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Abstract

At the heart of every model-based visual tracker lies a pose estimation routine.
Recent work has emphasised the use of least-squares techniques which employ all the
available data to estimate the pose. Such techniques are, however, susceptible to
the sort of rogue measurements produced by visual feature detectors, often resulting
in an unrecoverable tracking failure. This paper investigates an alternative approach,
where a minimal subset of the data provides the pose estimate, and a robust regression
scheme selects the best subset. Bayesian inference in the regression stage reconciles
measurements taken in one frame with predictions from previous frames, eliminating
the need to further filter the pose estimates. The resulting tracker performs very well
on the difficult task of tracking a human face, even when the face is partially occluded.
Since the tracker is tolerant of noisy, computationally cheap feature detectors, frame-
rate operation is comfortably achieved on standard hardware.

Keywords: Visual tracking, pose estimation, robust regression, Bayesian inference,
model acquisition.

1 Introduction and outline

A visual tracking algorithm can be found at the heart of many real-time computer vision

systems. This paper is concerned with the so-called “model-based trackers”, which are

used to track familiar objects as they move within the field of view. While model-based

trackers can be designed to cope with articulated objects [11], here we consider only rigid

objects, which feature in the vast majority of applications, ranging from the visual control

of robotic manipulators [8] to hands-off interfaces for human-computer interaction [2].
Almost all model-based trackers work on the same basic principle:

Measurement: A number of key features, usually corners or edges, are detected in each
frame of the image sequence. These features are known to correspond to features in
a 3D model of the target.

Pose estimation: The image positions of the detected features are used to calculate the
target’s pose relative to the camera: that is, its relative position and orientation.

Filter: The result of this pose calculation is often filtered to reduce the effects of noise in
the feature detectors, usually drawing on some sort of smooth motion assumption
(which is reasonable, given that the motion of rigid objects is governed by inertia).
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Predict: The position of the target is predicted in the next frame, again using the smooth
motion assumption, and the key features are searched for in small windows around
their expected image positions. This local search allows the tracker to run quickly,
and overcomes any problems establishing correspondence between model and image
features.

The pose estimation problem is typically over-constrained, in that there are usually more
measurements available than are required. Recent tracking algorithms [6, 7, 11] have
responded to this redundancy by employing all the measurements and some sort of least-
squares pose fitting criterion. The problem with such approaches is that they are easily
deceived by the sort of rogue measurements so often produced by visual feature detectors.
Moreover, a poor pose estimate in one frame can easily lead to an unrecoverable tracking
failure in the next.

An alternative approach is to use a minimal subset of the data to estimate the pose.
So long as one subset of good, accurate measurements exists, the rest of the data can
be ignored and gross errors will have no effect on the tracking performance. The key
to the design of such trackers lies in the selection of the best subset. Typically, some
sort of clustering or consensus criterion is used: if the pose suggested by one subset also
explains a significant proportion of the other measurements, then that pose is very likely
to be correct. While some trackers have already been developed along these lines, they
have tended to be rather specialized, requiring for instance stereo camera set-ups [15] or
restrictive vertex-pair features [16]. Here we present a general tracking algorithm, which
works with a single camera and is suited to a wide range of difficult targets. State-of-
the art performance is achieved by properly reconciling single frame measurements with
inter-frame motion constraints.

In Section 2 we discuss the problems with least-squares pose fitting and go on to
consider alternative, minimal information techniques. The “alignment” algorithm [10] is
reviewed as a robust technique for estimating the pose from just three image points. By
placing the alignment algorithm within the RANSAC regression paradigm [4], it is possible
to reliably select the best three points by looking for a consensus with other points in the
image. In Section 3 we consider the use of RANSAC/alignment pose estimation in a visual
tracking algorithm. The question here is how to reconcile the pose estimate from a single
frame with predictions from previous frames to produce the best tracking performance.
While this could be tackled using a separate Kalman filter, a more elegant solution would
be to perform the filtering in conjunction with the pose estimation. This is achieved
within a Bayesian inference framework, which describes how to properly combine intra-
frame consensus information with inter-frame motion constraints. The resulting algorithm
is applied to the difficult task of tracking a human face under adverse conditions: low
contrast, rapid motion and occasional occlusion. The performance of the tracker is very
good, and its robustness permits the use of noisy, computationally cheap feature detectors,
so that frame-rate operation is comfortably achieved on standard hardware.

2 Regression techniques for pose estimation

Least-squares

Suppose we have a set of points in an image with known correspondences with a set of
points in a full 3D model of an object, and we wish to calculate the pose of the object
relative to the camera. Even though the problem can be solved using only a few of

2



\ Search window —_ -~
\ DX, T
CA IS z S S
\\\\—- o \\\ “ /// «// \(’// \\7/\\ " .
fe e Co T \ »— Prediction
\ \ \ \ / \
\ \\ oA \
i ‘ Target square —= j
\ \ A
\ AN \\
3 < Least-squares |, Sy
//’/ \\\\ //’/“\\\ SO|utI0n ‘\ /‘\//' /,1
:r \\ | ) “‘_7,——’ \\‘ Nl //,/ . B
\ B \_7—’ \ C ; , \\ ;\/,,
s Coo-T
(a) Framen (b) Frame n+1

Figure 1: Least-squares tracking.

Consider the task of visually tracking a square in the plane, by delecling ils corners in
each frame. The square is free to translate and rotate within the plane, and isotropic
expansion is also allowed, though the square is, in fact, stationary. In frame n a gross
error from one corner detector produces a least squares solution which implies a 10°
rotation. If a constant velocity model is used to predict the square’s location in frame n+1,
then it is entirely possible that all the actual corners might lie outside the local search
windows used by the feature detectors, leading to a serious tracking failure.

the points, it is intuitively sensible to try to use all the available information, as this
should produce the most accurate result. The resulting over-constrained problem could
be tackled using some sort of least-squares technique, perhaps weighting each point’s
influence by the amount of confidence we have in that particular measurement. Indeed, a
least-squares approach is often taken in object recognition and tracking systems: see, for
example, [6, 7, 11].

The problem with least-squares techniques is that they are easily deceived by a rogue
measurement. Suppose that one of the point detectors produced a gross error (which is
bound to happen eventually with simple feature detectors), as in Figure 1(a). The least-
squares solution for the object’s pose is clearly poor. More serious, though, is the effect one
poor result can have on the subsequent tracking performance. If the least-squares solution
was used to predict the object’s position in the next frame, then it is entirely possible that
all the actual points might lie outside the search windows of the point detectors, leading
to a catastrophic tracking failure, as in Figure 1(b).

Minimal information techniques

At the other end of the spectrum are those techniques which attempt to calculate the pose
using the minimum amount of information. For example, we could calculate the pose of
the square in Figure 1(a) using only the corners detected at A and B, which would give
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Figure 2: Three points admit two poses under weak-perspective.

The figure shows a stylized face in two different poses being viewed through a weak-
perspective camera. In both images the eye and nose points appear in identical relative
position. The alignment algorithm could be used lo infer the two poses from the eye and
nose points.

a perfect solution. For the case of three-dimensional objects viewed through a camera,
the smallest number of points which usefully constrain the pose is three. Assuming a full-
perspective imaging model, equivalent to a pinhole camera, a closed-form technique exists
to calculate the pose, up to a four-fold ambiguity, from three image points [4]. However,
the calculation requires significant camera calibration, and is also very complicated.

An alternative is to assume a weak-perspective (or scaled orthographic) imaging pro-
cess, valid when the viewing distance is large compared with the depth variation across the
target. Since weak-perspective pose estimation is used extensively in the rest of this paper,
we shall take some time here to examine it in a little detail. The weak-perspective projec-
tion from a model point (X,Y,7) in model-centered coordinates to an image point (z,y)
is described mathematically as follows:

X

x Ri1 Rio Riz i, Y
= 8 (1)

Yy Ry1 Ray Ras iy 7

1

The projection describes a rigid body rotation of the object by the rotation matrix R,
a translation parallel to the image plane (¢;,t,), orthographic projection onto the image
plane and an isotropic scaling s in the plane. Under these viewing conditions, three points
admit only two possible poses, which can be found using the “alignment” algorithm [10].
The calculation is reliable, simple, stable and closed-form. It takes as input three image
points (z;,y;) with corresponding model points (X;,Y;, Z;), and returns the rotation ma-
trix R, the translation vector (¢;,¢,) and the scale factor s for the two possible solutions
— see Figure 2. Moreover, the calculation can be adapted to work with a combination of
points and lines [14].



Corners | Consensus set
AB ABC
AC ABC

AD AD
BC ABC
BD BD
CD CD

Table 1: RANSAC for the square in Figure 1.

Using RANSAC, no extended consensus is found whenever the corner D is used in the
pose calculation: only the two corners used to find the pose lie in the consensus set. The
measurement at D is therefore rejected as an outlier, and the correct pose is found using
any two of the measurements taken al corners A, B and C.

Random sample consensus

With a minimal information technique, such as the alignment algorithm, we have to decide
which set of three points to use. This can be accomplished within the RANSAC (RAndom
SAmple Consensus) regression paradigm [4], introduced into the vision literature in 1981.
The idea behind RANSAC is to find a significant group of points which are all consistent
with a particular pose, and reject the remaining points as outliers. A RANSAC/alignment-
type pose calculation might take the following form:

1. Choose three image points and calculate the two solutions for the object’s pose using
the alignment technique.

2. Using each calculated pose, back-project the whole model into the image using (1)
and identify which of the observed points lie within some error margin, say r pixels,
of the back-projected points. This defines the consensus set for each candidate pose.
The size of the consensus set will be greater than or equal to three.

3. Repeat 1 and 2 for all combinations of three points. Choose the pose which is
supported by the largest consensus set. If there is a tie, select from the tied solutions
the pose which best explains the measurements in a least-squares sense.

For the simple two-dimensional example in Figure 1(a), assuming a suitable value for r,
RANSAC would produce the results in Table 1. The measurement at corner D is correctly
identified as an outlier, and the pose of the square is calculated accurately using the other
corners.

The single parameter in the RANSAC algorithm, r, is best determined empirically. Too
small an r will result in no extended consensus being found, too large and all the candidate
pose solutions will be supported by large consensus sets. r should be set somewhere
between these two extremes, so that typical noisy data produces consensus sets of differing
sizes. For the tracking applications described in this paper, a value of 5 pixels was used
throughout. See [4] for a more thorough discussion of how r may be sensibly established
using either analytical or empirical means.

The original formulation of the RANSAC paradigm differs from the process outlined
above in two ways. First, we choose to consider all combinations of three points, whereas
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in the original paradigm 3-point samples were selected randomly until a suitably large
consensus set was found. It would be nice to avoid this random sampling if at all possible,
since it introduces another parameter into the algorithm, the size of a suitably large
consensus set. With models of up to nine points, it is possible to examine all 84 of
the 3-point combinations and maintain tracking at frame rate on standard hardware (see
Section 3). Random sampling need be considered only for larger models, where it could be
used to maintain fast tracking. The original RANSAC paradigm also called for the pose to
be refined (probably using least-squares) on the evidence of the entire consensus set, not
just the original three points. While this might produce higher quality results in a single
image, we consider it both time-consuming and unnecessary (least-squares techniques tend
to be iterative and also require a large consensus set for stability [9]).

It was pointed out in [13] that the robustness of RANSAC is contingent on the existence
of at least one subset of the points being consistent with the correct pose. If Gaussian
noise were to corrupt all the data, then the best pose estimate would be available from
a least-squares technique, and not RANSAC. However, the Gaussian noise assumption
is rarely applicable to visual feature detectors, which are prone to lock on to the wrong
feature and produce gross errors. This claim is substantiated in Figure 3, which shows the
measurement error as a “cheap and nasty” feature detector (just a local dark-spot finder)
attempts to follow a nostril on a moving face. It is clear that this noise is not zero-mean
Gaussian: the nostril is well tracked at times, and then effectively lost when the head is
turned and the nostril is partially obscured.

3 Tracking using RANSAC and alignment

A consensus tracker

The RANSAC/alignment pose estimation technique is robust and fast enough to form the
core of a real-time visual tracking system. We implemented a RANSAC/alignment tracker
and used it to track a face using six point features and simple, computationally cheap
feature detectors — see Figure 4. The 3D model coordinates of the eyes, lip shadow and
eyebrow centre were measured by hand on the face: the remaining model coordinates were
automatically acquired from an image sequence using the scheme outlined in Appendix A.

The output of the simple feature detectors is extremely noisy and prone to gross er-
rors, though RANSAC regression should cope with this. The advantage of simple feature
detectors is their speed: the complete six-point tracker runs at 125Hz on a Sun SparcSta-
tion 10 equipped with a frame-grabbing board!. At first no filtering was applied to the
pose estimates, and at such high sampling rates no real prediction stage is required: the
back-projected feature locations in one frame were used to initialize the feature detectors
in the next.

So that different tracking algorithms could be fairly compared, a 30 second image
sequence was recorded on video tape and repeatedly used for the tracking experiments.
The video shows one of the authors moving his head freely and quickly: see Figures 5-7
for some typical frames. No special lighting was used, and no make-up was applied to
enhance the facial features. A range of facial expressions is represented, and the face is

YAt first sight there seems little point in sampling the image stream any faster than 50Hz, the video
field rate. However, the tracking algorithm is of an iterative nature and a high tracking rate allows the
algorithm to converge on the same image, improving its performance considerably.
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Figure 3: Tracking error of a typical feature detector.

To detect a nostril, a simple feature detector searches a 10 X 10 pizel window around the
expected nostril position and locates the darkest pizel. This simple strategy works well
when the nostril is visible, finding the nostril position to within, typically, three pizels
(which is reasonable, since the nostril measures about 6 x 6 pizels in the image). When
the head is lurned so that the nostril is less prominent, between cycles 500 and 1100, the
feature detector starts to show a bias as it finds instead the shadow around the outline of
the nose. There are also many isolated outliers (gross errors) in the x and y traces. This
sort of behaviour is typical of simple visual feature detectors, and demonstrates that it is
unwise to assume zero-mean (Gaussian noise on the detector outputs. The experiment is
slightly flawed in that the “true” nostril position is oblained by back-projecting the oulput
of a visual tracker, which is of course not perfect, but the non-stationary noise processes
are nevertheless evident.



Figure 4: Features and search windows for face tracking.

Dark-pizel finders (which simply return the location of the darkest pizel within their local
search windows) were used to detect the eyes, nostrils and the shadow below the lower lip.
A coarse correlation-based detector was used to detect the centre of the eyebrows using a
dark-light-dark correlation template.

partially occluded about 20 seconds into the sequence. The motion is fairly unconstrained,
with angular velocities up to 1.4 rad/s, and angular accelerations up to 14 rad/s.

Part of the output of the tracker (the orientation of the face) is shown in Figure 5.
Also displayed is the magnitude of the implied angular acceleration, which reflects how
smooth the tracking is. The first thing to notice is that the pose estimates are a little
noisy. This is because the tracker is operating with a relatively small number of data
points, six. In [4] it is estimated that a consensus set of eight points provides a 95%
probability that compatibility with an incorrect model will not occur. So even with eight
points, an erroneous pose might explain all the data points every twenty or so frames.
With six points, we would expect a fairly noisy output, as erroneous poses frequently
admit sizable consensus sets. This effect is most pronounced when the feature detectors
are least reliable, and in fact the face is lost about 20 seconds into the video sequence,
which is when the hand occludes part of the face.

There are two immediate steps which could be taken to improve the tracker. We could
include more points in the model, but this would slow the tracker and there is of course no
guarantee that any more suitable features can be found on the target. Alternatively, we
could assume smooth motion and filter the pose estimates over time. The traditional way
to do this would be to attach a Kalman filter to the output of the tracker, as in [3, 7]. A
more elegant approach, which we consider in the sequel, would be to combine the filtering
with the pose estimation. In so doing we avoid the cumbersome machinery of the Kalman
filter, with its computationally expensive matrix inversions. We can also assume a more
appropriate measurement noise model than the Gaussian form implicit in the standard
Kalman filter framework.
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Figure 5: Performance of the consensus tracker.

The upper three traces show the estimated orientation of the face in an angle-axis form:
the axis of rotation is given by (q1, q2, ¢3), and the magnitude of the rotation is ||q|| rads.
The orientation is illustrated as a drawing pin in some sample frames at the top of the
figure. The bottom lrace shows the molion smoothness in terms of the magnitude of
the angular acceleration ||§w||, given in rads/cycle*. Tracking is maintained until about
20 seconds into the sequence, when a hand partially obscures the face.



A temporal continuity tracker

The RANSAC/alignment tracker can be modified so that the candidate poses are selected
not on the sizes of their consensus sets, but on the smoothness of the implied motion.
More formally, we replace step 3 of the algorithm with:

Repeat 1 and 2 for all combinations of three points. Choose the pose that
produces the smoothest motion based on previous frames.

With high sampling rates and typical facial motions, we expect little motion from frame to
frame. If we assume zero-mean Gaussian distributions for the linear and angular velocities,
we could select the pose which minimizes

[v[? [l
exp (— 207 ~ 5g2 (2)

where v is the linear velocity implied by the new pose, w is the angular velocity, and o;
and o, are the standard deviations of ||v|| and ||w]|| respectively. It is not necessary to

attempt to model the individual components of velocity and their covariances. If the
sampling rate was lower and the motion faster, then a constant velocity model would
be more appropriate than a zero velocity one: however, the resulting system would be
more sensitive to noise and poor predictions could lead to complete tracking failures, as
in Figure 1. When the motion from frame to frame is small enough, a zero velocity model
imparts greater robustness to the overall tracking system.

A tracker was built using this algorithm and applied to the standard video sequence
of the moving head: the results are shown in Figure 6. The bottom trace indicates
significantly smoother tracking, and the quality of the output would be acceptable for
most applications. However, the tracker loses lock around cycle 850, where the head
executes a high velocity manoeuvre. This is not too surprising: the true pose implied
a large velocity which would not have scored well on the basis of (2). The tracker is
over-smoothed, behaving in much the same way as a more conventional Kalman-filtered
tracker set up with too much confidence in the motion model and too little confidence in
the measurements.

A temporal consensus tracker

The key to successful tracking is to make use of both the intra-frame consensus information
and the inter-frame motion constraints in a sound, coherent manner. This can be accom-
plished within a Bayesian inference framework. Suppose we have a set of measurements m
and a pose hypothesis H. Then

P(m | H) P(H)
P(m) (3)

P(H | m) =

Our ultimate goal is to maximise the P(H|m) term, the a-posteriori probability. This term
depends on two probability functions. The P(H) term, the prior, expresses our prior belief
in a particular pose in the absence of any measurements. In this case it would embody the
smooth motion assumption. The P(m | H) term, the evidence, should reflect the perfor-
mance of the feature detectors. The P(m) term is merely a normalization function, set to
ensure that P(#|m)+ P(=H|m) = 1. Direct maximization of the a-posteriori probability
is infeasible: for most realistic evidence and prior terms, the a-posteriori probability is a
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Figure 6: Performance of the temporal continuity tracker.

Since the motion in the image sequence is predominantly rotational, the tracker was im-
plemented using the Gaussian distribution (2) with no ||v|| term. Tracking is maintained
until the face executes a high velocity manoeuvre around cycle 800. The bottom lrace

indicates significantly smoother tracking than was achieved with the consensus tracker.
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complicated function which would resist analytical or fast numerical maximization. But
we could use the a-posteriori probability to choose between the candidate pose solutions
produced by the RANSAC/alignment algorithm.

As with all such inference processes, the particular choice of a prior probability function
is somewhat arbitrary, so long as it reflects any knowledge we have about the target’s
motion. If we assume that the magnitudes of the target’s linear and angular velocities are
Gaussian distributed with zero mean and standard deviations o; and o, respectively, then
a suitable prior would be?

vI® el

P(H) x exp (—‘2712 557 ) (4)

where v is the linear velocity implied by the new pose, and w is the angular velocity.

We could also use a Gaussian function for the evidence term, reflecting noisy feature
detectors with zero bias and standard deviation o4 pixels. If d; is the discrepancy in pixels
between an observed and back-projected feature location, then

—zid?)

P(m|H) o« exp ( 207 (5)

However, with such an evidence function a rogue measurement could still over-influence
the selection process. More in keeping with the philosophy of this paper would be to use a
discrete measurement model which describes the probability p that each detector locates
a feature to within r pixels of its true position. Then, considering the n features which
were not used to calculate the pose, if m of them are detected within r pixels of their
back-projected image positions, we have

Pm|H)= "Cp p"(1-p)"™" (6)

We are, in effect, assigning a probability distribution to the size of the RANSAC consensus
set. With this Binomial distribution, a distant outlier would influence the selection process
to the same extent as a mild outlier, reflecting the fact that the feature detectors are about
as likely to produce a gross error as they are a moderate one.

Formally, the temporal consensus tracker is identical to the consensus tracker but with
a modified step 3:

Repeat 1 and 2 for all combinations of three points. Choose the pose that
maximises

2 2
PO x "Cor (1= 9 exp (_uvu lwl ) .

207 202

The performance of the temporal consensus tracker, illustrated in Figure 7, is very
good. The pose estimates show much of the smoothness of the temporal continuity tracker,
without being over-smoothed: as a result, the tracker can cope with the high angular
velocity around cycle 800, and the face is successfully tracked to the end of the 30 second

?For a continuous distribution of pose hypotheses, P(#) is technically zero for any particular pose.
To make our probability analysis rigorous, we must imagine a finely quantized hypothesis space and
write P(H) = fu(H)dH, where fz(#H) is the probability density of H and §# is the size of the quantization
bins. In the sequel, we shall abbreviate this notation and simply write P(H) o« fx(H).
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Figure 7: Performance of the temporal consensus tracker.

As with the temporal continuity tracker, no ||v|| term was used in (7). The other param-
eters were sel to reflect the nature of the molion and the feature detectors: o, = 0.04
rad/cycle (about twice the maximum angular velocity encountered in the image sequence)
and p = 0.7 (the feature detectors get it right about 70% of the time). By properly com-
bining single frame measurements and inter-frame constrainls, tracking is maintained
through high velocity manoeuvres and partial occlusion of the target. Moreover, the bot-
tom trace indicates significantly smoother tracking than was achieved with the consensus
tracker.
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Figure 8: Coping with different facial expressions.

The subject’s face is being tracked with five dark-pizel detectors, locating the eyes, nostrils
and the shadow beneath the lower lip. The tracker’s orientation estimate is displayed as
a drawing pin in the top left hand corner of the frame, and the back-projected feature
locations are superimposed on the image. When the subject speaks and opens his mouth,
teeth are visible where the lip shadow is expected to be and the model is no longer accurate.
The tracker, however, can cope with this: it simply ignores the affected lip measurements,
since they don’t agree with other measurements or imply smooth motion.

video sequence. The tracker’s success is remarkable given the lack of high contrast features
on the target and the simplicity of the feature detectors. Moreover, the tracker can cope
with different facial expressions (equivalent to nonrigidity of the target, producing slight
model incompatibility) and mild occlusion of the face, since measurements of the affected
features will not contribute to extended consensus sets or imply smooth motion: the a-
posteriori probability function (7) will automatically select reliable features — see Figure 8.
The temporal consensus tracker would appear to outperform other face trackers described
in the literature [1, 12].

There is no reason why the tracker should not be equally successful with other types of
target. It is only necessary to have a 3D model of, say, six or more detectable features on
the target, and suitable, fast feature detectors. These features need not be points, since
the alignment algorithm can be adapted to work with a mixture of points and lines [14].
With larger models it may not be possible to evaluate all the 3-point combinations and
still achieve frame-rate operation. However, the tracking speed could be maintained using
random sampling, in the spirit of the original RANSAC paradigm.

4 Conclusions

A new model-based tracking algorithm has been proposed, eschewing least-squares pose
fitting in favour of a more robust minimal information approach. The well-established
“alignment” algorithm has been embedded within the RANSAC regression paradigm to
form the heart of the tracker. By elegantly combining intra-frame observations with inter-
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frame motion constraints, it is possible to avoid a separate and costly filtering stage:
moreover, the inappropriate Gaussian observation noise assumption is replaced by a more
realistic Binomial model. The resulting tracker produces state-of-the-art performance
when applied to the difficult task of tracking a human face under adverse conditions, and
should be equally successful with a variety of other targets.
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A Model acquisition

Given enough model points to maintain tracking under controlled conditions (four will
usually do if the target is unoccluded and moving slowly), it is straightforward to acquire
new model points using a Kalman filter [5]. The filter’s state variable, xg, is the current
estimate of the new feature’s 3D model-centered coordinates. The filter also maintains an
estimate of the state vector’s covariance matrix Pj.

The filter is initialized with a rough guess of the model coordinates xg, and a covariance
matrix Py with large entries to reflect an initial lack of confidence in the state vector. Then
the target is tracked using the temporal consensus tracker and the established model, while
the image position of the new feature is followed using an appropriate feature detector.
Measurements are taken of the new feature’s observed image location minus the scaled

image plane translation:
[2
Zj = Tlos|
y by

From (1), the expected value of this measurement is given by Hxy, where

—s Ri1 Ry Ris
Ry1 Riy Ry

The difference between the observation and the expectation is termed the innovation, vp.
The variance associated with the innovation is given by

Sp=F [vkvﬂ —~HP,HT + R

where R is the variance of the observation noise. The state vector and covariance matrix
are updated as follows:

Xpy1 = Xgp+ Wivy
Ppy1 P, — WS W/
where Wy = P.H'S;!

Figure 9 shows the Kalman filter converging as a new feature, in this case a small mole,
is acquired on a moving face. The model-centered coordinates of the mole are established
within a few seconds.
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Figure 9: Acquiring the 3D model-centered coordinates of a new feature.

The 3D model-centered coordinates of a small mole on a face are to be established. Start-
ing with a rough guess of the coordinates, in this case (1.0, —1.0,0.5), the mole is followed
using a simple dark-pizel finder while the rest of the face is tracked using a temporal con-
sensus tracker. The discrepancy between the mole’s observed and expected image positions
is fed into a Kalman filter, which updates the estimate of the 3D coordinates. Within a
few seconds the mole’s location on the face is accurately established at (0.63, —0.59, 0.05).
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