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Abstract

This paper addresses the problem of calibrating a pinhole camera from images of a surface of revolution.
Camera calibration is the process of determining the intrinsic or internal parameters (i.e., aspect ratio, focal length
and principal point) of a camera, and it is important for both motion estimation and metric reconstruction of 3D
models. In this paper a novel and simple calibration technique is introduced, which is based on exploiting the
symmetry of images of surfaces of revolution. Traditional techniques for camera calibration involve taking images
of some precisely machined calibration pattern (such as a calibration grid). The use of surfaces of revolution, which
are commonly found in daily life (e.g., bowls and vases), makes the process easier as a result of the reduced cost
and increased accessibility of the calibration objects. In this paper, it is shown that two images of a surface of
revolution will provide enough information for determining the aspect ratio, focal length and principal point of a
camera with fixed intrinsic parameters. The algorithms presented in this paper have been implemented and tested
with both synthetic and real data. Experimental results show that the camera calibration method presented here is

both practical and accurate.
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|. INTRODUCTION

An essential step for motion estimation and 3D Euclidean reconstruction, two important tasks
in computer vision, is the determination of the intrinsic parameters of cameras. This process,
known ascamera calibration, usually involves taking images of some special pattern with
known geometry, extracting the features from the images, and minimizing their reprojection
errors. Details of such calibration algorithms can be found in [1], [2], [3], [4], [5, Chapter
7] and [6, Chapter 3]. These methods do not require direct mechanical measurements on the
cameras, and often produce very good results. Nevertheless, they involve the design and use of
highly accurate tailor-made calibration patterns, which are often both difficult and expensive to
be manufactured.

In this paper a novel technique for camera calibration is introduced. It relates the idea of
calibration from vanishing points [7], [8], [9] to the symmetry properties exhibited in the silhou-
ettes of surfaces of revolution [10], [11], [12], [13], [14]. The method presented here allows the
camera to be calibrated from two or more silhouettes of surfaces of revolution (like bowls and
vases, etc.), which are commonly found in daily life. The use of such objects has the advantages

of easy accessibility and low cost, in contrast to traditional calibration patterns.
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This paper is organized as follows. Section Il gives a literature survey on existing camera cali-
bration techniques. Section Il defines the camera model used and gives brief reviews on camera
calibration from vanishing points and the symmetry properties associated with the silhouettes of
surfaces of revolution. These provide the theoretical background needed for the camera calibra-
tion method [15] introduced in Section IV. The algorithms and implementation details are given
in Section V, followed by a discussion of the singular cases and an error analysis in Section VI
and VII. Section VIII first presents results of experiments conducted on synthetic data, which
are used to perform an evaluation on the robustness of the algorithms in the presence of noise.
Experiments on real data then show the usefulness of the proposed method. Finally, conclusions

are given in Section IX.

[I. PREVIOUS WORKS

Classical calibration techniques [16], [17], [18] in photogrammetry involve full-scale non-
linear optimizations with large number of parameters. These techniques are able to cope with
complex camera models and they produce accurate results, but require a good initialization and
are computationally expensive. In [19], Abdel-Aziz and Karara presentediréut linear trans-
formation (DLT) technique, which is one of the most commonly used calibration techniques in
the field of computer vision. By ignoring lens distortion and treating the coefficients 8bthie
projection matrix as unknowns, DLT only involves solving a system of linear equations, which
can be done by a linear least-squares method. In practice, the linear solution obtained from DLT
is usually refined iteratively by minimizing the reprojection errors of the 3D reference points [1],
[6]. In[2], [3], Tsai and Lenz introduced thradial alignment constraint (RAS) and developed
a technique which also accounts for lens distortion.

All the calibration techniques mentioned so far require the knowledge of the 3D coordinates of
a certain number of reference points and their corresponding image coordinates. In [7], Caprile
and Torre showed that, under the assumption of zero skew and unit aspect ratio, it is possible to
calibrate a camera from the vanishing points associated with three mutually orthogonal direc-
tions. This idea was further elaborated in [8], [9] to develop practical systems for reconstructing
architectural scenes. In contrast to traditional calibration techniques, these methods depend only

on the presence of some special structures, but not on the exact geometry of those structures.

The theory ofself-calibration was first introduced by Maybank and Faugeras [20], who es-
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tablished the relationship between camera calibration and the epipolar transformation via the
absolute conic [6]. Implementation of the theory in [20], together with real data experiments,
were given by Luong and Faugeras [21] for fixed intrinsic parameters. In [22], Triggs introduced
theabsolute quadric and gave a simpler formulation which can easily incorporate any constraint
on the intrinsic parameters. Based on [22], a practical technique for self-calibration of multiple
cameras with varying intrinsic parameters was developed by Pollefeys et al. in [23]. Specialized
methods of self-calibration have also been derived when the camera motion is restricted to pure

rotation [24] or planar motion [25].

The calibration technique introduced in this paper, narnsalibration from surfaces of rev-

olution, falls into the same category as calibration from vanishing points (see fig. 1). Like
calibration from vanishing points, which only requires the presence of three mutually orthogo-
nal directions, the technique presented here only requires the calibration target to be a surface of
revolution, but the exact geometry of the surface is not important. An important problem not ad-
dressed in this paper is how to detect surfaces of revolution in an image, so that they can be used
in the calibration algorithm. A practical solution to this has been presented by Zisserman et al. in
[13]. The technique developed in that paper is based on the same symmetry properties exploited

here, and works well even in the presence of partial occlusion and clustered background.

QO self-calibration

O--__ </ calibration from SOR
T~ /\ calibration from vanishing pt
AN D calibration under planar motion

> calibration under pure rotation

O calibration from calibration grid
(O calibration from known motion

knowledge of motion

S

knowledge of structure

Fig. 1. Different categories of camera calibration techniques.
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[1l. THEORETICAL BACKGROUND
A. Camera Mode

In this paper, a camera is modelled as a pinhole (perspective) camera and the imaging process

can be expressed as

: 1)

N

where (X, Y, Z) are the coordinates of a 3D poilt, (u,v) are the image coordinates of the
projection ofX, and« is an arbitrary scale factoP is a3 x 4 matrix known as therojection
matrix [26], which models the pinhole camera. The projection md#is not a generad x 4

matrix, but has a special structure given by [6]
P=K[Rt] (2)

whereK is a3 x 3 upper triangular matrix known as tleamera calibration matrix, R isa3 x 3
rotation matrix and is a3 x 1 translation vectorR andt are called thextrinsic parameters
[6] of the camera, and they represent the rigid body transformation between the camera and the

scene (see fig. 2). The camera calibration mdtrikas the form [6]

fu ¢ U af S U
K=|0/f wl|=| 0Ff v/, 3)
0 0 1 0 0 1

wheref is thefocal length, « = f,/ f, is the aspect ratio andis theskew which depends on the

angle between the image axésy, v,) is called theprincipal point, and it is the point at which

the optical axis 4.-axis) intersects the image plane (see fig. 2). The focal length, aspect ratio,
skew and principal point are referred to asithteinsic parameters[6] of the camera, andamera
calibration is the process of estimating these parameters. If the image axes are orthogonal to
each other, which is often the caseayill be equal to zero. In practice, the aspect ratio and skew

of a camera are often assumed to be one and zero, respectively, to reduce the dimension of the
search space in camera calibration. This generally speeds up the calibration process and makes

the results more stable. Such an initial estimate of the intrinsic parameters can be further refined
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later by relaxing the unit aspect ratio and zero skew constraints. A camera is said to be calibrated
if its intrinsic parameters are known. If both the intrinsic and extrinsic parameters of a camera

are known, then the camera is said to be fully calibrated.

principal optical
point axis

Fig. 2. The extrinsic parameters of a camera represent the rigid body transformation between the world coordinate
system (centered af) and the camera coordinate system (centeredl, @nd the intrinsic parameters represent the

camera internal parameters like focal length, aspect ratio, skew and principal point.

B. Calibration from Vanishing Points

In [7], Caprile and Torre showed that under the assumption of zero skew and unit aspect ratio,
the principal point of a camera will coincide with the orthocenter of a triangle with vertices
given at three vanishing points from three mutually orthogonal directions. Such properties of
the vanishing points, together with the symmetry properties associated with the silhouettes of
surfaces of revolution, will be used later in Section IV to derive a simple technique for camera
calibration. A simple derivation of Caprile and Torre’s result is given below.

Consider a pinhole camera with focal lengthunit aspect ratio, zero skew and principal point
Xo. The vector from the camera center to any pé&imn the image plane, in camera coordinate
system, is given by(x — x,)" f]*. Letv,, v, andv, be three vanishing points associated with
three mutually orthogonal directiods,, N, and N, respectively. The three vectors from the

camera center to,, v, andv, will be mutually orthogonal to each other, and hence

(Vg = %o) - (¥, —%o) + f* = 0, (4)
(\77“ - 5(0) : (‘75 - 5(0) + f2 = 07 (5)
(Vs = %o) - (Vg —%o) + f* = 0. (6)

Subtracting (6) from (4) gives
(Vy—%o) - (V, —Vs) = 0. (7)
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Equation (7) shows that, lies on a line passing through, and orthogonal to the line joining

v, andv,. Similarly, subtracting (4) from (5) and (5) from (6) gives

(Vi —%0) - (Vs —=vg) = 0, (8)

(Vs =X0) - (Vg — V) = 0. 9)
Equations (7)—(9) imply that the principal poik§ coincides with the orthocenter of the triangle
with verticesv,, v, andv,. Besides, equations (4)—(6) show that the focal lenfgts equal
to the square root of the product of the distances from the orthocenter to any vertex and to the
opposite side (see fig. 3). As a result, under the assumption of zero skew and unit aspect ratio, it
is possible to estimate the principal point and the focal length of a camera using vanishing points
from three mutually orthogonal directions. A similar derivation was also presented by Cipolla
etal. in [8].

Fig. 3. The principal poink, of the camera coincides with the orthocenter of the triangle with vertices given at
the vanishing points,, v, andv, associated with three mutually orthogonal directions, and the focal length of the
camerais given by = | /d,d = Vdrdl = \/dd,.

C. Symmetry in Surfaces of Revolution

As will be shown in the next paragraph, the silhouette of a surface of revolution, viewed
under a pinhole camera, will be invariant to a harmonic homology [13]. Such properties of the
silhouette can be exploited to calibrate the intrinsic parameters of a camera, as will be shown
in Section IV. A simple proof of such symmetry properties is given below, which also shows

that the axis of the associated harmonic homology is given by the image of the revolution axis,
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and that the center of the homology is given by the vanishing point corresponding to the normal
direction of the plane containing the axis of revolution and the camera center.

Consider a surface of revolutié), whose axis of revolution coincides with theaxis, being
viewed by a pinhole came® = [I; — c| centered at = [0 0 — d.]T, with d. > 0 (see
fig. 4). By symmetry considerations, it is easy to see that the silhopetté&, formed on the
image plane will be bilaterally symmetric about the image of the revolutioniaxis[l 0 0]T.
The lines of symmetry (i.e., lines joining symmetric pointg)nwill be parallel to the normal
N, = [1 0 0 0] of the planell, that contains the axis of revolution and the camera center,
and the vanishing point associated wih, is given byv, = [1 0 0]*. The bilateral symmetry

exhibited inp can be described by the transformation [27], [28]

—10 0
T = 010

001
V1T
VIl

Note that the transformatiol is a harmonic homology (see Appendix, and also [29], [30] for

= T2 (10)

details) with axidl, and centeK,, which maps every point i to its symmetric counterpart in

p. The silhouette is thus said to be invariant to the harmonic homoldgg.e., p = T)).

axis of revolution

Fig. 4. A surface of revolutio® ,, whose axis of revolution coincides with theaxis, being viewed by a pinhole
cameraP = [I3 — c] centeredat = [0 0 — d.]T.

Now consider an arbitrary pinhole camdpaby introducing the intrinsic parameters repre-
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sented by the camera calibration mafiixto P, and by applying the rotatioR to P about its
optical center. HencP = KR|[I3; —c]orP = HP, whereH = KR. Letx be the projection
of a 3D pointX in P, hence

= Hx, (11)

wherex = PX. Equation (11) implies that th®x 3 matrix H represents a planar homography
which transforms the image formed Byinto the image formed bl. Similarly, H~! transforms
the image formed by into the image formed bj?. The silhouette of S,, formed on the image
plane ofP, can thus be obtained by applying the planar homogrdphy / (i.e.,p = Hp). Let

x andx’ be a pair of symmetric points ify andx = Hx andx’ = Hx' be their correspondences

in p. The symmetry betweek andx’ is given by

X = Tk (12)

(H'X) = TH 'x)

x = HTH 'x

v

= H(I;—-2-=2)H 'x
=205

v, 1T

A,

= (]Ig -2 )X, (13)

T
vl

wherev, = Hv,, andl, = H*Tis. Note thatv, is the vanishing point corresponding to
the normal directiolN,, in P, andl; is the image of the revolution axis &f, in P. Let W =
HTH ! be the harmonic homology with axisand centex,. Equation (13) shows tha¥ will
map each point ip to its symmetric counterpart in, and hence is invariant to the harmonic
homologyW (i.e.,p = Wp).

In general, the harmonic homolod¥ has four degrees of freedom. When the camera is
pointing directly towards the axis of revolution, the harmonic homology will reduceskaa

symmetry [31], [32], [33], [34], where the vanishing poirt, is at infinity. The skew symmetry
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can be described by the transformation

—cos(p+6) —2cos¢psin®  2d cos¢
S = m —2sin¢gcos  cos(¢p+ 6) 2d,sing | , (14)
0 0 cos(¢ — 0)
whered, = ugcosf + vysinf. The image of the revolution axis and the vanishing point are
given byl = [cos@ sinf — dj]T andv, = [cos ¢ sin ¢ 0]T respectively, an& has only three
degrees of freedom. If the camera also has zero skew and unit aspect ratio, the transformation

will then become dilateral symmetry, given by

—cos20 —sin20 2d;cosf
B=| —sin20 cos20 2d;sinf | . (15)
0 0 1
While I, will have the same form as in the case of skew symmetry, the vanishing point will now
be at infinity and will have a direction orthogonallto As a resultB has only two degrees of

freedom. These three different cases of symmetry are illustrated in fig. 5.

(a) (b) (c)
Fig. 5. (a) Silhouette of a surface of revolution under general viewing conditions. The symmetry of the silhouette is
described by a harmonic homology defined by the image of the revolution axis and a vanishing point. (b) When the
camera is pointing directly towards the axis of revolution, the transformation reduces to a skew symmetry, which
is a particular case of the harmonic homology where the vanishing point is at infinity. (c) If the camera also has
zero skew and unit aspect ratio, the transformation becomes a bilateral symmetry, in which the vanishing point is at

infinity and has a direction orthogonal to the image of the revolution axis.

V. CAMERA CALIBRATION
A. Vanishing Points and the Harmonic Homol ogy

Consider a surface of revolutid®, viewed by a pinhole came® = K[R t|. Letp be

the silhouette ofs,, I, be the image of the revolution axis 8f, andv, be the vanishing point
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corresponding to the normal directid¥, of the planell, that contains the revolution axis of
S, and the camera center Bf. The silhouette is then invariant to the harmonic homolo§y

with axisly and centex, (see Section III-C).

axis of
Vy revoluion

B

came(/’

center /

Vy

Fig. 6. Three mutually orthogonal directions associated with a surface of revolution.

Consider now any two vectoiN, andIN, parallel to the planél; and orthogonal to each
other, which together wittN, form a set of three mutually orthogonal directions (see fig. 6).
Under the assumption of zero skew and unit aspect ratio, the vanishing points associated with
these three directions can be used to determine the principal point and the focal leigth of
as shown in Section 1lI-B. By construction, the vanishing poinfsandv ., corresponding to
the directiondN,, andIN, respectively, will lie on the image of the revolution akis Given the
harmonic homologW associated witl, with an axis given by the image of the revolution axis
I, and a center given by the vanishing point the principal poink, of P will therefore lie on a
line 1, passing througkr, and orthogonal td,, and the focal lengtlf will be equal to the square
root of the product of the distances from the principal painto v, and tol, respectively (see
fig. 7). As a result, given two or more silhouettes of surfaces of revolution, the principal point

can be estimated as the intersection of the linesd the focal length follows.

B. Pole-Polar Relationship and the Absolute Conic

Following the notations in the previous subsection, consider the equation of thelplane

which can be deduced froia and the image of the revolution axis and is given by

I, = PTL. (16)
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Fig. 7. The vanishing point, and the image of the revolution adisdefine a lind, on which the principal point
xo must lie, and the focal lengthis equal to\/d,d’,.

By definition, v, is the vanishing point corresponding to the normal direchonof the plane

I1;, and hence
v, = PN,. (a7)

I; 03
07 0
asll, = [n' — d|7, wheren, is the normal direction ofl, in Cartesian (non-homogeneous
g

xT

Now letQ = be theabsolute dual quadric [22]. Observe thall, can be expressed

coordinates. Therefor&ll, = [nT 0]* = N, which allows equation (17) to be rewritten as

v, = PQII,
= PQPTL
= KKTI,
K TK v, = 1
WV, = lsa (18)

wherew = K-TK™! is the projection of the absolute quadricky known as themage of the
absolute conic. Equation (18) gives the pole-polar relationship, with respect to the image of the
absolute conic, between the vanishing paintof the normal direction of the plarné, and the

vanishing linel, of I1 [35]. By assuming the skew a@ to be zero, expanding (18) gives

0 # —;ﬁ—% szlsa (19)
-8B —% (PP (P)r+1

wheref,, f, and (uo,vy) are the intrinsic parametersBf It follows that the harmonic homology

associated with the silhouette of a surface of revolution will provide two constraints on the four
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intrinsic parameters of a camera. As a result, under the assumption of fixed intrinsic parameters
and zero skew, it is possible to calibrate a camera from two or more silhouettes of surfaces of
revolution. Further, under the assumption of unit aspect ratio (i,.e= f.), it can be derived

from equation (19) that the focal lengthis equal to the square root of the product of the
distances from the principal poirit.,, vo) to the vanishing point/, and to the image of the
revolution axisl;. These results agree with the analysis of the vanishing points in the previous

subsection.
V. ALGORITHMS AND IMPLEMENTATIONS

A. Estimation of the Harmonic Homology

The silhouettep of a surface of revolution can be extracted from the image by applying a
Canny edge detector [36] (see fig. 8). The harmonic homoMgthat maps each side of the
silhouettep to its symmetric counterpart is then estimated by minimizing the geometric distances
between the original silhouetgeand its transformed versignt = Wp. This can be done by

sampling/V evenly spaced points; along the silhouettg and optimizing the cost function

N
Costw (v, ls) = Z dist(W (v, L)%, p)?, (20)
i=1

wheredist(W (v, l;)x;, p) is the orthogonal distance from the transformed sample pgint

W (v, l)x; to the original silhouette.

Fig. 8. The silhouette of a surface of revolution (candle holder) extracted by applying a Canny edge detector.

The success of most nonlinear optimization problems requires a good initialization so as to
avoid convergence to local minima. This is achieved here by using bitangents of the silhouette
[10]. Two points in the silhouettenear a bitangent are selected manually and the neighborhood

of each point is transformed into a curve in the Hough space (see fig. 9). The bitangent and the

August 27, 2002 DRAFT



14 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. Y, MONTH YEAR

bitangent points can then be located by finding the intersection of the two transformed curves in

the Hough space (see [37] for details).

—02}

curve 1

curve 1 —04F

\7./ .
curve 2

—06l

curve 2

Hough Space

L L L L L
-3 -28 -26 -2.4 -22 -2 -18 -16

Image Space

Fig. 9. Two points in the silhouetienear a bitangent are selected manually and the neighborhood of each point is
transformed into a curve in the Hough space. The bitangent and the bitangent points can then be located by finding

the intersection of the two transformed curves in the Hough space.

Consider two corresponding bitangeiysandl; on the two sides of, with bitangent points
X1, X2 andx}, x;, respectively (see fig. 10). L&t be the line joiningx; andx), andl), be the
line joining x| andx,. The intersection of;,, with 1; and the intersection df; with 1, define
a line which will provide an estimate for the image of the revolution &xid et 1. be the line
joining x; andx}, andl, be the line joiningk, andx’,. The intersection of. with 1. will provide
an estimate for the vanishing point.. The initialization ofl; andv, from bitangents often
provides an excellent initial guess for the optimization problem. This is generally good enough
to avoid any local minimum and allows convergence to the global minimum in a small number
of iterations. Note that bitangents are used here only to provide an initial estimatefatv,,
which will be further refined by optimizing the cost function given in (20). As a result, error
in the estimation of the bitangents will not directly affect the accuracy of the final estimation
of the intrinsic parameters. Alternatively in the absence of any bitanderdan be initialized
manually by observing the symmetry in the silhouette, apdan be initialized to be a point at
infinity having a direction orthogonal Q.

The above approach of estimating the harmonic homology is similar to the one presented in
[13]. However, the initialization using bitangent points allows for optimizing the full projective
model, represented by the harmonic homology, in contrast to the affine approximation used in

[13], which corresponds to a skew symmetry transformation. An alternative method, which
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% Vy

Fig. 10. Initialization of the optimization parametdrsandv, from the bitangents and lines formed from the

bitangent points.

computes the harmonic homology implicitly, was developed in [38]. The method presented

here is much simpler than the one shown in [38], which relies on an unnecessarily complicated
prediction, verification and selection scheme. An important point to note is that both the results
in [13] and [38] demonstrate that the harmonic homology can be successfully computed in the

presence of partial occlusion and clustered background.

B. Estimation of the Intrinsic Parameters
Method I:

Under the assumption of zero skew and unit aspect ratio, thé lipassing through the prin-
cipal point(ug, v9) and the vanishing point, will be orthogonal to the image of the revolution
axisl (see Section IV). Let, = [v; vy v3]T andly = [I; I I3]T. The linel, can be expressed

in terms ofv,, andl, and is given by

lyvs
L, = —l11)3 . (21)

Livy — lavy
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Given two such lines,; andl,,, the principal pointu, vo) will then be given by the intersection
of 1,; with 1,.. When more than two lines are available, the principal p6ifntv,) can be

estimated by a linear least-squares method from

L

]T auUg
T2

T (6]

whereM > 2 is the total number of lines (i.e., number of silhouettes) and a scale factor.
The estimated principal poirit.g, vo) is then projected onto each lidg orthogonally asxy;,

and the focal lengtlf will be given by

M
1
f = M Z \/diSt(XOZ', V:m‘) X diSt(XOZ’, lsi)7 (23)

=1

where dist(xo;, v,;) iS the distance betweexy; andv,;, anddist(xg;, ls;) is the orthogonal
distance fromx,; to the image of the revolution axis;. Note that the terms for summation
are the focal lengths estimated from each paiv gfandl,; with the estimated principal point
projected onto the correspondihg (see Section 1V), and the focal lengths then taken to be
the mean of these estimated values.

When the aspect ratio of the camera is known but not equal to one, there exists a planar ho-
mographyA (a) that transforms the image into one that would have been obtained from a cam-
era with the same focal lenggh unit aspect ratio and principal poi@t;, v;). The homography

A(a) is given by

Lo
Al@)= |0 1 —vg+uvp |, (24)
0 0 1

whereq is the aspect ratio of the original camera, &ngl v,) and(uy, v;) are the principal points
of the original and transformed cameras respectively. By setting the principal(pgint,) of

the transformed camera to,/a, vo), the homographw () is reduced to

A'(a) = (25)

(@) O Q=
—_
(@]
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The vanishing points,; and the images of the revolution atisare transformed by’(a) and
A’*T(a) respectively, and equations (21)—(23) can then be applied to obtain the principal point
(ug, vy) and the focal lengtlf. Note that the principal poiritu, v},) obtained in this way is the
principal point of the transformed camera, and the principal gainty,) of the original camera
is simply given by

Ug aug

- . (26)

Vo U6
Method II:

When the aspect ratio of the camera is unknown, the camera can be calibrated by first esti-
mating the image of the absolute conic Letv, = [v; v, v3]T andly = [l; Iy I5]*. From
(19), under the assumption of zero skew, each pair,cdndl, will provide the following two

constraints

Ullgwl + (Uglg - Ulll)WQ - vgl1w4 - 1)3Z1W5 = O, and (27)

vllng — U2l3u)3 + (Uglg — U3l3)u)4 + Ugl2w5 = 0, (28)
wherew; are the matrix elements of the absolute canic

w1 0 wsy
w = 0 ws CU4 . (29)

Wa Wy Ws

Hence the image of the absolute conic can be estimated, up to a scale factor, by a linear least-
squares method when there are two or more paivs @indl,. After obtaining an estimate fa,

the camera calibration matriX can then be obtained from by Cholesky decomposition [39,
Chapter 2]. Note that the unit aspect ratio constraint can also be easily incorporated by setting

w1 = ws in equations (28) and (29).

VI. SINGULAR CASES

The algorithms presented in the previous section have two main steps: the computation of the
harmonic homologies, and the subsequent computation of the camera intrinsic parameters using
the just computed homologies. Therefore, the only two situations where the algorithms fail are

when the homologies cannot be computed, and when the homologies do not provide enough
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information for the calibration of the camera. The following subsections analyze the occurrence

of these degeneracies.

A. Conic Slhouette

If the silhouettep of a surface of revolution is a conic, there will be an infinite number of
harmonic homologies to which the silhouettavill be invariant. Such a situation results in a
singular case for camera calibration from surfaces of revolution.

Consider a conic represented bg & 3 symmetric matrixC, such that every point on the
conic satisfies

x Cx = 0. (30)

Given a pointx, outside the coni€, two tangents can be drawn fraxg to C (see fig. 11), and

the linel, passing through the two tangent points is given by
I, = Cx,. (31)

Let W, be a harmonic homology with axis and centek,, i.e.,

X 1T
W, = [;—2—=°2. 32
e 3 XeT]_e ( )
Substituting (31) into (32) gives
Xox1 CT
Let x be a point orC andx’ = W x, and consider the equation
xXTCx' = (Wx)TC(Wx)
= x"(WICwW,)x. (34)
Substituting (33) into (34) gives
TT TT
T T XX, C* ¢ XX, C
x'Cx' = x [(Hg — 2@) C(H3 — Qmﬂx
Cx.xt Cx.xIC"
= x [(I3—2 eTCXe)(C — XTCx )]x
= x'Cx
= 0. (35)
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Equation (35) implies that any poirt outside the coni€ and the corresponding lile = Cx,

will define a harmonic homologyV ., to which the conidC will be invariant. As a result, if the
silhouette of the surface of revolution is a conic, there will not be a unique solution to the
optimization problem of the harmonic homolo§y associated with the silhouette, and hence it

provides no information on the intrinsic parameters of the camera.

Fig. 11. A conicC will be invariant to any harmonic homology with a center given by any prinbutside the

conic, and an axis given By = Cx..

Assume now that the silhouette can be represented as a homogeneous algebrajooturve
degreel [40]. As a result of Bezout's theorem, the silhouette will have 3d(d — 2) inflection
points [41]. If a curve is invariant to a harmonic homolowy, its inflection points, which are
projective invariants, will be mapped to each otheMiy If d > 3, there will bek > 9 inflection
points, providing at least four matches for computing the harmonic homology. Observe that this
resultis valid even when the inflection points are imaginary, since there is no problem in mapping
an imaginary inflection point to an also imaginary counterpart by a real harmonic homology. The
result also holds when the inflection points have multiplicity greater than one, because then the
derivatives ofg at the inflection point will also be preserved By. As a result, ifd > 3 and
the matching of the inflection points is known, the harmonic homology can be determined. If
the matching of the inflection points is not known, there will be at most a finite number of
solutions, for different choices in the matching. In general, it should be possible to choose the
correctW by validating it against the rest of the curve. The discussion above demonstrates that
conics are the only general (i.e., not for a particular view of a particular example) degeneracy in
the computation of the harmonic homology when the silhouette is in the class of homogeneous

algebraic curves. It is worthwhile noting that any curve that admits a rational parameterization,
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such as B-splines and NURBS, can be expressed in homogeneous algebraic form [42], and

therefore the proof is also valid in these particular cases.

B. Vanishing Point at Infinity

When the camera is pointing towards the revolution axis of the surface, the silhouette will
exhibit bilateral or skew symmetry (see Section IlI-C), and the vanishing pqintill be at
infinity (i.e., v3 = 0). In this situation, the liné,, on which the principal point is constrained to
lie, cannot be determined, and this may cause the calibration equations to be under constrained.

To simplify the analysis, consider a camera with zero skew and unit aspect ratio. Assume
now that one homologyV (v, L) with v3 # 0 is available. If a second homolod¥ (v, 1)) #
W(v,,L) is also available, there will then be four distinct possibilities for the computation of
the principal poini, and the focal lengtlj:

(i) v§ # 0andl, # I’ : there will be a unique solution fot, given byx, =1, x L.
(i) o4 # 0andl, = I: there will be exactly one solution for, such that®x, = 0 satisfying

f? = dist(xo, v,;) x dist(x,15) = dist(xq, v},) X dist(xo, L}).
(i) v = 0andl, # L: note that the principal point is now constrained to lielgrand there

will be a unique solution fox, given byx, =1, x L.
(iv) 4 = 0andl, = 1: there will be infinite number of solutions fet.
The discussion above demonstrates that whenever there are two distinct hom®bgied
W' such that bothy; andv} are not equal to zero, the computation of the principal point and
therefore of the focal length is possible. Moreover, even when there is only one homology with
vz # 0, the computation of the principal point and the focal length is still possible, as long as the
highly unlikely condition thal, = 1. does not occur. When the camera is pointing towards the

revolution axis in all images (i.evs = 0 Vv,), then only the principal point can be estimated.

VIl. ERRORANALYSIS
A. Proportionality of the Error with the Focal Length

Experiments show that in estimating the harmonic homoMggssociated with the silhouette
p of a surface of revolution, the uncertainty is essentially in the vanishing pgirincev, is,
in general, tens of thousands of pixels away from the Rxiss error in a direction orthogonal to

1, can be neglected in the computation of the principal point and focal length. On the other hand,
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the error ofv,, in a direction parallel td, will lead to the same error in the estimated principal
pointx,. This is due to the fact that, under the assumption of zero skew and unit aspectgatio,

must lie on the lind,, passing throughr, and orthogonal td, (see Section IV).

W W

X

Xe ——T¢

X

3 S o S

Vy L Iy
dy dy
s

Fig. 12. Error analysis in the estimation of the principal point as the focal length varies.

Fig. 12 shows a point in p which is transformed bW to its symmetric counterpagt’ in p.
If v, has an erro€ in a direction parallel td, then the transformed point will have an ereor

(see fig. 12). Itis easy to see tlfadinde are related to each other by

dy +d —
§_dotdy—w (36)

€ w4+ w’
Sinced, = f?/d’ is much greater thad , w andw’, and thatw andw’ have nearly the same

value, equation (36) can be rewritten as

P
e 2w 2tanyw’ (37)

where is the angle between the optical axis and the planendd!, = f tan . Equation (37)
implies that ify), w ande are assumed to be approximately constant, then the &afv ., and
hence the error of the principal poirg, in a direction parallel td, will be proportional tof.

This might limit the usefulness of the technique to wide angle cameras.

B. Validation of the Error Analysis

To validate the error analysis described in the previous subsection, a simple experiment was
performed. Four coplanar points configured into a square were placed in front of a camera with
zero skew, unit aspect ratio and variable focal length. Initially, the image plane of the camera
was parallel to the square formed by these four points, and the optical axis of the camera passed
through the center of this square. The camera was then rotated about its optical center and away

from the symmetry plane of the four points, distorting the otherwise bilaterally symmetric image
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to one invariant to a harmonic homology with the vanishing point at a finite position. Gaussian
noise was then added to the coordinates of the projected points, and the corresponding harmonic
homology was computed. One can easily relate the parameters in this experiment with those in
equation (37)z is the standard deviation of the noise (i.e., noise level}, the angle by which

the camera was rotated from the symmetry plane prior to the projection of the points veasl

taken as the average distance from the pointg tibis important to notice that changes as the

focal length changes, thus introducing a nuisance factor that will hide the true linear dependency
between the magnitude of the focal length and the error in the position of the principal point.
To compensate for that, the optical center of the camera was translated according to the value
of the focal length (i.e., the larger the focal length, the further away from the four points the
camera was placed), keeping the average value obnstant. Intuitively, this has the effect

of maintaining the size of the calibration object (in this case, the four points) approximately
constant in the image, despite the changes in the focal length. This experiment was repeated
one hundred times for each noise level, and the average norm of the errors in the position of
the principal point is shown in fig. 13, as a function of the focal length. The linear relationship
described in equation (37) clearly holds, and the proportionality of the error with the noise level

o is also apparent.
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Fig. 13. Linear dependency between the error in the position of the principal point and the magnitude of the focal
length. Each point on each curve is the average norm of the errors in the position of the principal point over one
hundred experiments.
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VIll. EXPERIMENTS AND RESULTS

Experiments on both synthetic and real data were carried out, and the results are presented in

the following subsections. In both cases, the cameras were assumed to have zero skew.

A. Synthetic Data
A.1 Generation of Data

The experimental setup consisted of a surface of revolution viewed by a synthetic camera at
three different positions, as shown in fig. 14. The synthetic images had a dimen§itnof80

pixels, and the intrinsic parameters of the synthetic camera were given by the calibration matrix

f 0 320
K= 1|0 f 240 | where f = 700, 1400. (38)
0 0 1

The surface of revolution was composed of two spheres intersecting each other. Each sphere

was represented bydax 4 symmetric matriXxQ; whose projection was given by [43]
C;; = (P,Q;'Pj) ™, (39)

whereP; was a3 x 4 projection matrix andC,; was a3 x 3 symmetric matrix representing the
conic, which was the projection @, in P;. The silhouette of the surface of revolution in each
image was found by projecting each sph€gonto the imagg as the conidC,;; and finding
points on each conic that lie outside the other conic. The silhouettes in the three images taken
by the synthetic camera with = 700 are shown in fig. 15.

In order to evaluate the robustness of the algorithms described in Section V, uniform random
noise was added to each silhouette. Each point in the silhouette was perturbed in a direction
normal to the local tangent, and the magnitudes of the noise were smoothed by a Gaussian filter

S0 as to avoid unrealistic jaggedness along the silhouette (see fig. 16).

A.2 Results on Synthetic Data

Experiments on the synthetic data with seven different noise levels were carried out. The
seven noise levels wefe5, 0.7, 1.0, 1.2, 1.5, 1.7 and2.0 pixels respectively. The noise level for

typical real images ranges frofi7 to 1.5 pixels, and the distortion of the silhouette will be too
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Fig. 14. The experimental setup consisted of a surface of revolution, which was composed of two intersecting

(0

spheres, viewed by a synthetic camera at three different positions.

image 1 image 2 image 3

Fig. 15. Silhouettes of the surface of revolution in the three images taken by the synthetic camgra-witio.

great to be realistic when the noise level is ab®¥epixels. For each noise level, one hundred
experiments were conducted using the algorithms described in Section V. In the estimation
of the harmonic homology, the number of sample points usediw@sBoth method | and I

described in Section V-B were used for the computation of the intrinsic parameters.

The experimental results are presented in table I, which shows the root-mean-square (rms)
errors of the estimated intrinsic parameters. Note that the values listed in the table have been
normalized and are the percentage errors relative to the corresponding ground truth focal lengths.
It can be seen from table | that the focal lengths obtained using method Il were better than those
obtained using method I, regardless of whether the unit aspect ratio constraint was imposed or
not. For different versions of method Il (i.e., lla with free aspect ratio and llb with unit aspect
ratio), llb gave the best results. This is consistent with the well-known fact that the enforcement
of known constraints gives more accurate results in camera calibration. Observe that this does
not contradict the fact that method lla gave better results than method I, for in this case different

algorithms are being compared. As the noise level increased, the relative errors in the estimated
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E) 0 0 20 =0 E) 00 50 20 =0 W0 a0 w2 03 14 15 06 7 108 18

(a) (b) (©)
Fig. 16. (a) The original silhouette. (b) The resultant silhouette after uniform random noise of maximum 0.5 pixels
being added. (c) The noise-free and noisy silhouettes are represented by solid and dash lines respectively, and the

dotted lines indicate the bounds for noise along the normal direction of each point.

intrinsic parameters increased. Table | also shows that the errors increased with the focal length
of the camera (see also fig. 17), and this agrees with the error analysis presented in Section VII.
For a noise level of 2.0 pixels, the errors in the estimated focal lengths were less than 6.0% and

7.5% for the synthetic cameras with= 700 and f = 1400 respectively.

8

(%)

of the estimated focal lengths

Fig. 17. Normalized rms errors of the estimated focal lengths obtained using method Ilb under different noise

levels.

B. Real Data
B.1 The Ground Truth

The camera used in the real data experiments was a digital camera with a resolatonxof
480 pixels. The ground truth for the intrinsic parameters of the camera was obtained using
a calibration grid. Six images of a calibration grid were taken with the camera at different
orientations (see fig. 18). Corner features were extracted from each image using a Canny edge

detector [36] and line fitting techniques. For each image, the camera was calibrated using the
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TABLE |

EXPERIMENTAL RESULTS OF CALIBRATION FROM SILHOUETTES UNDER DIFFERENT FOCAL LENGTHS AND

NOISE LEVELS.

Synthetic Camera 1f(= 700) Synthetic Camera 2f(= 1400)
Percentage Errors (%) Percentage Errors (%)

noise Iv | method fu fo Uo v fu fo uo o
0.5 I 1.1921| 1.1921 | 0.6325 | 0.3354 || 2.2382 | 2.2382 | 0.7371 | 0.4008
0.5 lla 1.1516 | 1.0945 | 0.6023 | 0.7591 || 2.0834 | 2.0280 | 0.6254 | 0.8150
0.5 b 1.1254 | 1.1254 | 0.5687 | 0.7462 || 2.0541 | 2.0541 | 0.6108 | 0.8082
0.7 I 1.7181| 1.7181 | 0.8986 | 0.4725 || 3.1868 | 3.1868 | 1.1699 | 0.5610
0.7 lla 1.7111| 1.6250 | 0.8417 | 1.0659 || 2.7825 | 2.7070 | 1.0280 | 1.2551
0.7 IIb 1.6711| 1.6711 | 0.7937 | 1.0478 || 2.7423 | 2.7423 | 1.0052 | 1.2454
1.0 I 24277 | 2.4277 | 1.3113| 0.7239 || 4.3078 | 4.3078 | 1.8183 | 0.9197
1.0 lla 2.3610| 2.2334 | 1.2908 | 1.6372 || 3.6626 | 3.5731 | 1.2814 | 1.5222
1.0 IIb 2.3007 | 2.3007 | 1.2184 | 1.6064 || 3.6161 | 3.6161 | 1.2513 |1.5134
1.2 I 3.0194 | 3.0194 | 1.7414 | 0.8761 || 5.5788 | 5.5788 | 1.7734 | 1.0189
12 lla 2.5415| 2.4044 | 1.5292 | 2.1493 || 4.6212 | 4.5503 | 1.4714 | 1.7224
12 b 2.4749| 2.4749 | 1.4469 | 2.1164 || 4.5831 | 4.5831 | 1.4401 |1.7127
15 I 45876 | 4.5876 | 2.7362 | 1.3309 || 6.2149 | 6.2149 | 1.9063 | 1.5326
15 lla 4.0019| 3.8079| 2.0678 | 3.1898 || 5.9250 | 5.8213 | 1.7284 | 2.1655
15 b 3.9031| 3.9031 | 1.9597 | 3.1490 || 5.8700 | 5.8700 | 1.6910 | 2.1504
1.7 I 5.6534| 5.6534 | 3.1541 | 1.7898 || 8.0902 | 8.0902 | 2.9027 | 1.4357
1.7 lla 4.3192| 4.1158 | 2.1550 | 3.7542 || 6.4024 | 6.2320 | 1.8617 |2.3701
1.7 b 4.2144| 4.2144 | 2.0343 | 3.7192 || 6.3107 | 6.3107 | 1.8216 | 2.3488
2.0 I 6.7864 | 6.7864 | 4.3649 | 3.4956 || 8.8957 | 8.8957 | 2.6345 | 1.9192
2.0 lla 5.8438| 5.6100 | 3.1055 | 5.3920 || 7.2582 | 7.1219 | 2.1700 | 2.3457
2.0 IIb 5.7052 | 5.7052 | 2.9625 | 5.3566 || 7.1867 | 7.1867 | 2.1304 | 2.3292

method Ila : method Il without the unit aspect ratio constraint

method IIb : method Il with the unit aspect ratio constraint
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DLT technique [19] followed by an optimization which minimized the reprojection errors of the

corner features [1], [6]. The results of calibration from the calibration grid are shown in table II.

Fig. 18. Six images of a calibration grid taken by the digital camera for calibration.

TABLE Il

RESULTS OF CALIBRATION FROM THE SIX IMAGES OF THE CALIBRATION GRID

assumption: zero skew and unit aspect raﬂio

fu fv uo Vo
mean || 687.92| 687.92 | 320.98 | 230.88
std 1.90 1.90 4.00 3.35

assumption: zero skew

fu fo ug Vo
mean| 687.70| 688.09 | 320.98 | 230.88
std 1.83 2.10 4.00 3.34

(all units are in pixels)

B.2 Results on Real Data

Two sets of real images of surfaces of revolution were used for the calibration of the digital
camera. The first set consisted of three images of two bowls, which provided four silhouettes
for camera calibration (see fig. 19). The second set consisted of eight images of a candle holder,
which provided eight silhouettes for camera calibration (see fig. 20). The results of calibration

from the two image sets are shown in table Ill, and table IV shows the percentage errors of the
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estimated intrinsic parameters relative to the ground truth focal lengths. Similar to the results of
the synthetic experiments, the intrinsic parameters obtained in the real data experiments using
method Il were better than those obtained using method I. The focal lengths estimated from both
the bowls set and the candle holder set (using method Il with unit aspect ratio constraint) had
an error of only around 3% relative to the ground truth focal length. Fig. 19 and 20 show the
extracted silhouettes and the estimated images of the revolution axis. Fig. 21 shows the lines

1,; passing through the corresponding vanishing peijatand orthogonal to the corresponding

S

Fig. 19. Three images of two bowls with the extracted silhouettes and estimated images of the revolution axis

image of the revolution axik;.

plotted in solid and dash lines respectively.

Fig. 20. Eightimages of a candle holder with the extracted silhouettes and estimated images of the revolution axis
plotted in solid and dash lines respectively.

From table Il and table IV, it can be seen that the intrinsic parameters estimated from the
candle holder set were slightly better than those from the bowls set. This can be explained as
the silhouettes in the candle holder set showed much greater perspective effect than those in the
bowls set (see fig. 19 and fig. 20). Besides, the candle holder set also provided more silhouettes,

and hence more constraints, than the bowls set for the estimation of the intrinsic parameters.
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TABLE IlI

RESULTS OF CALIBRATION FROM THE BOWLS AND CANDLE HOLDER SETS

image set ‘methodH fu ‘ fo ‘ Ug ‘ Vg ‘
bowls I 727.12| 727.12| 332.34 | 227.21
bowls lla 706.65| 708.55 | 321.25 | 246.25
bowls lIb 708.63| 708.63 | 322.15 | 244.75
candle holder I 727.93 | 727.93| 279.21 | 231.40
candle holder| lla 708.44 | 705.47 | 331.53 | 231.18
candle holder| Ilb 707.40| 707.40 | 330.60 | 231.54

(all units are in pixels)

TABLE IV

PERCENTAGE ERRORS IN THE RESULTS OF CALIBRATION FROM THE TWO IMAGE SETS

Percentage Errors (%)

image set | method || f, fo ug v

bowls I 5.70| 5.70 | 1.65 | 0.53
bowls lla 2.76 | 2.97| 0.04 | 2.23
bowls lIb 3.01|3.01|0.17 | 2.02
candle holder I 5.82 | 5.82 | 6.07 | 0.08

candle holder| lla 3.02 | 253|153 | 0.04
candle holder| llb 2.83 | 2.83|1.40 | 0.10

bowls set candle holder set

Fig. 21. The solid lines represent the lingspassing through the corresponding vanishing peintand orthogonal
to the corresponding image of the axis revolutign Since the principal point, must lie on these lines, it can be

estimated as the intersection of two or more lihgs
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IX. CONCLUSIONS

By exploiting the symmetry properties exhibited in the silhouettes of surfaces of revolution
and relating them to vanishing points, a practical technique for camera calibration has been de-
veloped. The use of surfaces of revolution makes the calibration process easier in not requiring
the use of any precisely machined device with known geometry, such as a calibration grid. Be-
sides, a surface of revolution can always be generated by rotating an object of any arbitrary shape
around a fixed axis. It means that the calibration technique introduced here can be integrated
into a motion estimation and model building system for turntable sequences [44], [28].

Despite the fact that strong perspective effect is required, the method introduced here is
promising as demonstrated by the experimental results on both synthetic and real data. The
focal lengths were estimated with high accuracy, having an error of only around 3% with respect
to the ground truth. Nonetheless, note that neither of the implementations proposed in Section V
is statistically optimal, even though the computation of each individual harmonic homology is.
The statistically optimal way, which will not be discussed in details here, would be integrating
all the information provided by the silhouettes to estimate the intrinsic parameters and the har-
monic homologies simultaneously. For a set\dfimages, this would involve an optimization
over a2N + 4 parameter space: 4 for the intrinsic parameters, or equivalently, for the image of
the absolute conia; and2N for the N vanishing points/,, or equivalently, for theV images

of the revolution axeg (aswv, = ;). This might be included in future work.

APPENDIX
DEFINITION OF THE HARMONIC HOMOLOGY

A perspective collineation [30], with centerx. and axisgl,, is a collineation which leaves all
the lines through. and points ofl,, invariant. If the centex, and the axid, are not incident,
the perspective collineation is calledhamology [30]; otherwise it is called amlation [30].
Consider a poink which is mapped by a homology with center and axisl, to the pointx’.
Let x/. be the point of intersection between the aisnd a line passing through the poists
andx’. The homology is said to be harmonic if the poirtandx’ are harmonic conjugates with
respect tax. andx’, (i.e., the cross-ratigx.,x.;x,x’} equals—1). The matrixW representing

a harmonic homology [30] with centerx, and axisl,, in homogeneous coordinates, is given by
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W =1I;5— 2;‘;15. More details on harmonic homology can be found in [29], [30].
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