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Abstract

In this paper we address the problem of recovering structure and motion from the appar-
ent contours of a smooth surface. Fixed image features under circular motion and their
relationships with the intrinsic parameters of the camera are exploited to provide a sim-
ple parameterization of the fundamental matrix relating any pair of views in the sequence.
Such a parameterization allows a trivial initialization of the motion parameters, which all
bear physical meanings. It also greatly reduces the dimension of the search space for the
optimization problem, which can now be solved using only 2 epipolar tangents. In contrast
to previous methods, the motion estimation algorithm introduced here can cope with in-
complete circular motion and more widely spaced images. Existing techniques for model
reconstruction from apparent contours are then reviewed and compared. Experiment on
real data has been carried out and the 3D model reconstructed from the estimated motion
is presented.
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1 Introduction

The recovery of structure and motion from sequences of images is a central problem
in computer vision, and the search for its solution has generated a rich pool of algo-
rithms [1–4]. Most of these algorithms rely on correspondences of points or lines
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between images [5,6], and work well when the scene being viewed is composed
of polyhedral parts. However, for smooth surfaces without noticeable texture, point
and line correspondences may not be easily established. In this case theapparent
contour [7] of the surface is very often the only feature available, and is certainly
the most important one. This calls for the development of a completely different set
of techniques, as the ones found in [8–11,7,12,13].

In this paper we address the problem of structure and motion recovery from the
apparent contours of smooth surfaces. Section 2 first briefly reviews the concepts
of contour generators [7] and apparent contours in viewing smooth surfaces un-
der perspective projection. The problem of estimating the motion parameters of
turntable sequences is tackled in Section 3. Fixed image features under circular
motion and their relationships with the intrinsic parameters of the camera are ex-
ploited to provide a simple parameterization of the fundamental matrix relating any
pair of views in the sequence. This parameterization allows a trivial initialization
of the motion parameters, which all bear physical meanings. It also greatly reduces
the dimension of the search space for the optimization problem. By exploiting such
a parameterization, a novel algorithm for circular motion estimation from apparent
contours is introduced, which only requires the presence of 2 pairs of correspond-
ing epipolar tangents. The algorithm introduced here can also cope with incomplete
circular motion and more widely spaced images. Existing techniques for model re-
construction from apparent contours are then reviewed and compared in Section 4.
Finally, experimental result on real data is presented in Section 5.

2 Contour Generators and Apparent Contours

Consider a pointP on a smooth surfaceS. Under perspective projection the vector
positionr of P is given by

r = c + λp, (1)

wherec is the camera center,p is the unit viewing direction andλ is the depth
of the pointP along the viewing directionp from c. For a given camera centerc,
the set of points on the surface for which the visual ray is tangent toS is called
thecontour generator [14,7]. In the literature, the contour generator is also known
as theextremal boundary [15] or therim [8]. The contour generator separates the
visible part from the occluded part ofS, and can be parameterized bys as [7]

r(s) = c + λ(s)p(s) such that (2)
p(s) · n(s) = 0, (3)

wheren(s) is the unit surface normal ofS atr(s). From equations (2) and (3), it is
easy to see that the contour generator depends on both the viewpoint and the local
surface geometry.
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A contour generator is projected onto the image plane as anapparent contour (also
known as aprofile or silhouette). If the camera is fully calibrated, the viewing rays
p(s) of the contour generator can be recovered from the apparent contour directly.
These rays define aviewing cone on which the contour generator lies, and within
which the object is confined (see Fig. 1). However, the depth parameterλ(s) in
equation (2), and hence the contour generator itself, cannot be determined from a
single view alone. It is easy to show that, like the viewing ray, the tangent to the
apparent contour also lies on the tangent plane of the surface atr(s). This allows
the unit surface normal atr(s) to be determined up to a sign by [7]

n(s) =
p(s) × d p(s)

d s∣∣∣p(s) × d p(s)
d s

∣∣∣
. (4)

The sign ofn(s) can be fixed if the side of the apparent contour on which the
surface lies is known.

center

viewing
cone

camera

apparent
contour

Fig. 1. The viewing rays of the contour generator can be recovered from the apparent con-
tour and the camera center. These rays define a viewing cone on which the contour genera-
tor lies, and within which the object is confined.

3 Motion Estimation from Apparent Contours

The fundamental difficulty in estimating the motion of a smooth surface arises from
the fact that contour contours are viewpoint dependent. Due to the viewpoint depen-
dency of the contour generators, the apparent contours of a smooth surface observed
from 2 distinct viewpoints will be, in general, the projections of 2 different space
curves (contour generators). As a result, unlike point or line features, the apparent
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contours do not readily provide image correspondences that allow for the computa-
tion of theepipolar geometry [16,17], summarized by thefundamental matrix [5].
This characteristic makes the motion estimation problem difficult even for humans
under certain circumstances [18]. A possible solution to this is the use ofepipolar
tangencies [9,10,19], as shown in Fig. 2. An epipolar tangent point is the projection
of a frontier point [20–22] (referred to as afixed point in [9]), which is the intersec-
tion of 2 contour generators. Since the frontier points are fixed points in space that
can be seen in both views, their images will provide point correspondences.

epipolar plane

frontier point

apparent contour

epipolar tangency

epipole

camera center

contour generator

Fig. 2. A frontier point is the intersection of 2 contour generators and is visible in both
views. The frontier point is projected onto a point in the apparent contour which is also an
epipolar tangent point.

If enough epipolar tangencies are available, the epipolar geometry can be estimated
and hence the motion can be determined up to aprojective transformation [23,24].
Theintrinsic parameters [17] of the cameras can then be used to reduce this ambi-
guity to a similarity transformation [25,26]. The major problem of such an approach
[21,27] is that a minimum of 7 pairs of corresponding epipolar tangents is required,
a number which seldom occurs in practical situations. By using an affine approx-
imation [28–30], a similar technique that only requires 4 pairs of corresponding
epipolar tangents was developed in [31], resulting in a simpler and more robust
estimation of the epipolar geometry. Although more realistic, such a demand is
still restrictive. By constraining the motion to be circular, a parameterization of
the fundamental matrix with only 6 degrees of freedom is possible [32,4,33]. This
parameterization explicitly takes into account the main image features of circular
motion, namely the image of the rotation axis, the horizon and a special vanishing
point, which are fixed throughout the sequence. This makes it possible to estimate
the epipolar geometry by using only 2 epipolar tangents [33].

In [34], a practical algorithm has been introduced for the estimation of motion and
structure from the apparent contours of a rotating object. The image of the rotation
axis and the special vanishing point are first determined by estimating the harmonic
homology associated with the image of the surface of revolution spanned by the ro-
tating object. In order to obtain such an image, a dense image sequence from a
complete circular motion is required. In this paper, the parameters of the harmonic
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homology and other motion parameters are estimated simultaneously by minimiz-
ing the reprojection errors of the epipolar tangents. The algorithm presented here
does not require the image of such a surface of revolution and can thus cope with
incomplete circular motion and more widely spaced images, an advantage over the
algorithm presented in [34].

3.1 Symmetry and Epipolar Geometry under Circular Motion

Consider a pin-hole camera rotating about a fixed axis, with its intrinsic parameters
kept constant. The projection of the rotation axis will be a linels which ispointwise
fixed on each image. This means that any pointx alongls must satisfy the equation
xTFx = 0, whereF is the fundamental matrix associated with any image pair in the
sequence. LetΠh be the plane that contains the trajectory of the camera center. The
image of this plane is a special linelh named thehorizon, which is fixed throughout
the sequence. In general,ls andlh are not orthogonal. By definition, the epipoles
are the projections of the camera center and must therefore lie onlh. Another fixed
feature is the vanishing pointvx, which corresponds to the normal directionNx

of the planeΠs defined by the camera center and the axis of rotation. SinceNx is
parallel to the planeΠh, it follows thatvx also lies onlh (i.e.vT

x lh = 0). A detailed
discussion of the above can be found in [32,4,33].

Consider now a pair of images taken from the circular motion sequence, and letF
be the fundamental matrix associated with this pair. It has been shown that corre-
sponding epipolar lines associated withF are related to each other by a harmonic
homologyW [33], given by

W = I − 2
vxl

T
s

vT
x ls

. (5)

Note thatW has 4 degrees of freedom: 2 corresponding to the axis and 2 corre-
sponding to the vanishing point. If the rotating camera points directly towards the
axis of rotation,vx will be at infinity andW will be reduced to a skew symmetry
with only 3 degrees of freedom. Besides, if the camera also has zero skew and as-
pect ratio 1, the transformation will be further specialized to a bilateral symmetry
with only 2 degrees of freedom. A pictorial description of these transformations
can be seen in Fig. 3.

In [35], an algorithm has been presented for estimating the camera intrinsic param-
eters from 2 or more apparent contours of surfaces of revolution. For each apparent
contour, the associated harmonic homologyW is estimated and this provides 2
constraints on the camera intrinsic parameters:

vx = KKTls, (6)

whereK is the3× 3 camera calibration matrix. Conversely, if the camera intrinsic
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(a) (b) (c)

Fig. 3. (a) A curve displaying bilateral symmetry. The horizon is orthogonal to the axis.
(b) Same curve, distorted by an affine transformation. The horizon is no longer orthogonal
to the axis, and each side of the curve is mapped to the other by a skew symmetry trans-
formation. (c) The curve is now distorted by a special projective transformation (harmonic
homology), and the lines of symmetry intersect at a point corresponding to the vanishing
point.

parameters are known, equation (6) provides 2 constraints onW andW will then
have only 2 degrees of freedom.

3.2 Parameterizations of the Fundamental Matrix

In [5,36], it has been shown that any fundamental matrixF can be parameterized
asF = [e2]×M, whereM−T is any matrix that maps corresponding epipolar lines
from one image to the other, ande2 is the epipole in the second image. In the case
of circular motion, it follows that

F = [e2]×W. (7)

Note thatF has 6 degrees of freedom: 2 to fixe2, and 4 to determineW. It follows
from (6) that if the camera intrinsic parameters are known, 2 parameters are enough
to defineW and thusF will have only 4 degrees of freedom.

An alternative parameterization for the fundamental matrix in the case of circular
motion is given by [32,4,33]

F = [vx]× + κ tan
θ

2
(lsl

T
h + lhl

T
s ), (8)

whereθ is the angle of rotation, andκ is a constant which can be determined from
the determinant of the camera calibration matrix ifls, vx andlh are properly nor-
malized [33].θ is the only parameter which depends on the particular pair of images
being considered, while the other 4 terms are common to all pairs of images in the
sequence. When the camera calibration matrix is known, 2 parameters are enough
to fix ls andvx. Sincevx must lie onlh, only 1 further parameter is needed to fix
lh. As a result, the fundamental matrix has only 4 degrees of freedom.
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3.3 Algorithm for Motion Estimation

By exploiting the parameterization given in (8), the
(

N
2

)
= N(N−1)

2
fundamental

matrices relating all possible image pairs in a sequence ofN images, taken by a
rotating camera with known intrinsic parameters, can be defined with the 3 param-
eters that fixls, vx and lh, together with theN − 1 angles of rotation between
adjacent cameras. By enforcing the epipolar constraint on the corresponding epipo-
lar tangent points, theseN + 2 motion parameters can be estimated by minimizing
the reprojection errors of corresponding epipolar tangents. Given a pair of views,
the associated fundamental matrixF is formed from the current estimate of the
motion parameters, and the epipolese ande′ are obtained from the right and left
nullspaces ofF respectively (see Fig. 4). The epipolar tangent pointst andt′ are lo-
cated and the reprojection errors are then given by the geometric distances between
the epipolar tangent points and their epipolar lines [5]

δ =
t′TFt√

(FTt′)2
1 + (FTt′)2

2

, and (9)

δ′ =
t′TFt√

(Ft)2
1 + (Ft)2

2

, (10)

where(FTt′)1 and (FTt′)2 indicate the1st and2nd coefficients ofFTt′ respec-
tively. Similarly,(Ft)1 and(Ft)2 indicate the1st and2nd coefficients ofFt respec-
tively. By exploiting the 2 epipolar tangents at the top and bottom of the apparent
contours, there will be totally2

(
N
2

)
= N(N − 1) measurements from all pairs

of images. Due to the dependency between the associated fundamental matrices,
however, theseN(N −1) measurements only provide2N (or 2 whenN = 2) inde-
pendent constraints on theN +2 parameters. As a result, a solution will be possible
whenN ≥ 3.

The minimization of the reprojection errors will generate a consistent set of fun-
damental matrices, which, together with the camera intrinsic parameters, can be
decomposed into a set of camera matrices describing a circular motion compatible
with the image sequence. The algorithm for motion estimation is summarized in
Algorithm 1.

4 Model Reconstruction from Apparent Contours

Depending on the nature of the surface and the image sequence, either a surface
model or a volumetric model can be constructed from the set of apparent con-
tours with known (or estimated) viewer motion. If a dense, continuous sequence is
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Fig. 4. The parameters of the fundamental matrix associated with each pair of images in the
sequence can be estimated by minimizing the reprojection errors of the epipolar tangents.
The solid lines are tangents to the apparent contours passing through the corresponding
epipoles, and the dash lines are the epipolar lines corresponding to the tangent points.

Algorithm 1 Motion Estimation from Apparent Contours.
extract the apparent contours of the rotating object
using cubic B-spline snakes;

initialize ls, lh and theN − 1 angles between theN cameras;
while not convergeddo

for each image in the sequencedo
form the fundamental matrices with the next 2 images;
locate epipolar tangents;
compute reprojection errors of the epipolar tangents;

end for
update parameters to minimize the rms reprojection errors
using the conjugate gradient method [37];

end while

available, a surface model can be obtained by reconstructing the contour genera-
tors of a simple surface using differential techniques [7,11–13]. On the other hand,
if only sparse, discrete views are available and the object has relatively complex
topologies, volume intersection techniques [38,39] can be employed to produce a
volumetric model which represents the visual hull [40,41] of the object. A brief
review and comparison of existing approaches for model reconstruction from ap-
parent contours are given in the following subsections.

4.1 Surface Approach

The surface reconstruction of smooth objects from apparent contours was pioneered
by Giblin and Weiss [42]. Under the assumption of orthographic projection, they

8



demonstrated that a surface can be reconstructed from the envelope of all its tangent
planes computed directly from the family of apparent contours of the surface under
planar viewer motion.

In [7], Cipolla and Blake extended the studies of Giblin and Weiss to curvilin-
ear viewer motion under perspective projection, and developed theosculating cir-
cle method by introducing theepipolar parameterization. Given 3 corresponding
points under the epipolar parameterization in 3 consecutive apparent contours, the
viewing rays defined by them are projected onto the epipolar plane defined by the
first two. By assuming that the curvature of theepipolar curve is locally constant,
the epipolar curve can be approximated as part of a circle tangent to these (pro-
jected) viewing rays. In [11], Vaillant and Faugeras developed a technique similar
to that presented in [7], except that the surface is parameterized by theradial curves
instead of the epipolar curves. Based on the osculating circle method, Szeliski and
Weiss [13] used a linear smoother to compute epipolar curves on the whole surface
together with an estimate of uncertainty, and reported improvements in the recon-
struction. The osculating circle methods require the camera motion to be close to
linear and the surface remains on the same side of the tangents in the projection
plane.

In [12], Boyer and Berger derived a depth formulation from a local approximation
of the surface up to order two for discrete motion. Their technique allows the local
shape to be estimated from 3 consecutive contours by solving a pair of simultaneous
equations, and it only requires that the surfaces are at leastC2 and are not locally
planar. In [43], Wong et al. developed a simple triangulation technique based on
a finite-difference implementation of [7]. Despite its simplicity, the method devel-
oped in [43] was reported to produce results comparable to those in [7] and [12].

4.2 Volumetric Approach

The volume intersection technique for constructing volumetric descriptions of ob-
jects from multiple views was first proposed by Martin and Aggarwal [44], who
introduced thevolume segment representation. In [45], Chien and Aggarwal pre-
sented an algorithm for generating an octree [46,47] of an object from 3 orthogonal
views under orthographic projection. Their work was further developed by Ahuja
and Veenstra [48], who extended the algorithm to handle images from any subset
of 13 standard viewing directions.

In [49], Hong and Shneier introduced a technique for generating an octree from
multiple arbitrary views under perspective projection. Their approach first con-
structs an octree for each image by projecting the octree cubes onto the image
and intersecting their projections with the apparent contour, and the final octree of
the object is given by the intersection of the octrees obtained from all images. In
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[38], Potmesil described a similar approach in which the images are represented
by quadtrees to facilitate the intersection of the projections of the cubes with the
apparent contours.

Other similar approaches also include [50] and [51], where the octree for each im-
age is constructed by intersecting, in 3D space, the octree cubes with the polyhedral
cone formed from the back-projection of the apparent contours. In [39], Szeliski in-
troduced an efficient algorithm which constructs an octree in a hierarchical coarse-
to-fine fashion. His approach is similar to that of [38], except that only a single
octree is constructed using all the images simultaneously.

Despite its modeling power, an octree representation is not very suitable for high
speed rendering. Based on [39], Fitzgibbon et al. [4] implemented a technique in
which the standardmarching cubes algorithm [52] is applied to extract surface tri-
angle patches from the octree. The resulting surface model can then be displayed
efficiently with conventional graphics rendering algorithms. In [53], Sullivan and
Ponce presented an algorithm in which aG1-continuous spline surface is first con-
structed from the polyhedral approximation of the object obtained by intersecting
the viewing cones associated with the apparent contours. Such a spline surface is
then deformed to minimize the true distance to the rays bounding those viewing
cones.

5 Experiments and Results

The experimental sequence consisted of 18 images of a polystyrene head model
taken under controlled circular motion (see Fig. 5). Each image was taken after ro-
tating the model by20◦ on a hand-operated turntable with a resolution of0.01◦. The
intrinsic parameters of the camera were obtained by an offline calibration process
[54,17] using a calibration grid.

The motion was estimated using the algorithm described in Section 3.3. The image
of the rotation axisls and the horizonlh were initialized manually, and the rota-
tion angles were all initialized to an arbitrary angle. The rms reprojection error was
minimized using theconjugate gradient method [37], with the gradient vector com-
puted by finite differences using a delta change of10−6 for each parameter. Note
that neither the knowledge of the rotation angles nor the fact that it was a closed
sequence was used in estimating the motion.

The initial and final configurations of the image of the rotation axis and the horizon
are shown in Fig. 6, and the estimated rotation angles between adjacent images and
their errors are shown in Table 1. It can be seen from Table 1 that the errors in the
rotation angles ranged from0.0077◦ to 0.4001◦, and the rms error of the rotation
angles was only0.2131◦. The resulting camera poses are shown in Fig. 7. The 3D

10



model built from the estimated motion, using the technique presented by Fitzgibbon
et al. in [4], is shown in Fig. 8.

Fig. 5. Eighteen images of a polystyrene head model under controlled circular motion. Each
image was taken after rotating the model by20◦ on a turntable with a resolution of0.01◦.

6 Conclusions

The novel algorithm for circular motion estimation from apparent contours intro-
duced here has a main advantage over previously proposed methods, in that it only
requires the presence of 2 pairs of corresponding epipolar tangents. In [34] we have
developed a robust technique to tackle the same problem with trivial initializations,
but it can only be applied when the image of the surface of revolution swept out
by the rotating object can be obtained. The algorithm presented here overcomes
this limitation, and can be used when as few as 3 images of the rotating object are
available. The method introduced in this paper is robust and accurate. Experiment
on real data has produced convincing 3D model, demonstrating the validity of the
technique proposed.

11



−1000 −500 0 500 1000 1500

−1000

−500

0

500

1000

Fig. 6. The initial (in dash lines) and final (in solid lines) configurations of the image of the
rotation axisls and the horizonlh.

Table 1
Estimated rotation angles between adjacent images.

views rotation angle error views rotation angle error

1–2 19.8856◦ −0.1144◦ 10–11 20.1026◦ +0.1026◦

2–3 19.9660◦ −0.0340◦ 11–12 20.0241◦ +0.0241◦

3–4 20.3055◦ +0.3055◦ 12–13 20.1651◦ +0.1651◦

4–5 19.9707◦ −0.0293◦ 13–14 20.2053◦ +0.2053◦

5–6 20.0224◦ +0.0224◦ 14–15 20.1401◦ +0.1401◦

6–7 19.8686◦ −0.1314◦ 15–16 20.3132◦ +0.3132◦

7–8 20.3860◦ +0.3860◦ 16–17 20.0292◦ +0.0292◦

8–9 20.3708◦ +0.3708◦ 17–18 19.5999◦ −0.4001◦

9–10 19.9923◦ −0.0077◦

12



6

5

7

4

8

3

9

2

10

1

11

18

12

17

13

16

14

15

Fig. 7. Camera poses estimated from the polystyrene head sequence.

Fig. 8. 3D model of the polystyrene head built from the estimated circular motion.
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