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Abstract

Human face detection has always been an important problem for face, expression and gesture recognition. Though numerous attempls
have been made to detect and localize faces, these approaches have made assumpltions that restrict their extension 1o more general cases. We
identify that the key factor in a generic and robust system is that of using 2 large amount of image evidence, related and reinforced by model
knowledge through a probabilistic framework. In this paper, we propose a feature-based algorithm for detecting faces that is sufficiently
generic and is also easily extensible (o cope with more demanding variations of the imaging conditions. The algorithm detects feature points
from the image using spatial filters and groups them imo face candidates using geometric and gray level constraints. A probabilistic
framework is then used to reinforce probabilities and to evaluate the likelihood of the candidate as a face. We provide results to support
the validity of the approach and demonsteate its capability to detect faces under different scale, orientation and viewpoint. © 1997 Elsevier

Science B.V.
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1. Introduction

With the advancement in computer and automated
systems, one is seldom surprised to find such systems
applicable to many visual tasks in our daily activities. Auto-
mated systems on production lines inspect goods for our
consumption, and law-enforcement agencies use computer
systems to search databases of fingerprint records. Visual
surveillance of scenes, visual feedback for control, etc., all
have potential applications for automated visual systems.

One area that has grown significantly in importance over
the past decade is that of computer face processing in visual
scenes. Researchers attempt to teach the computer to recog-
nize and analyze human faces from images so as to produce
an easy and convenient platform for interaction between
human and computers. Law-enforcement can be improved
by automatically recognizing criminals from a group of
suspects. Security can also be reinforced by identifying
that the authorized person is physically present. Moreover,
human facial expressions can be analyzed to direct robot
motion to perform certain secondary, or even primary,
tasks in our routine work requirements.

In the daunting task of human face processing, face detec-
tion is one of the most important problem to be solved. It is a
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pre-requisite for automatic face recognition and expression
analysis. Most automatic face recognition algorithms have
either assumed that the face has been cropped from the
image (Craw et al. [6]; Turk and Pentland [31]}, or they
have assumed some constrainis about the face and/or back-
ground such that the face detection process becomes trivial
(Chow and Li [4]).

This task is certainly not trivial when the background is
complex, the illumination is varied, and the pose of the face
not fixed. Though many successful approaches have been
attempted towards face detection and localization, the
assumptions and the constraints made in these approaches
are still too restrictive, making an extension of the algorithm
to more general cases a difficult task. As such, face detec-
tion still remains a problem that demands greater attention
and further research efforts,

2. Related work

There are a few distinct approaches to face detection. The
top-down model-based approach assumes a different face
model at different coarse-to-fine scales. For efficiency, the
image is searched at the coarsest scale first. Once a match
is found, the image is searched at the next finer scale until
the finest scale is reached. Some of the work using this
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approach were reported by Yang and Huang [33], and
Lanitis et al. [13]. In general, only one model is assumed
in each scale (usually in the fronto-paralle] view) and thus it
is difficult to extend this approach to multiple views.

The bottom-up feature-based approach searches the
image for a set of facial features and groups them into
face candidates based on their geometrical relationship.
Leung et al. [14], Sumi and Ohta [27], and Yow and Cipolla
[35] reported work using this approach. Though this
approach can be easily extended to multiple views, it is
unable to work well under different imaging conditions
because the image structure of the facial features vary too
much to be robustly detected by the feature detectors.

A texture-based approach was reported by Dai et al. [8].
Faces are detected by examining the spatial distribution of
the gray-level information in the subimage (using Space
Gray Level Dependency (SGLD) inatrices proposed by
Haralick [10]). This is again not easily extensible to multi-
ple viewpoints.

The neural network approach detects faces by sub-
sampling different regions of the image 1o a standard-
sized subimage and then passing it through a neural network
filter. Recent work was reported by Sung and Poggio [28],
and Rowley et al. [22]. The algorithm performed very well
for fronto-parallel faces but performance deteriorates when
extended to different views of the face. It is still not possible
to extend the algorithm to detect faces in profile views.

The colour-based approach labels each pixel according to
its similarity to skin colour, and subsequently labels each
subregion as a face if it contains a large blob of skin colour
pixels (Chen et al. [3]; Dai and Nakano [7]). It can cope with
different viewpoint of faces (Chen et al. [3]) but it is sensi-
tive to skin colour and the face shape.

Motion-based approaches use image subtraction to
extract the moving foreground from the static background.
The face is then located by examining the silhouette (Trew
et al. [29]) or the colour of the differenced image (Schiele
and Waibel [26]). This approach will not work well when
there are a lot of moving objects in the image.

3. About image evidence

So what can we learn from the attempts of these various
researchers? Lanitis et al.'s approach is able to locate faces
very well because they make use of gray-level image profile
in addition to edge information in their statistical shape
model (active shape model — Cootes et al. [5]) of the face.
Sung and Poggio's method works very well too because
almost every pixel ina 19 X 19 subimage is used to evaluate
the output, and many of these pixels encode spatial and
gray-level information. However, these methods at present
are limited to fronto-parallel views. Leung et al.’s feature-
based approach seems to give the flexibility of extension
into different viewpoints, but the lack of evidential support
in the feature detection process curbed its success.

On the other hand, we can see why Leung et al.’s, Sumi
and Ohta's method did not perform as well. The system is
dependent on too few image features, which camnot be
extracted robustly due to image noise or noise in the feature
detector. Leung et al. use the response from a set of
steerable-scalable filters to find facial features, and Sumi
and Ohta use template matching to identify eyes. In both
these cases the evidence for a feature to be present comes
largely from the response of the filter or the correlation
output. As a result, there is a lack of evidence to support
the hypothesis of a face and therefore the performance of
the algorithm is affected.

Human vision is very robust because we made use of a
large amount of evidence from the visual image that is
formed in our retina. Some of these evidence include
edges, corners, lines, bars, blobs, intensity, shape, lexture,
colour and even motion. These types of evidence are well-
used by vision researchers in their various approaches.
Another form of evidence that is less well-exploited is
that of contextual evidence, i.e. the knowledge that certain
features occur in the vicinity of other features. For example,
we know that eyes occur in pairs. So, when we find an eye in
the image, the existence of this eye is evidence for the
existence of the other eye.

In this paper, we adopt a bottom-up feature-based
approach which has the flexibility to be extended to differ-
ent scale, orientation and viewpoint of faces in the image. A
large amount of geometric, spatial and gray-level measure-
ments are used for robustness. Due to the use of many
different types of image evidence, we can reduce the strict-
ness of the requirement in each piece of evidence (e.g.
threshold level of edge detection filter response, etc.). This
makes the algorithm more robust to noise and occlusion,
without creating too many false positive candidate faces.

4. The face model

We always need a model of the object in any object
recognition task. Leung et al. [14] model the face as a
statistical graph consisting of 5 points, namely the eyes,
nostrils and nose tip. The advantages of choosing these
points are clear: these points are ‘interior’ points on the
face (as opposed to ‘exterior’ points lying on the face
boundary which are easily influenced by background
clutter). These points are also ‘rigid’, i.e. the inter-feature
geometry is not easily deformed by different facial expres-
sion or different personal identity. However, the disadvan-
tage of using these points are that they span only a small
area on the face (thus a large margin of error).

A model of an object in terms of low level image
features (such as edges, corners, etc.) is always very diffi-
cult to use because the image structure changes very dras-
tically in different images due to changes in scale, image
noise, quantization noise and illumination variations. As
such, models of explicit shape (e.g. deformable template
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models — Yuille et al. [36]), only work well in high resolu-
tion and relatively noise-free images. However, a model of
the object described in terms of higher level features {such
as a face described in terms of eyes, nose and mouth), is
usually quite stable and robust.

We therefore model the face as a plane with 6 oriented
facial features (namely, the eyebrows, the eyes, nose and
mouth). In addition, the ‘cheek’ regions (regions under the
eyes and to the left or right of the nose and mouth positions),
must be relatively feature-free and edge-free. This face
model has the advantage of using ‘interior’ points such as
Leung et al.’s [14], and yet it spans a larger area over the
actual face, thus making the detection more robust and
reliable.

Also, due to occlusion or missing features (eyebrows,
usually), we need to decompose the face model into com-
ponents consisting of 4 features, which are common occurr-
ences of faces under different viewpoints or different
identity. These groups are called Partial Face Groups or
PFGs (Yow and Cipolla [34]). These PFGs are further sub-
divided into components consisting of 2 features (horizontal
and vertical pairs — Hpair and Vpair) (Fig. 1) for the purpose
of perceptual grouping and evidence propagation.

In order for feature detection to be robust we have to use
image features that are invariant to changes in scale and
illumination intensity. We observe that at low resolutions,
all the 6 facial features will appear only as dark elongated
blobs against the light background of the face. And since
edges are illumination invariant to a large extent, we model
the 6 facial features as pairs of oriented edges as shown in
Fig. 2. The image is smoothed before the feature detection
process so that any high-resolution features will take the
form of the lower resolution ones. The vertical edges in
the eye and nose model are only vsed to provide evidence
in labelling the facial feature and is not an important criteria
in the detection of the feature.

The distinction between facial features and image fea-
tures should be made clear. In this paper, we define facial

T — ——— —
= I3 O O —_—
eychrow eye nose mouth

Fig. 2. The facial feature models.

features as high-level entities which are present on our faces
in accordance 1o our intuitive idea of the components of a
face. Examples are eyes, nose, ear and mouth. We define
image features as the low-level entities which we can find
from a digital image (e.g. edges, corners, gray-level of
pixels and regions). The term features can be used to
mean either or both facial features and image features.

5. Perceptual grouping

It is obvious that with such a low resolution model, there
will be lots of false positive feature candidates. We there-
fore propose a perceptual grouping framework that groups
these feature candidates into faces using geometrical, gray-
level and spatial information. Feature candidates that cannot
be grouped will be discarded.

Perceptual organization is a phenomenon in human vision
in which we are able to immediately detect relationships
such as collinearity, parallelism, connectivity, and repetitive
patterns among image elements. It has been extensively
studied by investigators in psychology and computer vision.
Excellent surveys of these works can be found in Lowe [15]
and Paimer [19].

The Gestalt laws of organization (Koffka [1!]; Kohler
[12]) states the common rules by which our visual system
attempts to group information. Some of these rules includes
proximity, similarity, common fate, continuation and
closure, Many good perceptual grouping algorithms (Sarkar
and Boyer [25]; Mohan and Nevatia [17]) make use of such
principles for effective grouping and high performance.

Triesman [30] also proposed a two stage model of per-
ception. The first stage, which is described as pre-attentive
perception, extracts image information into points and
regions of interest, which directs the attention of processing
efforts of the next stage. The second stage of perception, the
attentive stage, will perform grouping, comparison, evalua-
tion and reasoning activities based on the detection and
identification of meaningful object groups in the image.

We will model our face detection process as a two stage
model of perception based on Triesman. The first stage
operates on the raw image data and produce a list of interest
points from the image, indicating likely location of facial
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Fig. 3. Preattemtive feature selection process.

features. The second stage will examine these interest
points, group them based on Gestalt principles and label
them accordingly to knowledge acquired from training
data. The labelled features are further grouped based on
model knowledge of where they should occur with respect
to each other.

5.1. Preattentive feature selection

The preattentive feature selection is performed in two
steps. First, a list of interest points is found from the
image using spatial filtering. As we pointed out earlier, at
a coarse scale the 6 facial features each resembles a dark
elongated bar on a light background. Hence, these features
can be found by smoothing the input image and then filter-
ing the image using a matched bandpass filter. A suitable
filter will be that of a second derivative Gaussian, elongated
at an aspect ratio of 3:1 {Yow and Cipolla [35]). Local
maxima in the response will indicate the presence and the
location of such structures in the image.

Next, the edges around each interest point are examined.
Edges are linked based on their proximity, and similarity in
orientation and strength. A standard boundary following
algorithm (such as that given in Ballard and Brown [1])
will suffice. Assuming that the face is vertical, we look
for almost horizontal edges above and below the feature
point. If the orientation is not known, we can look for the
existence of two roughly parallel edge segments with oppo-
site polarity on both sides of the interest point. If such a
point is found, we flagged it as a facial feature point. We
further define the extent of the feature region by drawing a
box around the two edges. Fig. 3 illustrates this process.

Measurements of the region’s image characteristics
(such as edge length, edge strength, gray-level variance)
are then made and stored into a feature vector x. From the
training data of the facial features, e.g. ‘eyebrow’, we
obtained 2 mean vector py., and covariance matrix Epow
which define the class of valid ‘eyebrow’ feature vectors in a

n-dimensional space, where # is the number of components
defining the feature vector x.

A facial feature candidate / is a valid facial feature j if the
Mahalanobis distance -M,j of the feature vector x; is within
an admission threshold 7; from the class mean uj, i.e.

ﬂ{,‘]; = Th where .r"-[U = (x,- = ,L!.j)TEJ'_ I(x|' i F'_.')' (I)

This is repeated for all the 4 classes of facial features,
namely, eyebrow, eye, nose, and mouth. If the facial feature
does not belong to any of the 4 classes, it is discarded from
the list.

There is a significant advantage in using the Mahalanobis
distance. The Mahalanobis distance takes into account the
variance of the individual parameters in the feature vector,
If we use Euclidean distance, and when one of the para-
meters has a large variance, the Euclidean distance of
valid members from the class mean will be large. If the
Mahalanobis distance is used instead, this will not be the
case because the effect due to that parameter is scaled down
by its own variance. This is desirable because the effects of
the other parameters will then not be subsumed by the one
with large variance, leading to a large reduction in the
number of false positives.

5.2. Antentive feature grouping

After obtaining a set of feature points and the associated
feature region, these feature regions are then actively
grouped using our model knowledge of the face. Single
features are grouped into vertical and horizontal pairs,
pairs are grouped into partial face groups, and partial face
groups are grouped into face candidates (Fig. 4).

For each level k of grouping, a set of n, measurements
is made of the component features and stored into a
n;-dimensional vector. This vector is then projected into
its n,-dimensional class space, which was determined
from measurements obtained from faces in training data.
The Mahalanobis distance #; of this feature vector is
then evaluated and used to determine its membership in
the class.

This grouping process is effective in removing false
positives because a large number of geometric and gray-
level measurements are used to determine its validity. In
particular, the edge and spatial information about the new
region formed that is not part of the components itself

new region
—— formed

T _'Etﬁziw

new region
formcdg L B new region new region
formed formed
feature region feature pair partial face group face candidate

Fig. 4. Auentive feature grouping process.
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Fig. 5. (a) A belief network. (b} Conditional probability table (CPT).

(Fig. 4) proved to be the most effective. The effectiveness of
this grouping process in not detecting too many false posi-
tives is due mainly to the examination of edge and intensity
information in these spatial regions.

One important advantage of this bottom-up approach is
that though the spatial region to be analyzed gets larger at
higher levels, there are fewer of these regions to process. As
a result, the processing time is kept small throughout the
whole algorithm.

For each additional piece of evidence sought from the
image, an additional dimension is used in the feature vector
for classification. The more evidence we use from the
image, the larger the dimension of the feature vector. In
the neural network approach used by Sung and Poggio
[28], almost every single pixel in a 19 X 19 subimage is
used, leading to a 283-dimensional space. Though this
encodes a large amount of image evidence, the class space
occupied by valid members can be highly nonconvex, lead-
ing to great difficulty in selecting true candidates.

We therefore have to choose measurements based on
which features are significant in the image. By examining
the features in a large number of images, the measurements
that are found to be significant include:

1. the ratio of feature lengths (obtained from edge linking)

to the size of the image;

the ratio of feature lengths to other feature lengths;

the aspect ratio of a feature region;

the ratio of inter-feature distances;

the difference in orientation between features;

the number of directional edge pixels in a region {(nor-

malized to the size of the region);

7. the ratio of edge strengths in a region to edge strengths of
facial features;

8. the mean gray level of a region (normalized to intensity
distribution);

9. the variance in the gray-level distribution of a region.

SRR ER NS

6. Probabilistic framework

The perceptual grouping framework enables us to reject
grossly incorrect groupings of face candidates. Still, we
have to deal with a reasonable number of false positive
faces which cannot be effectively removed by using detec-
tion thresholds in the previous section, We thus propose a
probabilistic {ramework to assign and propagate prob-
abilities among the facial features and facial groups so
that we will achieve & high confidence rate for true positive
faces.

Bayesian networks, which are also known as belief net-
works, are directed acyclic graphs, with nodes representing
random variables and arcs signifying conditional dependen-
cies specified by conditional probabilities. Bayesian net-
works do not assume independence among features, they
encode the dependencies among features (Russell and
Norvig [24]).

An example of a belief network is shown in Fig, 5(a). The
nodes with arrows pointing away from them are the parents
of those which the arrows are pointing to. This encodes the
dependency between the nodes. Each node can take either of
2 values, True or False, and has a conditional probability
table (CPT) associated with it (Fig. 5(b}).

The eniries in the CPT describe the conditional prob-
ability of each value of the variable, given each possible
combination of the values of the parent nodes. For example,
in Fig. 5, the conditional probability of the node TopPFG
being False given that the parent node Face is True is 0.4.

These set of entries can be estimated directly by using
the statistics of the set of examples (Russell et al. [23]). The
crucial value in the belief network is the prior probability
of the root node (the ‘face’ node in this case), and this is
often hard to estimate. Certainly, the choice of an appro-
priate prior depends on the complete space of hypothesis.
We may assume an uniform prior for our case,

In our previous approaches [34,35], we used a belief net-
work composed of 4 child nodes, one for each of the 4
partial face groups (Fig. 5(a}). This was shown to be highly
effective for fronto-parallel view of faces because all 4
PFGs can be detected in this view, giving a large amount
of evidence for true face candidates. However, for profile
views, the probability of the face remained low because only
one PFG can be found in the image.

To overcome this, we propose a new belief network struc-
ture, using the facial features as child nodes instead of the
PFGs (Fig. 6). The belief network now has 6 child nodes
instead of 4. Profile view of faces will thus have 4 pieces of
evidence (facial features) out of 6, instead of 1 (face group)

Crer
G Guor) Comn) G Cotme D Qoo

Fig. 6. The belief network used in our approach,
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Fig. 7. (a) Reinforcement belief network. (b) Vinual nodes.

out of 4 previously. This leads to a better capability of
detecting profile views of faces.

So how do we update and improve the probabilities of
these child nodes using model knowledge? As mentioned
earlier, one source of evidence that is often overlooked is the
presence of a neighbouring feature (e.g. presence of another
eye next to an eye candidate). To harness this extra piece of
evidence, we build a second belief network (Fig. 7(a)) to
reinforce the belief of each feature based on the presence of
neighbouring features.

When evidence for a facial feature becomes available, a
virtual node is created (the ‘evidence' node) and instan-
tiated, allowing the evidence, specified in the form of a
probability, to propagate through the entire network and
update all the other nodes (Fig. 7(b)). The resulting effect
is a large increase in the probabilities of the feature candi-
dates which are true facial features.

We use a propagation algorithm for singly connected net-
works given by Pearl [20] which does not make any
unfounded assumption of the conditional independence of
the system. In Pearl’s algorithm, each node when instan-
tiated with a piece of evidence will modify its parent or
child nodes by sending A or m messages to them. In addition,
each node has a k and a = value which are modified by these
X and = messages. The main difference between this propa-
gation algorithm and the one for trees (used in our previous
work [34,35]) is that nodes in a singly connected network
can have more than one parent. Our belief network structure
in Fig. 7(a) clearly requires this.

Suppose a node B has two parents A and D, and a set of
child nodes s(B} where each child node C is a member
of the set s(B), C € s(B). Also, let B have k possible values
b, i=1,....k, A have m possible values a;, j = 1,....n, and D
have n possible values d,, p = 1,....,n. The updated prob-
ability P'(b;) of a node B for the value b, is then given by

P'(b;) = aNb)w(b), (2)

where Ab;) and w(b,) are the A and 7 values associated with
node B for the value b;. « is a normalizing constant so that
all the probabilities b; sum to one,
The A value of a node B, A(b;) with a set of child nodes
s(B) is given by
Moy= [T Acte, 3)
Ces(h)
where Ac(b;) is the A message from the child C to node B for
the value b,. The « value, w(b,;), is given by
" n
ab)= 2 D Pb | a;, d)mgla)my(d,), ()
j=ip=|
where P(b; | aj, d,) is the joint conditional probability of
node B given its parents A and D, and wg(a;), wa(d,) are
the 7= messages from the parents A and D respectively.
The A message from a node B 1o one of its parents A,
Aglay), is given by

" [
Aala)= D «Bu,,)(z P, | a, d,,)h(b,-)) (5)

p=1 i=|
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Fig. 8. (a) Interest points obtained from maiched bandpass filtering (81 points). (b} Canny edge detection with zero threshold. (c) Linked edges of approxi-

mately horizontal orientation. (d) Feature regions detected (21 points).

and the m message received by a node B from its parent A,
@ glay), is
_ P

WB(”J) )\B(aj)‘ (6)
In the case of a node with more than two parents (e.g.
Vpair3), the equations are a straightforward extension of
the above. For example, if a node B has another parent E,
with r possible values, then eqns (4) and (5) will become

r m n

7= D D D Pl a, dy, e)mala)mald,)mples),

s=lj=lpm=I

{7

r n k
Mlay= > > wale)mp(d)| D P, | gy dy, e)NbB)

smlip=] i=1
(8)

Using these equations, we are able to propagate evidence
through the network when evidence for one of the nodes is
found. A node when instantiated will send A messages to its
parents, and w messages to its children. In turn, the parent
node will send new A messages to its parents, and =
messages 10 its other children. A child node receiving a
w message will only send new 7 messages to its own
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Fig. 9. (a) Horizontal pairs (4 pairs). (b) Vertical pairs (7 pairs). (c) Partial Face Groups (1 1op, 2 bottom, 1 left, 1 right). {d) Face candidates () face),

children. In this way, nodes which are conditionally depen-
dent on the node that was instantiated will all be updated.
An example illustrating the use of the above equations to
propagate evidence in a singly connected network is given
in Neapolitan [18].

The evidence for each facial feature or face group i is
related to its Mahalanobis distance, 4{;;, and the admission
threshold for the jth feature class, 7,, by:

My
(1——'1), M,;,'<Tj,

0, otherwise.
Each facial feature that is detected is assigned 4 probability

P= 9

values, Pruws Peyes Prie aNA P oy using the above equation.
When a higher level group is formed, only the probability of
the corresponding feature is propagated. For example, if a
vertical brow-eye pair (Vpairl} is formed from two facial
features, only P\, of the upper feature and Py, of the lower
feature is propagated. Likewise, only these values are
updated in the propagation process. As a result, only true
positive faces are updated to a high confidence level.

7. Preliminary implementation and results

We implement the described algorithm making the
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Fig. 10. (a).(b} Face candidaies found for subject . (¢).(d) Face candidates found for subject 2.

assumption that the orientation of the faces are vertical and
the viewpoint of the faces are fronto-parallel. This allows us
to look at the intermediate results and evaluate the per-
formance and robustness of the algorithm in the simplest
case. The scale paramelter is specified by the user as the
algorithm is run on each image. We will extend the algo-
rithm in the next few sections and show how it can cope with
variations in scale, orientation and viewpoint,

7.1. Learning the parameters of the feature class space and
conditional probabilities

For this preliminary implementation, we create a

database of 100 images by taking 10 images of 10 different
subjects under different scale and slightly different view-
point. Of these 100 images, 40 will be used as a training set
and the remaining 60 used as a test set.

We first convolve the image with a matched bandpass
filter (¢ varying from 1.0 to 3.0 depending on the size of
the face in the image)} for detecting dark bars against a
light background, which is essentially a spatial filter with
a second derivative of Gaussian in one direction, and a
Gaussian in the orthogonal direction. The aspect ratio of
the filter is elongated to 3:1 for better orientation selectivity.
Since the scale is specified by the user, and the orientation
of the face is assumed to be vertical, we use only a single



712 K.C. Yow, R. Cipolia/lmage and Vision Computing 15 (1997} 713-735

: ?v.f__"' h"ﬂ 0L

e

Fig. 11. Result of face detection on various test images.

filter at the specified scale and orientation. If scale and
orientation are unknown, we can use a family of such filters
at different scale and orientation, and examine the output of
each. This family of filters can be efficiently implemented
using steerable-scalable basis filters (Perona [21]; Freeman
and Adelson [9]).

Local maxima in the response are then found which give
a list of interest points which indicate the location of possi-
ble facial features. We examine the list of local maxima and
determine the 6 points which correspond to the 6 facial
features in our face model.

We then perform edge detection on the image using a
Canny edge finder with hysteresis threshold set to zero.
This will output all edges in the image and will ensure
maximumn robustness against illumination variations.

A local window around the interest point is then searched
for edges in the expected orientation and polarity. The size
of the search window is the same as the size of the Gaussian

derivative filter used to obtain the interest points. These
edges are then linked to form chains. We use a boundary
following algorithm given in Ballad and Brown [1] to link
the edges. The search continues to edges not in the local
window and these edges are linked if they have similar
orientation, polarity and strength as the neighbouring
edges (Gestalt laws).

For each facial feature (eyebrow, eye, nose and mouth),
each feature group (Hpair and Vpair) and partial face group
(Top, Bottom, Left and Right), we make measurements of
aspect ratio, feature length ratio, etc, (Section 3.2) based on
the positions of the 6 feature points that we have marked.
The mean and covariance of these measurements are then
obtained over the 40 training images and stored as model
data.

The perceptual grouping part of the algorithm is then
run on the 40 training images with these model parameters.
The frequency of occurrence of each feature and each

Fig. 12. Some unsuccessful cases.
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component face group are measured and entered into

P(=TopPFG | Face) = | — P(TopPFG | Face)
the conditional probability table. For example, if each of 35
the 40 training images contain a face each, but we detected = |-=
35 topPFGs correctly and 3 topPFGs falsely, we set: 40
; number of true topPFGs detected number of false topPFGs detected
= P(TopPFG | —F: =
P(TopPFG | Face) rotal number of faces (Top Face e ialimumber of topPFGs detected
35 _ 3
40' T (35+3)

Fig. 13. Varying the scale of the preatientive filter. The facial feature candidates detected by the preatientive feature selection stage are shown. Those feature

candidates that correspend 1o the true facial features are drawn as a circle instead of a square. {(a) = 3.0 (81 points). (b) o = 2.0 (177 points). (c) 0 = 1.0:(332
points). (d) Face detecied (same for ali 3 cases of o).
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Fig. 14. Varying the size of the face image. (a) Percentage size = B0%. (b) Percentage size = 60%. (c) Percemage size = 40%. (d) Percentage size = 20%.

P(—TopPFG | =Face) = |- P(TopPFG | —Face)

P
(35+3)

P(TopPFG ! Face) is not necessarily 1.0 in the set of training
images because some facial features may be occluded due to
variations in viewpoint, leading to an absence of the top
partial face group.

7.2. Fearure detection and perceptual grouping

We test the algorithm on the 60 test images, specifying
the scale of the preattentive filter for each image. We
convolve the image with the preattentive filter, and search
for local maxima and edges in the same way as described in
the training stage.

By making the same geometric and gray-level measure-
ments of the various interest points and comparing it
with the class space determined from the training stage,
we obtain a list of facial feature points for the attentive
grouping stage.

The results after verification with each feature class is
shown in Fig. 8.

The list of feature candidates is then examined to form
pairs, and each horizontal pair and vertical pair is further
examined to form partial face groups. If any two partial
face groups have some component features that are the
same, they are combined to form a face candidate (e.g. if
a bottom PFG and a left PFG are found, we combine them
to give a 6-feature face candidate). If not, each PFG by
itself will become a 4-feature face candidate. The validity
of each feature group and face candidate that is formed
is verified by comparing the geometric and gray-level
measurements of each group with the model data. The
results for the perceptual grouping stage is given in Fig. 9.

7.3. Evidence propagation and Bayesian classification

Each facial feature that is detected is assigned 4
probability values, Piuws: Peyer Prose and Poun. These prob-
abilities are assigned using eqn. 9. If the Mahalanobis
distance of the facial feature in a particular feature
class is greater than the admission threshold, the facial
feature is given a probability value of zero for that feature
class.

After the perceptual grouping process, each face candi-
date will have between 4 to 6 features associated with it. A
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il »I

Fig. 15. Varying the aspect ratio of the preatientive filier. (a) Aspect ratio = 3:1 (81 points}. (b) Aspect ratio = 2:1 (110 points). (¢} Aspect ratio = 1:1 (201

points). {d) Face detected {same for all 3 cases of o).

reinforcement belief network is initialized for each face
candidate and virtual nodes are created for each facial
feature that is found in the process.

Fig. 10 shows the face candidates for 2 subjects found by
the perceptual grouping process. As these faces cannot exist
simultaneously because they overlap, the face with the
highest probability will be selected among all the over-
lapped ones.

For subject 1, in Fig. 10(a), the top PFG is not found in the
process and so the computed probability of the face candi-
date is lower. Moreover, since the hypothesized eye location
(on the right) is actually a brow, the image evidence that is

propagated in this case is actually Py which is very low
compared to Py, in Fig. 10(b). The probabilities of the
two face candidates of subject 1 are 0.6578 and 0.9235,
respectively.

For subject 2, only the bottom PFG is found in the first
case. The probabilities of the two face candidates of subject
2 are 0,5045 and 0.9486 respectively. Clearly, without the
use of the probabilistic framework and the reinforcing of
evidence from all the other facial features, the difference
between the true and false positive candidates will be very
close, thus making it very difficult 1o successfully reject the
false candidates.
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Fig. 16. Varying the orientation of the preattentive filter, The feawre candidates that correspond to the true facial features are drawn as a circle instead of a
square, (a} Orientation = — 60° (5 features detected). (b) Orientation = - 30° (6 features detected). (¢) Orientition = 0 (6 features detected). {d) Orientation
= 30° (4 features detected). {e) Orientation = 60° (3 features detected). () Face detected in the casc of (b).
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7.4. Preliminary results

We run our preliminary implementation of the algorithm
on the test set of 60 images of size 256 X 256 pixels. These
images contain faces at different scale but mainly in the
fronto-parallel view with vertical orientation. Fifty-four
are successfully detected, giving a 90% detection rate.
Some of the successful results are shown in Fig. 11. We
can see from the results that the algorithm is able to cope
with variations in orientation and viewpoint (to a small
extent), although we have made the assumption that the
orientation is vertical and the viewpoint fronto-paraliel.
The algorithm also seemed to be robust to distractions
such as glasses, and is also able to manage under a small
amount of occlusion and absence of facial features. The
time taken to run the algorithm on these images with a
user-specified scale are about 10 s each.

Some of the unsuccessful cases are shown in Fig. 12, In
the first image, the subject’s eyebrows are actually very
close to the eyes, and at that viewpoint, it is indistinguish-
able from the eyes. However, the algorithm groups two
points in the hair region into a Hpairl component group,
forming false evidence leading to a wrong identification of
facial features.

In the second image, the subject’s left eyebrow (the right
eyebrow in the image) coincides nicely with a dark
horizontal strip in the background. As a result, the eyebrow
is grouped with the background feature into a long feature,
failing to be classified as a facial feature. A similar case
happens to the mouth, which is also grouped with the strong
edge caused by the shadow on the cheek, leading to a shiftin
the detected location of the mouth. Furthermore, due to the
shift of the mouth location, the subject’s right eye is not
detected correctly because the actual location will give an
incorrect geometric configuration of the face. Hence, a
neighbouring point which has the next highest probability
is selected instead.

In the third image, the face has rotated beyond the angle
that the algorithm can cope. And since no other possible
face candidates can be formed, no faces are detected. The
fourth image shows a case of a false detection. The ‘cheek’
region of this face configuration is relatively free of features
and hence the systemn is led to believe that this is a true
instance of a face, In the 60 test images, 7 false detects
were made, giving a false detection rate of 12%.

8. Approaches with invariance to scale, orientation and
viewpoint

Many present approaches to solve the face detection
problem have some invariance to scale, orientation and
viewpoint changes, though cither one or two of these are
usually assumed to be fixed. We will examine how these
approaches cope with scale, orientation and viewpoint
changes.

The common approach to deal with scale variations is by
examining the image at different scales and finding a match
to a face template at each scale, Fixed-shape regions at
different scales from the image are extracted, subsampled
to the size of the template or filter, and then matched to the
template. Experiments using this approach has been carried
out by Lanitis et al. [13], Sung and Poggio [28], Yang and
Huang [33]. The common problem with this approach is that
the face template (or filter) is restricted to detecting only a
single view and orientation of the face.

The feature-based approach used by Leung et al. [14],
Yow and Cipolla [35] addresses the problem of orientation
invariance by using the inter-feature distance or the affine
geometry between the facial features. However, the facial
features need to be extracted using a family of oriented
filters — a rather computationally expensive task.

Chen et al. [3] extended the matching to 3 views (Il
fronto-parallel and 2 profile views) using a fuzzy pattern
matcher based on colour. Little geometric information
is used. Sumi and Ohta [27] also attempted detection of
profile views but their approach is largely based on image
correlation.

9. Scale invariance

In this section, we will look at the effects of varying scale
on the detection of faces. In our approach, two types of
filters are used, the preattentive filter and the edge deiection
filter. Both of them are Gaussian derivative filters: the pre-
attentive filter is a second derivative Gausstan while the
edge detection filter is a first derivative Gaussian.

Fig. 13 shows the result of varying the scale of the
preattentive filter from ¢ = 3.0 to ¢ = 1.0 while keeping
the scale of the edge detection filter fixed at g = 3.0. We
observe that although 3 different values of o are used, the
face detected for all the 3 cases is the same. We also observe
that at a scale {¢ = 1.0) smaller than the one required for
matched filtering (o = 3.0), the correct facial features are
still detected, though there is a much larger number of false
detected feature points.

We subsequently vary the size of the image while keeping
the scale of the preattentive filter constant at ¢ = 1.0
The scale of the edge detection filter is also reduced and
kept at o = 1.0. Fig. 14 shows the result for the image being
reduced to 80%, 60%, 40% and 20% of the original size.
We fail to detect the facial features when the face is too
small because the image structure of these facial features are
corrupted by quantization noise. However, we are success-
ful in detecting the facial features of large faces even though
our preattentive filter is small. This is because the size of
the facial features are actually determined by the edge
detection and edge linking process, and not by the scale of
the preattentive filter.

We do a further test by varying the aspect ratio of
the preattentive filter. Fig. 15 shows the result of varying
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Fig. 17. Varying the orientation with aspect ratio 1:1. (a) Orientation = — 60° (6 features detected). (b) Orientation 30 (6 features detected).
(c) Orientation = 07 (6 features detected). (d) Orientation = 30° (6 features detected). (e) Orientation = 60° (6 features detected). (f) Face detected in the case
of (b).
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the aspect ratio from 3:1 to 1:1. We observe that the facial
features are still detected even though we reduce the aspect
ratio to 1:1. The significance of this is that we can steera 1:1
second derivative Gaussian exactly by using only 3 basis
filters (Freeman and Adelson [9]), instead of using 16
basis filters to give a 1% error approximation for a 3:1
filter (Perona [21]}) - a huge saving in computational
requirements.

The Gaussian functional minimizes the product of loca-
lization in space and frequency {(Marr and Hildreth {16]), but
its trade-off between the signal-to-noise ratio and the accu-
racy of localization is well studied {Canny [2]). Since the
edge detection filter is a first derivative Gaussian, choosing a
small o will result in noisy edges that are difficult to link. A
large o, however, will generate too much smoothing and
may blur the image features, or even cause two separate
edges to be smoothed into one. For an application of detect-
ing the face of a person sitting in front of a computer term-
inal, a ¢ = 1.0 is found to be sufficient.

10. Orientation invariance

We will now look at the effects of varying the orientation.
We use an image in which the subject’s head is rotated
approximately 30° to the right, i.e. at an orientation of
—30° from vertical. We keep the preattentive filter at the
3:1 aspect ratio and rotate the filter from — 60° to 60° in 30°
increments.

The results in Fig. 16 show that though the correct orien-
tation is —30°, the facial features can still be detected by the
filter at orientations of —60° and 0°. Thus, the algorithm can
tolerate an orientation variation of about 30°,

We again reduce the aspect ratio of the preattentive filter.
Fig. 17 shows the result of varying the orientation at an
aspect ratio of 1:1. We observe that the facial features are
now detected in all the different orientations of the filter.
The significance of this is that we can make do without
steerable filters completely. We can simply use only one
single crientation of the preattentive filter and just examine
the vicinity of the attention points for pairs of edges that are
roughly parallel and have the correct polarity.

11. Viewpoint invariance

In Yow and Cipolla [35] we have shown that the Gaussian
derivative filter (the preattentive filter described in this
paper) is able to detect facial features under different view-
point, even under profile view.

Fig. 18 shows the features detected by the preattentive
filter in profile views of faces. The scale of the preatientive
filter used is o = 3.0 and the aspect ratio is 1:1. We observe
that all the facial features which can be seen in the image are
detected by the preattentive filter.

However, the difficulty in detecting faces under such

viewpoints is that the facial features which we have chosen
in our model can all be seen from only a limited range of
viewpoints (mainly fronto-paraliel). Thus, for general
viewpoints (especially profile view), some of these features
may be occluded and the evidential support for the face
becomes low.

To overcome this, we look for additional features when
we have a face hypothesis at a different viewpoint (e.g.
profile view). We observe that in a profile view, there is
a large region of the cheek that is roughly featureless.
Hence we can mark out additional regions in the image
that are the likely location of the cheeks, and examine the
number, strength and orientation of edges in it. Face
candidates that are formed from a single partial face group
are examined for these cheek regions. The same Class space
— Mahalanobis distance method is used to verify the group
of features and regions as a valid profile view of a face.

The same situation applies to views which some of the
facial features are occluded. The different cheek regions that
are used for the different views are shown in Fig. 19.

12, Results

12.1. Detection under scale, orientation and viewpoint
variations

Our system is retrained on a different set of images,
which are obtained from different sources such as CCD
camera output, as well as scanned photographs. The number
of faces in these images totalled about 100.

To test the algorithm against scale, orientation and
viewpoint variation, we get subjects to sit in front of a work-
station mounted with a Pulnix monochrome CCD camera.
The subject is free to turn his head or move his chair
forward. A total of 9 images are taken from 10 subjects at
varying distances and viewpoints (5 fronto-parallel view, 2
with head rotated to either side, and 2 profile views). In
addition, a further 10 images of 2 subjects in the same
image is taken, totalling the number of faces in the test to
110. The images used are 256 X 256 pixel resolution.

We implement the face detection algorithm as described
in the preliminary implementation but we do away with
the user-specification of the filter scale. We use only one
single scale and orientation of the filter for the preattentive
feature selection process. The scale of the preattentive filter
is chosen to be the same as the edge detection filter (¢ = 1.0)
so that we only need to smooth the image once. However,
the time taken to process the images are increased to about
S0 s due to the much larger number of feature points
detected. The intermediate results are shown in Fig. 20.

Comparing the results of Fig. 20 with that of Figs 8 and 9,
we observe a large increase in the number of feature points
(466/81 = 5.75 times increase in the number of points).
However, the perceptual grouping process is able to reduce
the number of face candidates down to only two. The belief
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Fig. 18. Detecting features in profile views. (a) 121 poims (4 features detected). (b) 122 points (4 features detected). (¢} 113 points (4 features detected).

new cheek
! region

& new cheek

region

right profile view

new cheek
region

—— ]
new cheek § additional addiional additional additional
region region region region region

left profile view views with partial occlusion or missing features

Fig. 19. The additional check regions used under different viewpoints and when facial features are missing or occluded.
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Fig. 20, (a) Interest points (466 points). (b} Feature regions {180 points). (c) Panial Face Groups (28 1op, 10 bottom, 5 left, 1 right). (d) Face candidates (2
faces). The probabilives associated with the upper and lower face candidates are 0.6124 and 0.9578 respectively.

Table |
Summary of results
Views Number of faces True positives False positives
Fronto-paralle] 70 65 15

(92.9%) (21.4%)
Fromo-rotated 20 16 7

(80.0%) (35.0%)
Profile 20 12 9

(60.0%) (45.0%)
Fotal Lo 93 3l

(34.5%) (28.1%)
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propagation process will also be able to assign a high con-
fidence value to the true positive face because many of the
component face groups are present. Since these two faces
overlap, only one face (the one with the higher probability)
will be selected.

Table I gives a summary of the results of the test. We
achieved an overall successful face detection rate of 85% on
a database of 110 images of faces at different scale, orienta-
tion and viewpoint. A false detection rate of 28% was also
obtained. Some of the results of the test are shown in Fig. 21.
We observe that the algorithm is able to handle a good range
of scale variations. Due to the larger number of feature
points detected, the algorithm now takes about 90 s to run
on a SUN Sparc20 workstation.

We also show the results of the algorithm when tested on
images with different face orientation, as well as on profile
views of the face. The results in Figs 22 and 23 show that the
algorithm is able to cope with variations in orientation and
viewpoint.

12.2. Evaluation of the algorithm on the CMU-database

We evaluate the performance of the algorithm by testing
it on the face database used by Rowley et al. [22]. These
images can be  obtained from: Http://
www.lus.cs.cmu.edu/IUS/dylan_usrl/har/
usr0/har/faces/test/. Fig. 24(a)-(f) show the
performance of our algorithm on some of the images in
the database.

One shortcoming of our algorithm is that it is unable to
detect faces which are too smail. In the database used by

T ; "
.'__".it'..}.?r-

Fig. 21. Resul of face detection on various face images at different scales.

Rowley et al., most of the images have faces that are too
small (less than 60 * 60 pixels) to be detected by our
algorithm. We are only able to test our algorithm on less
than 20% of the images.

Fig. 24(a), 24(b) and 24(c) show successful detection of
all the faces in the image. In Fig. 24(d) we failed to detect
the largest face in the image because we only use one single
scale (o = 1.0) of the edge detection filter. The face is large
and the image is rather noisy. The small o of the edge
detection filter is insufficient to smooth out the noise and
thus we are unable to produce a continuous edge segment
with a standard boundary following algorithm.

The algorithm also works on hand-drawn faces as shown
in Fig. 24(e). However, the algorithm failed to detect the
other hand drawn faces in the image as the facial features in
these faces do not correspond to the facial features in our
model. False detects can also be seen in Fig. 24(f). Some
incorrect facial features turned out to have higher prob-
abilities than the true facial features and as a result, the
true face is displaced by the slightly incorrect face.

13. Discussion

Though our algerithm is invariant to scale to some extent,
it is by no means universal. It is nevertheless not sufficient
for cases where the face is very small, or when the scale of
the spatial filters are very large compared to the features.
Feature points will move or even disappear under scale-
space filtering (Witkin [32]), and facial features will take
on a very different image structure due to quantization
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Fig. 22, Result of face detection on face images at different orientation.

noise. Hence, the evidence that can be extracted from the
image will be quite different at different scales. So a differ-
ent set of facial features, or even head or body features (e.g.
face texture, hair texture, head and shoulder boundaries,
silhouettes of the body) need (o be used at different scales.
However, the proposed perceptual grouping and prob-
abilistic framework will remain the same throughout the
different scales.

The difficulty with feature-based algorithms is that the
image features can be badly corrupted due to illumination,
noise or occlusion. Feature boundaries can be weakened by
illumination, and shadows can cause numerous strong edges
that render perceptual grouping algorithms useless. Worse
still, such failures usually occur in the early, low-level
stages. A truly robust system must make use of a huge
number of features, each of which must be invariant to
different kinds of imaging conditions,

Another minor drawback of this approach is that the
model specifications (i.e. specifying what the features are,
which spatial relationship is important, etc.) are done by
hand. It will be desirable to automatically learn which
features are important so that it can be extensible to detect
objects in other domains (e.g. cars). No successful method
of doing this is known at the moment, and investigation is
under way.

Our future work will be aimed at coping with smaller
scales of faces. Approaches used will be finding the head
boundary, which is a difficult task because the boundary
may not be clearly defined when background clutter is
present. Textual algorithms will also be investigated to
harness the texture of hair and skin in detecting faces.

14. Conclusion

We have proposed a feature-based face detection frame-
work which extracts interest points using spatial filtering
techniques, groups these points into face candidates using
perceptual grouping principles, and selects true candidates
from false ones using a probabilistic framework. We also
make use of model knowledge as evidence to improve the
confidence of faces in the image. As a result, we can make
less assumptions about the image structure of faces and thus
make our algorithm more robust to different imaging
conditions. The algorithm is shown to be able to be easily
extended to work for different scale, orientation and
viewpoint of the face. The framework can be further
extended to more difficult imaging conditions by adding
more components to the face model and finding more
evidence in the image to support the face hypotheses.

Fig. 23. Result of face detection on face images at profile views.
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