, r,}
fails to form a basis for the tangent plane.

Casel. r, =0
The contour generator does not slip over the
surface with viewer motion but is fixed. It
is therefore not an extremal boundary but a
3D rigid space curve (surface marking or dis-
continuity in depth or orientation). -

An important advantage of the epipolar
parameterization is its unified treatment of
the image motion of curves. The projections
of surface markings and creases can be simply
treated as the limiting cases of apparent con-
tours of surfaces with infinite curvature, «*
(from (28)). In fact the magnitude of the cur-
vature, «°, can be used to discriminate these
image curves from apparent contours. The
parameterization degrades gracefully and
hence this condition does not pose any spe-
cial problems.

Although the space curve r(s, ;) can still
be recovered from image velocities via (33)
the surface orientation is no longer completely
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defined. The tangency conditions ((11) and
(18)) are no longer valid and the surface nor-
mal is only constrained by (17) to be perpen-
dicular to the tangent to the space curve, leav-
ing one degree of freedom unknown.
Case 2. rgAr,=0andr, # 0
Not surprisingly, the parameterization degen-
erates at the singularity of the surface-to-
image mapping where r; and r, are parallel
on the surface. A cusp (| Q,| = 0) is gener-
ated in the projection of the contour gener-
ator. For generic cases the image contour
appears to come to a halt at isolated points.
Although the epipolar parameterization
and equations (19) and (32) can no longer be
used to recover depth and surface orientation
at the isolated cusp point, this in general
poses no problems. By tracking the contour-
ending it is still possible in principle to
recover the distance to the surface at a cusp
point and the surface orientation [22].

5 Motion Parallax and the Robust Estimation of
Surface Curvature

It has been shown that although it is feasible to com-
pute surface curvature from the observed deformation
of an apparent contour, this requires knowledge of the
viewer’s translational and rotational velocities and ac-
celerations, Moreover the computation of surface cur-
vature from the deformation of apparent contours is
highly sensitive to errors in assumed ego-motion. This
may be acceptable for a moving camera mounted on
a precision robot arm or when a grid is in view so that
accurate visual calibration of the camera position and
orientation can be performed [47]. In such cases it is
feasible to determine motion to the required accuracy
of around 1 part in 1000 (see later). However, when
only crude estimates of motion are available another
strategy is called for. In such a case, it is sometimes
possible to use the crude estimate to bootstrap a more
precise visual ego-motion computation [24], However
this requires an adequate number of identifiable corner
features, which may not be available in an unstructured
environment. Moreover, if the estimate is too crude the
ego-motion computation may fail; it is notoriously ill
conditioned [48].

The alternative approach is to seek geometric cues
that are much less sensitive to error in the motion esti-

mate. In this section, it is shown that estimates of sur-
face curvature based on the relative image motion of
nearby points in the image—parallax-based measure-
ments—have just this property. Such estimates are stable
to perturbations of assumed ego-motion. Intuitively it
is relatively difficult to judge, moving around a smooth,
featureless object, whether its silhouette is extremal or
not—whether curvature along the contour is bounded
or not. This judgement is much easier to make for ob-
jects which have at least a few surface features. Under
small viewer motions, features are “sucked” over the
extremal boundary, at a rate which depends on surface
curvature.

The theoretical findings of this section exactly reflect
the intuition that the “sucking” effect is a reliable indi-
cator of relative curvature, regardless of the exact details
of the viewer’s motion. It is shown that relative meas-
urements of surface curvature across two adjacent
points are entirely immune to uncertainties in the
viewer’s rotational velocity. This is somewhat related
to earlier results showing that relative measurements
of this kind are important for depth measurement from
image velocities [32, 36, 30, 14], or stereoscopic dis-
parities [52] and for curvature measurements from
stereoscopically viewed highlights [8].

Furthermore, it will be shown that, unlike the inter-
pretation of single-point measurements, differences of
measurements at two points are insensitive to errors in
rotation and in translational acceleration. Only depend-
ence on translational velocity remains. Typically, the
two feaures might be one point on an extremal boundary
and one fixed surface point. The surface point has infi-
nite curvature and therefore acts simply as a stable ref-
erence point for the measurement of curvature at the
extremal boundary. The reason for the insensitivity of
relative curvature measurements is that global additive
errors in motion measurement are canceled out.

5.1 Motion Parallax

Consider two visual features whose projections on the
image sphere (figure 4) are Q(s;, #), i = 1, 2 (which
we will abbreviate to Q¥, i = 1, 2) and which have
image velocities given by (27):

5% = iy A 097 L.
A =1UAENAQT
Point image velocities consist of two components. The
first is due to viewer translation and it is this component

-2AQ® 42
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viewer at time t

viewer at time t+5t

Fig. 4. Motion parallax. Consider the relative displacement between a point on an apparent contour and the image of a nearby surface feature
(shown as a cross): § = Q® — QO, The rate of change of relative image position—parallax, 8,—has been shown to be a robust indicator
of relative depth. In this section we show that its temporal derivative—the rate of parallax 8,—is a robust geometric cue for the recovery of

surface curvature at extremal boundaries.

that encodes scene structure (depth). The other com-
ponent is due to the rotational part of the viewer’s
motion and is independent of scene strucure. Clearly
depth can only be recovered accurately if rotational
velocity @ is known. The dependence on rotational
velocity is removed if, instead of using raw image
motion Q,, the difference of the image motions of a
pair of points, Q®, Q®, is used. This is called paral-
lax [25]. (See figure 4.)

The relative image position 8 of the two points is

o) = Q@ - QW 43)

Parallax is the temporal derivative of 8, &,. If instan-
taneously the two points project to the same point on
the image sphere, so that

Q0 = Q®© = Q
then, from (42), the parallax é; depends only on their
relative inverse-depths and on viewer translational

velocity. It is independent of (and hence insensitive to
errors in) angular rotation {:

6t=[(UAQ)AQ][—)\%—2)—ﬁ] (44)

The use of “motion parallax™ for robust determination
of the direction of translation U and relative depths from
image velocities was described by Longuet-Higgins and
Prazdny [36] and Rieger and Lawton [45].

5.2 Rate of Parallax

Following from the well-known results about motion
parallax, we derive the central result of this section—
that the rate of parallax is a robust cue for surface cur-
vature. The direct formula (39) for normal curvature
k' in terms of image acceleration was sensitive to
viewer translational acceleration and rotational velocity
and acceleration. If, instead, differences of image accel-
erations are used, the undesirable sensitivity vanishes.

The relationship between image acceleration and nor-
mal curvature for points Q¥, Q® can be expressed as:
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- . . (i))2 1
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+ (@ Q@ - n®) (45)

where n® is now taken to be a vector perpendicular
to Q¥ and will only be a surface normal if the point
belongs to an apparent contour. The important point
is that the two copies of this equation for the two posi-
tions i = 1, 2 can be subtracted, canceling the unde-
sirable dependency on @, @, and on U; if the images
of the two points are instantaneously coincident.

Think of the two points as being the projection of
extremal contour generators, which trace out curves
with (normal) curvatures «‘! and x*? as the viewer
moves. Let us define the relative inverse curvature, AR,
of the feature pair by

1 1

~ @ A Q9) - n®

-+

Note that it is simply the difference of the radii of cur-
vature of the normal sections.

Consider the two features to be instantaneously spa-
tially coincident, that is, initially, Q(s;, 0) = Q(s, 0).
Moreover assume they lie at a common depth A, and
hence, instantaneously, Qfl) = sz). In practice, of
course, the feature pair will only coincide exactly if one
of the points is a surface marking which is instantane-
ously on the extremal boundary (figure 4). The effect of
a small separation is analyzed below. Now, taking the
difference of equation (45) for i = 1, 2 leads to the fol-
lowing relation between the two relative quantities 8,
(rate of parallax) and AR (relative inverse curvature):

. m2
Y @7
where n is a vector perpendicular to the direction of
the ray (Q * n = 0), for example, the surface normal
of one of the two points. The two points will not neces-
sarily have the same surface normal. From this equation

we can obtain relative inverse curvature, AR, as a func-
tion of depth A, viewer velocity U, and the second tem-
poral derivative of 8. Dependence on viewer motion is
now limited to the velocity U. There is no dependence
on viewer acceleration or rotational velocity. Hence the
relative measurement should be much more robust.
(Computationally higher derivatives are generally far
more sensitive to noise.)

In the case that Q(D is known to be a fixed surface
reference point, with k"' = 0, then AR = 1/x*2 so
that the relative inverse curvature AR constitutes an esti-
mate, now much more robust, of the normal curvature
«™ at the extremal boundary point Q@. Of course this
can now be used in equations (24), (34), and (35) to
obtain robust estimates of surface curvature. This is
confirmed by the experiments in the next section.

Note that the use of the epipolar parameterization
is not important in the above analysis. It can be shown
that the normal component of the relative image accel-
eration d, * n between a distinct feature and an appar-
ent contour is independent of viewer motion and can
be determined completely from spatiotemporal meas-
urements on the image (appendix A).

3.3 Degradation of Sensitivity with Separation of Points

The theory above relating relative curvature to the rate
of parallax assumed that the two points Q® and Q@
were instantaneously coincident in the image and at the
same depth, A® = \@. In practice, point pairs used
as features will not coincide exactly and an error limit
on curvature (or, more conveniently, its inverse) must
be computed to allow for this. The relative curvature
can still be computed from the rate of parallax by taking
into account an error,

AR = AR + Re™ (48)

where AR is the estimate of the relative inverse curva-

ture computed from the rate of parallax.
~ A3

AR=—(U_—n)28,t-n 49

The error in the radii of curvature, R<™", consists

of errors due to the difference in depths of the two fea-

tures, &); the finite separation in the image, 6 = AQ

and the differences in tangent planes of the two features,

An. The magnitude of these effects can be easily com-

puted from the difference of equation (45) for the two
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points (appéndix B). For nearby points that are on the
same surface and for fixation (U = A2 A Q) the domi-
nant error can be conveniently expressed as:

error | 3 |ﬂt| ' U;'n
[Reor] = o (o] + 3ol G2 + A AN
(50)

Parallax-based measurements of curvature will usually
be accurate and insensitive to errors in viewer motion
if the separation between points on nearby contours
satisfies

AR

8] < N (51
Equation (50) can also be used to predict the residual
sensitivity to translational and rotational accelerations.
The important point to notice is that sensitivity to
viewer motion is still reduced. As an example consider
the sensitivity of absolute measurements of surface cur-
vature along the ray to etror in viewer position. Think
of this as adding an unknown translational acceleration,
U,. For absolute measurements (45) the effect of this
unknown error is amplified by a factor of A%/(U * n)?
when estimating surface curvature. From appendix B
and (50) we see that for parallax-based measurements
the sensitivity is reduced to a factor of 2AN/\ of the
original sensitivity. This sensitivity vanishes, of course,
when the features are at the same depth. A similar ef-
fect is observed for rotational velocities and

accelerations.

5.4 Qualitative Shape

Further robustness can be obtained by considering the
ratio of relative curvatures. More precisely this is the
ratio of differences in radii of curvature. Ratios of pairs
of parallax-based measurements can, in theory, be com-
pletely insensitive to viewer motion. This is because
the normal component of the relative image acceleration
5, * n can be shown to be independent of the viewer
motion and can be determined from spatiotemporal
measurements on the image for a distinct point and ap-
parent contour pair (appendix A). This is surprising
because the epipolar parameterization has a hidden
dependence on viewer velocity in the “matching” con-
dition (26). This result is important because it demon-
strates the possibility of obtaining robust inferences of
surface geometry which are independent of any assump-
tion of viewer motion.

In particular, if we consider the ratio of relative cur-
vature measurements for two different point-pairs at
similar depths, terms depending on absolute depth A
and velocity U are canceled out in equation (47). This
result corresponds to the following intuitive idea. The
rate at which surface features rush toward or away from
an extremal boundary is inversely proportional to the
(normal) curvature there. The constant of proportional-
ity is some function of viewer motion and depth; it can
be eliminated by considering only ratios of curvatures.

6 Implementation of Theory

In the previous sections a computational theory for the
recovery of 3D shape from the deformation of apparent
contours was presented. The implementation of this
theory and the results of experiments performed with
a camera mounted on a moving robot arm are now de-
scribed. In particular this requires the accurate extrac-
tion of image curves from real images and tracking their
temporal evolution to measure image velocities and ac-
celerations. Uncertainty and sensitivity analysis is used
to compute bounds on the estimates of surface curva-
ture. This is critical in discriminating fixed features
from extremal boundaries—deciding whether curvature
along the ray is bounded or not—since with noisy meas-
urements and poorly calibrated viewer motions, we
must test by error analysis the hypothesis that the curva-
ture is unbounded at a fixed feature. Sensitivity analysis
is also used to substantiate the claim that parallax
methods—using the relative image motion of nearby con-
tours—allow the robust recovery of surface curvature.

6.1 Tracking Image Contours with B-Spline Snakes

Image contours can be localized and tracked using a
variant of the well-known “snake” of Kass, Witkin, and
Terzopoulos [28]. The snake is a computational con-
struct, a dynamic curve able to track moving, deforming
image features. Since many snakes can be active at
once, each tracking its feature contour as a background
process, they constitute a versatile mechanism for direc-
tion and focus of attention.

6.1.1 Active Contours—Snakes. Energy-minimizing
active-countour models (snakes) were proposed by Kass
et al. [28] as a top-down mechanism for locating fea-
tures of interest in images and tracking their image
motion, provided the feature does not move too fast.
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The behavior of a snake is controlled by internal and
external “forces.” The internal forces enforce smooth-
ness and the external forces guide the active contour
toward the image feature. In their implementation for
image curve localization and tracking, these forces are
derived by differentiating internal and external energies
respectively.

— Internal energy
The internal energy (per unit length), Ejerna, at a
point on the snake, x(s):

is composed of first and second-order terms, forcing
the active contour to act like a string/membrane
(avoiding gaps) or a thin rod/plate (avoiding high
curvatures) respectively. These effects are controlled
by the relative values of « and 3. The internal energy
serves to maintain smoothness of the curve under
changing external influences.
— External energy

The external force is computed from the image in-
tensity data I(x(s)), where the position of the snake
is represented by x(s), by differentiating an external
energy (per unit length) E e

Eexterma = —|VG(0) * Ix()*  (53)

which is computed after convolution of the image
with the derivative of a Gaussian kernel, VG(o), of
size (scale) o. Gaussian smoothing extends the
search range of the snake by smearing out image
edge features.

The goal is to find the snake (contour) that
minimizes the total energy. This is achieved by the
numerical solution of the elastic problem using tech-
niques from variational calculus. The main step is the
solution of a linear equation involving a banded matrix,
typically in several hundred variables [28].

6.1.2 The B-Spline Snake. A more economical reali-
zation can be obtained by using far fewer state variables
[46]. In [15] we proposed the use of cubic B-splines
[20]. These are deformable curves represented by four
or more state variables (control points). The curves may
be open or closed as required. The flexibility of the
curve increases as more control points are added; each
additional control point allows either one more inflec-
tion in the curve or, when multiple knots are used [5],
reduced continuity at one point.

B-spline snakes are ideally suited for representing,
detecting, and tracking image curves. Their main ad-
vantages include:

— Local control—modifying the position of a data
point or control point causes only a small part of
the curve to change.

— Continuity control—B-splines are defined with con-
tinuity properties at each point,

— Compact representation—the number of variables
to be estimated is reduced to the number of control
points [40].

The B-spline is a curve in the image plane (figure 5)

X(s) =2 f(9)q (54)

where f; are the spline basis functions and q; are the
coefficients or control points. These are positioned so
that the curve locates the desired image contour. In the
original implementation the “external force” on a point
X(s;) was chosen to be

F(s)) = V|VG(o) * Ix(sy)| (55)

so that, at equilibrium (when image forces vanish),
the B-spline, x(s), stabilized close to a high-contrast
contour.

In this section two major simplifications are intro-
duced. The first concerns the control of spatial scale

x(s )

i

2
@
<
—
i

B-spline snake

q,

Fig. 5. The B-spline snake. The B-spline snake can be used for image
contour localization and representation. A cubic B-spline can be repre-
sented by a minimum of 4 control points, g;, and these are positioned
50 as to locate a nearby contour. The snake moves under the influence
of external forces, F(s;), which guide it toward the image feature.
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for tracking. The other simplification is that there is
no need for internal forces since the B-spline represen-
tation maintains smoothness via hard constraints im-
plicit in the representation.

6.1.2.1 Exernal Forces and Control of Scale. The
“force” is chosen to depend on the distance between
the feature of interest (an edge) and the approximation
by the B-spline. For each sample point the ““force” on
the snake is found by a coarse-to-fine strategy. This is
done by inspecting intensity gradients on either side
of the snake (either along the normal or along a direc-
tion determined by hard constraints, for example, scan-
lines). Control of scale is achieved by inspecting gradi-
ents nearer to or further from the snake itself. Each
point chooses to move in the direction of the largest
intensity gradient (hence toward a contrast edge). If the
intensity gradients either side of the contour have oppo-
site signs the scale is halved. This is repeated until the
edge has been localized to the nearest pixel.

The gradient is estimated by finite differences. Gaus-
sian smoothing is not used.!® Image noise is not, as
might be thought, a major problem in the unblurred
image since CCD cameras have relatively low signal-
to-noise. Moreover, gradients are sampled at several
places along the spline, and those samples combined to
compute motions for the spline control points (described
below, (57)). The combination of those samples itself
has an adequate averaging, noise-defeating effect.

6.1.2.2 Positioning the Control Points. External
forces are sampled at N points,

x(s), j=1,...,N

along the curve—typically N > 20 has been adequate
in our experiments. External forces are applied to the
curve itself; but, for iterative adjustment of displace-
ment, it i necessary to compute the force transmitted
to each control point. This can be done by positioning
the B-spline so that it minimizes the sum of the square
of the distances between the discrete data points of the
feature and the approximation by the B-spline. Effec-
tively, each snake point is attached to a feature by an
elastic membrane so that its potential energy is propor-
tional to the distance squared. This technique has been
used to represent image curves [41].

Derivation 2. If the desired feature position is given
by y(s;) for a point on the B-spline, x(s;), we wish to
minimize the potential energy:

J

2 [y(s,-) -2 f,-(sj)qi] : (56)

The new positions of the control points, q;, are chosen
by solving (the least-squares solution):

2 21 ffe =20 fy(s) 57
H J ]

where & has the same range of values-as the control
points, i.

As the snake approaches the image contour it “locks
on” and the scale is reduced to enable accurate contour
localization. Since accurate measurements are required
to compute image accelerations, care has been taken
over subpixel resolution. At earlier stages of tracking,
when coarse blurring (large scale) is used, the capture
range of the snake is large but localization is poor—
the snake may lag behind the contour. Once the snake
has converged onto the contour, standard edge-detection
techniques such as smoothing for subpixel resolution
[13] are used to obtain accurate localization.

The snakes were either initialized by hand in the first
frame near image contours of interest, which they then
track automatically or wait in the image until they are
swept by the motion of the camera over a feature for
which they have an affinity have also been successful
(figure 6). Tracking is maintained provided the contour
does not move too quickly. The contour tracker can run
at 15 Hz on a SUN4/260 [7]. By using a parallel MIMD
architecture (based on 9 Transputers) and interframe
constraints (simulating inertia and damping) to enhance
tracking capability, the real-time tracking of 10 snakes
has been achieved [17]. The adaptive choice of the num-
ber of control points; the control of the length of the
contour, and the scale of the feature search are current
topics of research.

6.2 The Epipolar Parameterization

In the epipolar parameterization of the spatiotemporal
image and surface, a point on an apparent contour in
the first image is “matched” to a point in successive
images (in an infinitesimal sense) by searching along
the corresponding epipolar lines. This allows us to ex-
tract a t-parameter curve from the spatiotemporal image.
As shown in the previous sections, depth and surface
curvature are then computed from first- and second-
order temporal derivatives of this -parameter image
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Fig. 6. Tracking image contours with B-spline snakes. A single span B-spline snake “hangs™ in the image until it is swept by the motion of
the camera into the vicinity of a high-contrast edge (top left). The snake then tracks the deforming image contour as the camera is moved
vertically upward by the robot. Four samples of an image sequence are shown in which the robot moves with a speed of 20 mm/s. Tracking
speeds of 15 Hz have been achieved without special-purpose hardware by windowing and avoiding Gaussian smoothing.

curve by equations (32) and (39). This is a nontrivial
practical problem since the epipolar structure is con-
tinuously changing for arbitrary viewer motions. It re-
quires a dense image sequence and knowledge of the
geometrical and optical characteristics of the camera
(the intrinsic parameters, for example, image center,
pixel size, and focal length [19, 21, 50]) as well as the
camera motion.

Estimates of the camera motion are either determined
directly from the position and orientation of the gripper
and its relationship with the camera center [49] or are
obtained by visual calibration techniques [47]. Extrac-
tion of the ¢-parameter curve can be done in a number
of ways. We have implemented two simple methods.
The first is an extension of epipolar plane image anal-
ysis [10, 53] and allows the recovery of depth and sur-
face curvature at a point. The second method analyses
the case of extended displacements and arbitrary rota-
tions of the viewer to recover constraints (bounds) on
surface curvature.

The epipolar parameterization of the image is greatly
simplified for simple motions. In particular, if we con-
sider linear viewer motion perpendicular to the optical
axis, epipolar lines are simply corresponding raster
lines of subsequent images. Figure 7 shows the spatio-
temporal image formed by taking a sequence of images
in rapid succession and stacking these sequentially in
time. For linear motions of the viewer, the #-parameter

image curves are trajectories lying in horizontal slices
of the spatiotemporal image. Each horizontal slice cor-
responds to a different epipolar plane. The trajectories
of the image positions of points on an apparent contour
(A) and a nearby surface marking (B) are shown as a
function of time in the spatiotemporal cross-section of
figure 7 and plotted in figure 8. Note that this is a sim-
ple extension of epipolar plane image analysis in which
the trajectories of fixed, rigid features appear as straight
lines in the spatiotemporal cross-section image with a
gradient that is proportional to inverse depth [10]. For
apparent contours however, the trajectories are no
longer straight. It is shown below that the gradient of
the trajectory still encodes depth. The curvature deter-
mines the curvature of the surface in the epipolar plane.

6.2.1 Estimation of Depth and Surface Curvature.
For motion perpendicular to the optical axis and for
an apparent contour which at time ¢ is instantaneously
aligned with the optical axis (image position in mm X(0)
= 0), it is easy to show (from (27) and (39)) that the
image velocity, X,(0), and acceleration, X,,(0), along
the scan-line are given by

x0 = - (58)
2
x,0) = - 19K (59)
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(a) first image

Fig. 7 3D spatiotemporal image. (a) The first and last image from an image sequence taken from a camera mounted on a robot arm and
moving horizontally from left to right without rotation. (b) The 3D spatiotemporal image formed from the image sequence piled up sequentially
with time. The top of the first image and the bottom of the last image are shown along with the spatiotemporal cross-section corresponding
to the same epipolar plane. For simple viewer motions consisting of camera translations perpendicular to the optical axis the spatiotemporal
cross-section image is formed by storing the scan-lines (epipolar lines) for a given epipolar plane sequentially in order of time [16].

where U is the component of viewer translational veloc-
ity perpendicular to the optical axis and parallel to the
scan line; fis the focal length of the CCD camera lens,
and R is the radius of curvature of the z-parameter curve
lying in the epipolar plane. The radius of curvature is
related to the curvature of the normal section by
Meusnier’s formula [18]. The normal curvature along
the ray is given by

K= % cos ¢ (60)
where cos ¢ is the angle between the surface normal
and the epipolar plane. In this case, it is simply equal

to the angle between the image curve normal and the
horizontal scan line.

The estimate of depth and surface curvature follow
directly from the first and second temporal derivatives
of the -parameter curve, X(¢) and equations (58, 59).
Due to measurement noise and vibrations of the robot
arm, the trajectory may not be smooth (figures 8, 9,
10) and so these derivatives are computed from the coef-
ficients of a parabola fitted locally to the data by least-
squares estimation. The uncertainty due to random im-
age localization and ego-motion errors can be derived
from analysis of the residual errors [44, 14].

In practice, the viewer will not execute simple trans-
lational motions perpendicular to the optical axis
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Fig. 8 Spatiotemporal cross-section image trajectories. For linear
motion and epipolar parameterization the #-parameter surface curves
lie in the epipolar plane. The z-parameter spatiotemporal image tra-
jectory is also planar. The gradient and curvature of this trajectory
encode depth to the contour generator and curvature in the epipolar
plane respectively.

but will rotate to fixate on an object of interest. For
linear translational viewer motions with known camera
rotations, the analysis of epipolar plane images is still
appropriate if we rectify the detected image curves.
Rectification can be performed by a 3X3 rotation matrix
relating measurements in the rotated coordinate frame
to the standard parallel geometry frame.

For arbitrary curvilinear motions the t-parameter
curves are no longer constrained to a single cross-
section of the spatiotemporal image. Each time instant
requires a different epipolar structure and so extracting
the t-parameter curve from the spatiotemporal image
poses a more difficult practical problem. From at least
three discrete views, it is possible to determine whether
or not a contour is extremal. For a surface marking
or crease (discontinuity in surface orientation), the three
rays should intersect at a point in space for a static
scene. For an extremal boundary, however, the contact
point slips along a curve, r(sy, #) and the three rays
will not intersect (figures 11 and 12). In [14, 51] a sim-
ple numerical method for estimating depth and surface
curvatures from a minimum of three discrete views, by
determining the osculating circle in each epipolar plane,
is described.

6.2.2 Experimental Results—Curvature from the Spa-
tiotemporal Image. Figure 7 shows the t-parameter
trajectories for both a feature on an apparent contour
(A) and a nearby surface marking (B). The trajectories
are both approximately linear with a gradient that deter-

Deviation from straight line (mm)
0.2 1

8 € 40 20 0 20 40 60 80
Camera position (mm)

Fig. 9 Deviation from the straight line trajectory. The curvature of
the spatiotemporal trajectories is used to estimate the curvature of
the epipolar section. The trajectories are not smooth due to vibrations
of the robot manipulator (amplitude 0.2 mm). Their effect on the
estimation of curvature is reduced by a least-squares fit to the data.
The surface curvatures (expressed as radii of curvature) at A and
B are estimated as 51.4 + 8.2 mm and 11.8 + 7.3 mm respectively.
B is not on an extremal boundary but is on a fixed curve. This is
a degenerate case of the parameterization and should ideally have
zero “radius of curvature,” that is, the spatiotemporal trajectory should
be a straight line.

Deviation from straight line (mm)
0.2 1

0.1 1

80 60 40 20 0 20 40 60 80
Camera position (mm)

Fig. 10. Relative image positions. The effect of robot vibrations is
greatly reduced if the rate of parallax (relative image positions) is
used instead.

mines the distance for the feature. Depth can be esti-
mated to an accuracy of 1 part in 1000 (table 1).
The effect due to surface curvature is very difficult
to discern. This is easily seen, however, if we look at
the deviation of image position away from the straight-
line trajectory of a feature at a fixed depth (figure 9).
Notice that the image position is noisy due to perturba-
tions in the robot position. Typically the robot vibrations
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Fig. 11. Bstimating surface curvatures from three discrete views. Points are selected on image contours in the first view (%), indicated by
crosses A and B for points on an extremal boundary and surface marking respectively. For epipolar parameterization of the surface, correspond-
ing features lie on epipolar lines in the second and third view (f; and ;). Measurement of the three rays lying in an epipolar plane can be

used to estimate surface curvatures (figure 12).

osculating circle (radius R)

Tt (s,0) Q (5o:4,)

Q{soit;)

Q(soslo)

v (1)

Fig. I2. The epipolar plane. Each view defines a tangent to r(so, ).
For linear camera motion and epipolar parameterization the rays and
r{so, ) lieina plane. If r(s,, #) can be approximated locally as acircle,
it can be uniquely determined from measurements in three views.

Table 1. Radius of curvature of the epipolar section estimated from
the spatiotemporal trajectory for a point on an extremal boundary
(A) and on a surface marking (B).

Measured Actual

Measured Depth Curvature Curvature
Extremal
boundary, A 424.3 £ 0.5mm 51.4 + 8.2 mm 37 £ 2 mm
Surface
marking, B 393.9 + 0.4 mm 11.8 £ 7.3 mm 0
Parallax
measurement
(A) 4243 + 0.5 mm 39.6 + 2mm 37 £ 2 mm

have amplitudes between 0.1 mm and 0.2 mm. From
(39) we see that these vibrations are amplified by a fac-
tor depending on the square of the distance to the fea-
ture, and that this results in a large uncertainty in the
estimate of surface curvature. Equations (58) and (59)
are used to estimate the depth and curvature for a point
on the extremal boundary of the vase (A) by fitting a
parabola to the spatiotemporal trajectory. The method
is repeated for a point that is not on an extremal bound-
ary but is on a nearby surface marking (B). This is a
degenerate case of the parameterization. A surface
marking can be considered as the limiting case of a
point with infinite curvature and hence ideally will have
zero “radius or curvature.” The estimates of depth and
curvature are shown in table 1. The veridical values of
curvature were measured using calipers. Note that there
is a systematic error, not explained by the random errors
in the data. This is possibly due to an error in the
assumed ego-motion of the robot or focal length.
Figure 10 plots the relative image position between A
and B against robot position (time). The curvature of this
parabola also encodes the surface curvature at A as pre-
dicted by (47). The parabola is considerably smoother
since the effects of robot “wobble” are attenuated when
making relative measurements. This is because the am-
plification of robot vibrations is reduced by an order of
magnitude. The exact factor depends on the difference
of depths between the two features, as predicted by (50).
In this experiment this corresponds to an order of magni-
tude. This results in a greatly reduced uncertainty in the
estimate of relative inverse curvature. Better still, the
estimate of surface curvature based on relative measure-
ments is also more accurate. As predicted by the theory,
the nearby point B acts as a stable reference point.
Global additive errors in the robot motion effect the
visual motion of both A and B and hence can be can-
celed out when the differences of positions are used.
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6.3 Error and Sensitivity Analysis

The previous section showed that the visual motion of
apparent contours can be used to estimate surface cur-
vatures of a useful accuracy if the viewer ego-motion
is known. However, the estimate of curvature is very
sensitive to perturbations in the motion parameters and
errors in image contour localization. The effect of small
errors and uncertainties can be computed by first-order
perturbation analysis [14].

The effects of small errors in the assumed ego-
motion—position and orientation of the camera—are
plotted in figures 13a and 13b (curves labeled I). Ac-
curacies of 1 part in 1000 in the measurement of ego-
motion are essential for surface curvature estimation.

Parallax based methods measuring surface curvature
are in principle based on measuring the relative image
motion of nearby points on different contours (47). In
practice, this is equivalent (46) to computing the dif-
ference of radii of curvature at the two points, say A
and B (figure 7). The radius of curvature measured at
a surface marking is determined by errors in image
measurement and ego-motion. (For a precisely known
viewer motion and for exact contour localization the
radius of curvature would be zero at a fixed feature.)
It can be used as a reference point to subtract the global
additive errors due to imprecise motion when estimat-
ing the curvature at the point on the extremal boundary.
Figures 13a and 13b (curves labeled IT) show how the
sensitivity of the relative inverse curvature, AR, to error
in position and rotation computed between points A and
B (two nearby points at similar depths) is reduced by
an order of magnitude. This is a striking decrease in
sensitivity even though the features do not coincide
exactly as the theory required.

Note that the sensitivity to image localization errors
remains (figure 14). This sensitivity is not reduced by
parallax and requires subpixel localization of image
contours.

7 Applications

71 Discriminating Between Fixed Features and
Extremal Boundaries

The magnitude of the estimate of the radius of curva-
ture, R, can be used to determine whether a point on
an image contour lies on an apparent contour or on the
projection of a fixed surface feature such as a crease,
shadow, or surface marking.

Estimated radius of curvature (mmj
250

| (absolute)

25 A5 05 05 15 25
Eror in position (mm) 50

-100 -

) 1501
Estimated radius of curvature (mm)
250+

| (absolute)

Il (parallax)

25 3. 05 05 15 25
-50 Error in rotation (mrad)

-100
b) -150{

Fig. I3. Sensitivity of curvature estimated from absolute measurements
and parallax to errors in motion. (a) The radius of curvature (R =
Ux*) for a point on the extremal boundary (A) is plotted as a func-
tion of errors in the camera position (a) and orientation (b). Curvature
estimation is highly sensitive to errors in ego-motion. Curve I shows
that a perturbation of 1 mm in position (in a translation of 100 mm)
produces an error of 155% in the estimated radius of curvature. A
perturbation of 1 mrad in rotation about an axis defined by the epipolar
plane (in a total rotation of 200 mrad) produces an error of 100%.
(b) However, if parallax-based measurements are used the estimation
of curvature is much more robust to errors in ego-motion. Curve
II shows the difference in radii of curvature between a point on the
extremal boundary (A) and the nearby surface marking (B) plotted
against error in the position (a) and orientation (b). The sensitivity
is reduced by an order of magnitude, to 19% per mm error and 12%
per mrad error respectively.

With noisy image measurements or poorly calibrated
motion we must test by error analysis the hypothesis
that R is not equal to zero for an extremal boundary.
We have seen how to compute the effects of small errors
in image measurement, and ego-motion. These are con-
veniently represented by the covariance of the estimated
curvature, gp. The estimate of the radius of curvature
and its uncertainty is then used to test the hypothesis
of an extremal boundary. In particular if we assume
that the error in the estimate of the radius has a nor-
mal distribution (as an approximation to the student-¢
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Fig. 14. Sensitivity of curvature estimate to errors in image contour
localization.

distribution [44]), the image contour is assumed to be
the projection of a fixed feature (within a confidence
interval of 95%) if

—1.9603 < R < 1.960z 61)

Using absolute measurements, however, the discrimina-
tion between fixed and extremal features is limited by
the uncertainties in robot motion. For the image se-
quence of figure 11 it is only possible to discriminate
between fixed features and points on extremal bound-

aries with inverse curvatures greater than 15 mm. High
curvature points (R < 1.960z) cannot be distinguished
from fixed features and will be incorrectly labeled.

By using parallax-based (relative) measurements the
discrimination is greatly improved and is limited by the
finite separation between the points as predicted by
(50). For the example of figure 11 this limit corresponds
to a relative curvature of approximately 3 mm. This,
however, requires that we have available a fixed nearby
reference point.

Suppose now that no known surface feature has been
identified in advance. Can the robust relative measure-
ments be made to bootstrap themselves without an inde-
pendent surface reference? It is possible by relative
(two-point) curvature measurements obtained for a
small set of nearby points to determine pairs which are
fixed features. They will have zero relative radii of cur-
vature. Once a fixed feature is detected it can act as
stable reference for estimating the curvature at extremal
boundaries.

In detecting an apparent contour we have also deter-
mined on which side the surface lies and so can com-
pute the sign of Gaussian curvature from the curvature
of the image contour.. Figure 15 shows a selected
number of contours which have been automatically
tracked and are correctly labeled by testing for the sign
and magnitude of R.

RN

Fig. I5. Detecting and labeling extremal boundaries. The magnitude of the radius of curvature (/«‘, computed from 3 views) can be used
to classify image curves as either the projection of extremal boundaries or fixed features (surface markings, occluding edges or orientation
discontinuities). The sign of x’ determines on which side of the image contour lies the surface. Note: a X label indicates a fixed feature.
A > label indicates an apparent contour. The surface lies to the right as one moves in the direction of the twin arrows [37]. The sign of
Gaussian curvature can then be inferred directly from the sign of the curvature of the apparent contour.
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7.2 Reconstruction of Surfaces

In the vicinity of the extremal boundary we can recover
the two families of parametric curves. These constitute
a conjugate grid of surface curves: s-parameter curves
(the extremal contour generators from the different
viewpoints) and z-parameter curves (the intersection of
a pencil of epipolar planes defined by the first two view-
points and the surface). The recovered strip of surface
is shown in figure 16 projected into the image from a
fourth viewpoint. The reconstructed surface obtained
by extrapolation of the computed surface curvatures at
the extremal boundary A of the vase is shown from a
new viewpoint in figure 17.

7.3 Visual Navigation Around Curved Surfaces

In this section results are presented showing how a mov-
ing robot manipulator can exploit the visually derived
3D shape information in real time to plan a smooth,
safe path around an obstacle placed in its path. The
scenario of this work is that the start position and goal
position for a mobile camera are fixed and the robot
is instructed to reach the goal from the start position,
skirting around any curved obstacles that would be en-
countered on a straight line path from the current posi-
tion to the goal. The camera first localizes an apparent
contour and makes a small sideways motion to generate

Fig. 17, Reconstructed surface. Reconstructed surface obtained by
extrapolation of computed surface curvatures in the vicinity of the
extremal boundary (A) of the vase, shown here from a new viewpoint.

visual motion. This allows it to compute the distance
to the contour generator, the “‘sidedness” of the contour,
and more importantly the curvature of the visible sur-
face in the epipolar plane. A safe path around the
curved object is then planned by extrapolating the com-
puted curvatures with a correction to allow for the

Fig. 16. Recovery of surface strip in vicinity of extremal boundary. From a minimum of three views of a curved surface it is possible to recover
the 3D geometry of the surface in the vicinity of extremal boundary. The surface is recovered as a family of s-parameter curves—the contour
generators—and ¢-parameter curves—portions of the osculating circles measured in each epipolar plane. The strip is shown projected into

the image of the scene from a different viewpoint.
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uncertainty so as to ensure safe clearances. The robot
then steers the camera around the obstacle with a clear-
ance of a few millimeters. Examples running with single
image contours are shown in figures 18 and 19.

The path-planning algorithms for navigating around
curved surfaces are further developed in [7]. Minimal
paths are shown to be-smooth splines composed of geo-
desics [18] and straight lines in free space. Computation
of the geodesics, in general, requires the complete 3D
surface. In the case where geometric information is im-
perfect, in that surface shape is not known a priori, they
show that it is possible to compute a helical approxima-
tion to the sought geodesic, based only on the visible

part of the surface near the extremal boundary. The in-
formation required for the helical approximation can
be computed directly from the deformation of the ap-
parent contour.

7.4 Manipulation of Curved Objects

Surface curvature recovered directly from the deforma-
tion of the apparent contour (instead of dense depth
maps) yields useful information for path planning. This
information is also important for grasping curved
objects.

Fig. 18 Visually guided navigation around curved obstacles. The visual motion of an apparent contour under known viewer motion is used
to estimate the position, orientation, and surface curvature of the visible surface. In addition to this quantitative information the visual motion
of the apparent contour can also determine which side of the contour is free space. This qualitative and quantitative information is used to
map out a safe path around the unmodeled obstacle. The sequence of images shows the robot manipulator’s safe execution of the planned

path, seen from two viewpoints.
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Fig. I9. Visually guided navigation over undulating surface. After detecting a horizontal image contour, the image motion due to a small local
vertical viewer motion is used to estimate the distance to the contour generator. A larger extended motion is then used to estimate the surface
curvature at the contour generator. This is used to map out and execute a safe path over the obstacle, shown in this sequence of images.

@ o

Fig. 20. Visually guided manipulation of piecewise curved objects. The manipulation of curved objects requires precise 3D shape (curvature)
information. The accuracy of measurements of surface curvature based on the deformation of a single apparent contour is limited by uncertainty
in the viewer motion. The effect of errors in viewer motion is greatly reduced and the accuracy of surface curvature estimates consequently
greatly improved by using the rate of parallax. In the example shown the relative motion between the image of the projection of the crease
of the box (B) and the apparent contour of the vase (A) is used to estimate surface curvature to an accuracy of +5 mm (in a measurement
of 40 mm) and the contour generator position to the nearest 1 mm (at a distance of 1 m). This information is used to guide the manipulator
and suction gripper to a convenient location on the surface of the vase for manipulation.

Reliable estimates of surface curvature can be used ple of a scene with a vase placed approximately 1 m
to determine grasping points. Figure 20 shows an exam- away from a robot manipulator equipped with a suction
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gripper. Estimates of surface curvature at the extremal
boundary are used to position a suction gripper for
manipulation. The robot initializes a snake which local-
izes a nearby high-contrast edge. In the example shown
the snake initially finds the edge of the cardboard box
(B). The robot then makes a small local motion of a
few centimeters to estimate the depth of the feature.
It uses this informtion so that it can then track the con-
trast edge over a larger baseline while fixating (keeping
the edge in the center of the image). Before executing
the larger motion of 15 cm the first snake (parent)
spawns a child snake which finds a second nearby edge
(A). The two edges are then tracked together, allowing
the accurate estimation of surface curvature by reducing
the sensitivity to robot “wobble” and systematic errors
in the robot motion (see figures 9 and 10). The estimates
of curvature are accurate to a few millimeters. This is
in contrast to estimates of curvature based on the abso-
lute motion of an apparent contour which deliver cur-
vature estimates which are only correct to the nearest
centimeter. The extrapolation of these surface curva-

tures allows the robot to plan a grasping position which

is then successfully executed (figure 20).

8 Summary and Conclusions

This paper has

— related the geometry of apparent contours to the dif-
ferential geometry of the visible surface and to the
analysis of visual motion.

— shown how a moving monocular observer can recover
an exact and complete description of the visible sur-
face in the vicinity of a contour generator from the
deformation of apparent contours. This requires the
computation of spatiotemporal derivatives (up to sec-
ond order) of the image and known viewer motion.
The epipolar parameterization of the spatiotemporal
image and surface was introduced. Its advantages in-
clude that it allows all image contours to be analyzed
in the same framework. Image velocities allow the
recovery of the contour generator while image accel-
erations allow the computation of surface curvature.
A consequence of this is that the visual motion of
curves can be used to detect extremal boundaries
and distinguish them from rigid contour generators
such as surface markings, shadows, or creases.

— shown how the relative motion of image curves
(parallax-based measurements) can be used to pro-
vide robust estimates of surface curvature which are

independent of (and hence insensitive to) the exact
details of the viewer’s motion.

— presented a simple, computationally efficient
method for accurately extracting image curves from
real images and tracking their temporal evolution.
This was an extension of tracking with snakes—
energy minimizing splines guided by “image forces”
—which avoids computing the internal energies by
representing sections of curves as cubic B-splines.
Moreover real-time processing (15 frames per sec-
ond) is achieved by windowing and avoiding Gaus-
sian smoothing.

— analyzed the effect of errors in the knowledge of
assumed viewer motion (camera positon and orien-
tation) and in the localization of image contours on
the estimates of depth and curvature. Uncertainty
and sensitivity analysis was important for two
reasons. First, it is useful to compute bounds on the
estimates of surface curvature. This is critical in dis-
criminating fixed features from extremal bound-
aries—deciding whether curvature along the ray is
bounded or not—since with noisy measurements and
poorly calibrated viewer motions, we must test by
error analysis the hypothesis that the curvature is
unbounded at a fixed feature. Second, sensitivity
analysis was used to substantiate the claim that
parallax methods—using the relative image motion
of nearby contours—allow the robust recovery of
surface curvature. It was shown that estimates of cur-
vature based on absolute measurements of image
position are extremely sensitive to motion calibra-
tion, requiring accuracies of the order of 1 part in
1000. Estimates of curvature based on relative meas-
urements prove to be orders of magnitude less sen-
sitive to errors in robot position and orientation. The
sensitivity to image localization remains, however,
but is reduced by integrating measurements from a
large number of viewpoints.

— as an illustration of their power, these motion
analysis techniques have been used to achieve
something which has so far eluded analysis based
on photometric measurements alone: namely reli-
able discrimination between fixed surface features
and points on extremal boundaries. On which side
of the image contour the obscuring surface lies can
also be determined. As well as using these methods
to detect and label extremal boundaries it was shown
how they can recover strips of surfaces in the vicinity
of extremal boundaries.

— presented results of the real-time implementation of
these algorithms for use in tasks involving the active
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exploration of the 3D geometry of visible surfaces.
This demonstrated the utility and reliability of the
proposed theories and methods. It was shown that
the deformation of apparent contours under viewer
motion is a rich source of geometric information
which is extremely useful for visual navigation,
motion planning and object manipulation. Examples
exploiting the visually derived shape for navigation
around and the manipulation of piecewise smooth
curved objects were presented.
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Notes

1.

2.

3.

A summary of this theory was first presented by us in [9]. A
similar approach was followed by [51, 1].

Subscripts denote differentiation with respect to the subscript
parameter. Superscripts will be used as labels.

The normal curvature is the curvature of the planar section of
the surface through the normal and tangent vector.

. These are in fact the eigenvalues and respective eigenvectors of

the matrix G™'D. The determinant of this matrix (product of the
two principal curvatures) is called the Gaussian curvature, X.
It determines qualitatively a surface’s shape. A surface patch that
is locally hyperbolic (saddle-like) has principal curvatures of op-
posite sign and hence negative Gaussian curvature. Elliptic surface
patches (concave or convex) have principal curvatures with the
same sign and hence positive Gaussian curvature. A locally flat
surface patch will have zero Gaussian curvature.

- The geodesic curvature of a curve on a sphere is sometimes called

the apparent curvature [31]. It measures how the curve is curving
in the imaging surface. It is equal to the curvature of the perspec-
tive projection onto a plane defined by the ray direction.

- The curvature, «, and the Frenet-Serret normal, N, for a space

y(s) are given by ([20], p. 103): &N = (v, A 75;) A 7,/ 7, |
The normal curvature is the magnitude of the component of kN
in the direction of the surface normal (here Q since Q(s, 7,) is
a curve on the image sphere); the geodesic curvature is the mag-
nitude of the component in a direction perpendicular to the sur-
face normal and the curve tangent (in this case Q,). For a curve
on a sphere this direction is parallel to the curve normal (n for
apparent contours).

7.

10.

109

If we define the surface normal as being outwards from the solid
surface, the normal curvature will be negative in any direction
for a convex surface patch.

- In general the Gaussian curvature can be determined from the

determinant of G™'D or equivalently the ratio of the determi-
nants of the matrixes of coefficients of the second and first fun-
damental forms. From (34) and (35) it is trivial to show that
Gaussian curvature can be expressed by
x5k’
= sin? @

Substituting (23) for «* allows us to derive the result.

. The forces are derived from an arbitrary field. They are not

natural forces.

Small amounts of smoothing can be achieved economically by
defocusing the image until the desired degree of blur is achieved.
‘Whilst this worked satisfactorily, it was found that the tracker con-
tinued to operate just as well when the lens was sharply focused.
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Appendix A. Determining 5, * n from the
Spatiotemporal Image Q(s, ?)

If the surface marking is a discrete point (image position
Q" it is possible in principle to measure the image
velocity, Q; and acceleration, Qj; directly from the
image without any assumption about viewer motion.
This is impossible for a point on an image curve.
Measuring the (real) image velocity Q, (and acclera-
tion Q,) for a point on an image curve requires
knowledge of the viewer motion—equation (27). Only
the normal component of image velocity can be obtained
from local measurements at a curve. It is shown below
however that for a discrete point-curve pair, §, ‘n—
the normal component of the relative image accelera-
tion—is completely determined from measurements on
the spatiotemporal image. This result is important be-
cause it demonstrates the possibility of obtaining robust
inferences of surface geometry that are independent of
any assumption of viewer motion.

The proof depends on reparameterizing the spatio-
temporal image so that it is independent of knowledge
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of viewer motion. In the epipolar parameterization of
the spatiotemporal image, Q(s, #), the s-parameter
curves were defned to be the image contours while the
t-parameter curves were defined by equation (27) so that
at any instant the magnitude and direction of the tangent
to a t-parameter curve is equal to the (real) image
velocity, Q,—more precisely, (aQ/at)l s

A parameterization which is completely independent
of knowledge of viewer motion, Q(s, 1), where s is a
function of s and ¢, s(s, £) can be chosen. Consider,
for example, a parameterization where the ~parameter
curves (with tangent (aQ/az)i ;) are chosen to be or-
thogonal to the s-parameter curves (with tangent
(8Q/85)|,)—the image contours. Equivalently the -
parameter curves are defined to be parallel to the curve
normal n,

aQ
ar

where 3 is the magnitude of the normal component of
the (real) image velocity. Such a parameterization can
always be set up in the image. It is now possible to ex-
press the (real) image velocities and acclerations in
terms of the new parameterization.

= fn (62)

5, = 20
Q= ; (63)
T ot|g a5, ar|; ©4)
~ _9%Q
Q=57 ; (65)
_ ¥ 4Q ’Q
T 6s ‘ 952
a5 32Q
+25| % [ + 55| (©6)
= (8] )29Q
Q.n = [&s] 9% |,
a5 3Q #Q
+26t [at “+at2s-“
(67)

From (64) we see that (35/3¢)|, determines the magni-
tude of the tangential component of image-curve veloc-
ity and is not directly available from the spatiotemporal
image. The other quantities in the right-hand side of
the (67) are directly measurable from the spatiotemporal
image. They are determined by the curvature of the
image contour, the variation of the normal component

of image velocity along the contour and the variation
of the normal component of image veloctiy perpendic-
ular to the image contour respectively.

However the discrete point (with image position
Q") which is instantaneously aligned with the extremal
boundary has the same image velocity, Q,, as the
point on the apparent contour. From (27),

Q=0 (68)

Q=q (69)
Since Q;‘ is measurable it allow us to determine the
tangential component of the image velocity

- aQ

Qt 65 .
Pr
as

85
a |,

(70)

t

and hence Q, * n and 6, * n from spatiotemporal im-
age measurements.

Appendix B. Correction for Parallax-Based
Measurements when Image Points are not
Coincident

The theory relating relative inverse curvatures to the
rate of parallax assumed that the two points Q® and
Q@ were actually coincident in the image, and that
the underlying surface points were also coincident and
hence at the same dept A = \@. In practice, point
pairs used as features will not coincide exactly. We ana-
lyze below the effects of a finite separation in image
positions AQ = §, and a difference in depths of the
2 features, A\. n is the surface normal at the second
point, Q®.

Q? = Q
Q® = Q + 4Q
A@ =\ |
AD =\ + AN
QP-n=0
QY:.n=AQ:n
If the relative inverse curvature is computed from (47),
sk = O L a1
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an error is introduced into the estimate of surface cur-
vature due to the fact that the features are not instan-
taneously aligned nor at the same depth nor in the same
tangent plane:

AR = AR + R®™ (72)

where R™ consists of errors due to the 3 effects
mentioned above.

Re™ = RAM + R4Q 4+ R® (73)

These are easily computed by looking at the differences
of equation (45) for the two points. Only first-order
errors are listed.
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