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Abstract—This paper presents a new Bayesian framework for motion segmentation—dividing a frame from an image sequence into

layers representing different moving objects—by tracking edges between frames. Edges are found using the Canny edge detector, and

the Expectation-Maximization algorithm is then used to fit motion models to these edges and also to calculate the probabilities of the

edges obeying each motion model. The edges are also used to segment the image into regions of similar color. The most likely labeling

for these regions is then calculated by using the edge probabilities, in association with a Markov Random Field-style prior. The

identification of the relative depth ordering of the different motion layers is also determined, as an integral part of the process. An

efficient implementation of this framework is presented for segmenting two motions (foreground and background) using two frames. It

is then demonstrated how, by tracking the edges into further frames, the probabilities may be accumulated to provide an even more

accurate and robust estimate, and segment an entire sequence. Further extensions are then presented to address the segmentation of

more than two motions. Here, a hierarchical method of initializing the Expectation-Maximization algorithm is described, and it is

demonstrated that the Minimum Description Length principle may be used to automatically select the best number of motion layers.

The results from over 30 sequences (demonstrating both two and three motions) are presented and discussed.

Index Terms—Video analysis, motion, segmentation, depth cues.
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1 INTRODUCTION

MOTION is an important cue in vision, and the analysis
of the motion between two images, or across a video

sequence, is a prelude to many further areas in computer
vision. Where there are different moving objects in the
scene, or objects at different depths, motion discontinuities
will occur and these provide information essential to the
understanding of the scene. Motion segmentation (the
division of a video frame into areas obeying different
image motions) provides this valuable information.

With the current boom in digital media, motion
segmentation finds itself a number of direct applications.
Video compression becomes increasingly important as
consumers demand higher quality for less bandwidth,
and here motion segmentation can provide assistance. By
detecting and separating the moving objects from the
background, coding techniques can apply different coding
strategies to the different elements of the scene. Typically,
the background changes less quickly, or is less relevant than
the foreground action, so can be coded at a lower bit rate.
Mosaicing of the background [1], [2] provides another
compact representation. The MPEG-4 standard [3] explicitly
describes a sequence in terms of objects moving in front of a
background image and, while initially designed for multi-
media presentations, motion segmentation may be used to
also encode real video in this manner.

Another relatively new field is that of video indexing [4],
[5], where the aim is to automatically classify and retrieve
video sequences based on their content. The segmentation
of the moving objects enables these objects and the
background to be analyzed independently. Classification,
both on low-level image and motion characteristics of the
scene components, and on higher-level semantic analysis
can then take place.

1.1 Review of Previous Work

Many popular approaches to motion segmentation revolve
around analyzing the per-pixel optic flow in the image.
Optic flow techniques, such as the classic work by Horn and
Schunk [6], use spatiotemporal derivatives of the pixel
intensities to provide a motion vector at each pixel. Because
of the aperture problem, this motion vector can only be
determined in the direction of the local intensity gradient,
and so in order to determine the complete field it is
assumed that the motion is locally smooth.

Analyzing this optic flow field is one approach to motion
segmentation. Adiv [7] clustered together pixels with
similar flow vectors and then grouped these into segments
obeying the same 3D motion; Murray and Buxton [8]
followed a similar technique. However, the smoothing
required by optic flow algorithms renders the flow fields
highly unreliable both in areas of low gradient (into which
results from other areas spread), and when there are
multiple motions. The case of multiple motions is particu-
larly troublesome, since the edges of moving objects create
discontinuities in the flow field, and after smoothing the
localization of these edges is difficult. It is unfortunate that
these are the very edges that are required for a motion
segmentation. One solution to this smoothing problem is to
apply the smoothing in a piecewise fashion. Taking a small
area, the flow can be analyzed to determine whether it best
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fits one smooth motion or a pair of motions, and these
patches in the image can be marked and treated accordingly
(e.g., [9], [10], [11]).

The most successful approaches to motion segmentation
consider parameterizing the optic flow field, fitting a
different model (typically 2D affine) to each moving object.
Pixels can then be labeled as best fitting one model or
another. This is referred to as a layered representation [10] of
the motion field, since it models pixel motions as belonging
to one of several layers. Each layer has its own, smooth,
flow field, while discontinuities can occur between layers.
Each layer represents a different object in the sequence, and
so the assignment of pixels to layers also provides the
motion segmentation.

There are two main approaches to determining the
contents of the layers, of which the dominant motion
approach (e.g., [1], [12], [13], [14], [15]) is the most
straightforward. Here, a single motion is robustly fitted to
all pixels, which are then tested to see whether they really
fit that motion (according to some metric). The pixels which
agree with the motion are labeled as being on that layer. At
this stage, either this layer can be labeled as “background”
(being the dominant motion), and the outlier pixels as
belonging to foreground objects [14], [15], or the process can
be repeated recursively on the remaining pixels to provide a
full set of layers for further analysis [1], [12], [13].

The othermain approach is to determine all of themotions
simultaneously. This can either bedone either by estimating a
large number of motions, one for each small patch of the
image, and then merging similar motions (typically by
k-means clustering) [10], [11], [16], or by using the Expecta-
tion-Maximization (EM) algorithm [17] to simultaneously
estimate motions and find the pixel labels [2], [18], [19]. The
number of motions also has to be determined. This is usually
done by either setting a smoothing factor and merging
convergent models [19], or by considering the size of the
modelunderaMinimumDescriptionLength framework [18].

Given a set of motions, assigning pixels to layers requires
determining which motion they best fit, if any. This can be
done by comparing the pixel color or intensities under the
proposed motions, but this presents several problems.
Pixels in areas of smooth intensity are ambiguous as they
can appear similar under several different motions and, as
with the optic flow techniques, some form of smoothing is
required to identify the best motion for these regions. Pixels
in areas of high intensity gradient are also troublesome, as
slight errors in the motion estimate can yield pixel of a very
different color or intensity, even under the correct motion.
Again, some smoothing is usually required. A common
approach is to use a Markov Random field [20], which
encourages pixels to be labeled the same as their neighbors
[14], [15], [19], [21]. This works well at ensuring coherent
regions, but can often also lead to the foreground objects
“bleeding” over their edge by a pixel or two.

All of the techniques considered so far try to solve the
motion segmentation problem using only motion informa-
tion. This, however, ignores the wealth of additional
information that is present in the image intensity structure.
The image structure and the pixel motion can both be
considered at the same time by assigning a combined score to
each pixel and then finding the optimal segmentation based

on all these properties, as in Shi andMalik’sNormalizedCuts
framework [22], but these approaches tend to be computa-
tionally expensive. Amore efficient approach is that of region
merging, where an image is first segmented solely according
to the image structure, and then objects are identified by
merging regions with the same motion. This implicitly
resolves the problems identified earlier which required
smoothing of the optic flow field, since the static segmenta-
tion processwill group together neighboring pixels of similar
intensity so that all the pixels in an area of smooth intensity,
being grouped in the same region, will be labeled with the
same motion. Regions will be delimited by areas of high
gradient (edges) in the image and it is at these points that
changes in the motion labeling may occur.

As with the per-pixel optic flow methods, the region-
merging approach has several methods of simultaneously
finding the motions and labeling the regions. Under the
dominant-motion method (e.g., [4], [12], [23]), a single
parametric motion is robustly fitted to all the pixels and
then regions which agree with this motion are segmented as
one layer and the process repeated on the rest. Alterna-
tively, a different motion may be fitted to each region and
then some clustering performed in parameter space to
group regions with similar motions [24], [25], [26], [27], [28],
[29]. The EM algorithm is also a good choice when faced
with this type of estimation problem [19].

The final segmentation from all of these motion
segmentation schemes is a labeling of pixels, each into
one of several layers, together with the parameterized
motion for each layer. What is not generally considered is
the relative depth ordering of each of these layers, i.e.,
which is the background and which are foreground objects.
If necessary, it is sometimes assumed that the largest region
or the dominant motion is the background. Occlusion is
commonly considered, but only in terms of a problem
which upsets the pixel matching and so requires the use of
robust methods. However, this occlusion may be used to
identify the layer ordering as a postprocessing stage. Wang
and Adelson [10], and Bergen and Meyer [29], identify the
occasions when a group of pixels on the edge of a layer are
outliers to the layer motion and use these to infer that the
layer is being occluded by its neighbor. Tweed and Calway
[30] use similar occlusion reasoning around the boundaries
of regions as part of an integrated segmentation and
ordering scheme.

Depth ordering has recently begun to be considered as
an integral part of the segmentation process. Black and Fleet
[31] have modeled occlusion boundaries directly by con-
sidering the optic flow in a small region and this also allows
occluding edges to be detected and the relative ordering to
be found. Gaucher and Medioni [32] also study the velocity
field to detect motion boundaries and infer the occlusion
relationships.

1.2 This Paper: Using Edges

This paper presents a novel and efficient framework for
both motion segmentation and depth ordering using the
motion of edges in the sequence. Previous researchers have
found that that the motion of pixels in areas of smooth
intensity is difficult to determine and that smoothing is
required to resolve this problem, although this then

480 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 4, APRIL 2004



provides problems of its own. This paper ignores these
areas initially, concentrating only on edges, and then
follows a region-merging framework, labeling presegmen-
ted regions according to their motions. It is shown that the
motion of these regions may be determined solely from the
motion of their edges without needing to use the pixels in
their smooth interior. A similar approach was used by
Thompson [24], who also used only the motion of the edges
of regions in estimating their motion. However, this is his
only use of the edges, as a prelude to a standard region-
merging approach. This paper shows that edges provide
further information and, in fact, the clustering and labeling
of the region edges provides all the information that can be
known about the assignment of regions and also the
ordering of the different layers.

This paper describes the theory linking the motions of
edges and regions, and then develops a probabilistic frame-
work which enables the most likely region labeling and layer
ordering to be inferred from edge motions. This process may
be performed over only two frames, but evidence can also be
accumulated over a sequence to provide amore accurate and
robust segmentation. The theoretical framework linking
edges and regions is presented in Section 2. Section 3
develops a Bayesian formulation of this framework, and the
basic implementation is presented in Section 4. This
implementation is extended to use multiple frames in
Section 5, and to segment multiple motions in Section 6.
Results are given at the end of each of the implementation
sections, while Section 7 draws some conclusions and
outlines future directions for research.

2 MOTION SEGMENTATION USING EDGES

Given frames from a sequence featuring moving objects, the
task is to provide as an output a cut-out of the different
objects, together with their relative depth ordering (see, for
example, Fig. 1). The desired segmentation can be defined
in terms of the pixels representing different objects or,
alternatively, by the edges of the areas of the image
representing the different objects. Edges are fundamental
to the problem and it will be shown that the motion of the
edges can be used to provide the solution.

Considering the pixels in Fig. 1, it can be noted that there
are a number of areas of the imagewith very little variation in
pixel color and intensity. No reliable motion information can
be gained from these areas; it is the edges in the image which
provide real motion information. (Texture can also give good
motion information, but this provides a difficult matching
problem.)Edgesareverygood features to consider formotion
estimation: They can be found more reliably than corner

features and their long extent means that a number of

measurements may be taken along their length, leading to a

more accurate estimation of their motion.
Even when using edges, the task is also one of labeling

regions since it is an enclosed area of the frame which must

be labeled as a moving object. If it is assumed that the image

is segmented into regions along edges, then there is a

natural link between the regions and the edges.

2.1 The Theory of Edges and Regions

Edges in an image are generated as a result of the texture of

objects, or their boundaries in the scene.1 There are three

fundamental assumptions made in this work, which are

commonly made in layered-motion schemes, and will be

valid in many sequences:

1 As an object moves all of the edges associated with
that object move, with a motion which may be
approximately described by some motion model.

2 The motions are layered, i.e., one motion takes place
completely in front of another and the layers are
strictly ordered. Typically, the layer farthest from the
camera is referred to as the background with nearer
foreground layers in front of this.

3 No one segmented image region belongs to two or
more motion models and, hence, any occluding
boundary is visible as an region edge in the image.

Given these assumptions, it is possible to state the

relationship between the motions of regions and the

motions of the edges that divide them. If the layer of each

region is known, and the layer ordering is known, then the

layer of each edge can be uniquely determined by the

following rule:

. Edge Labeling Rule. The layer to which an edge
belongs is that of the nearer of the two regions which
it bounds.

The converse is not true. If only the edge labeling is known

(and not the layer ordering), then this does not necessarily

determine the region labeling or layer ordering. Indeed, even

if the layer ordering is known, there may be multiple region

labelings which are consistent with the edge labeling.
An example of a region and edge labeling is shown in

Fig. 2a. On the left is shown a known region labeling, where
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1. Edges may also be generated as a result of material or surface
properties (texture or reflectance). It is assumed that these do not occur but
see the “Car” sequence in Section 4 for an example of the consequence of
this assumption.

Fig. 1. “Foreman” example. Two frames from the “Foreman” sequence

and the foreground layer of the desired segmentation. Two widely-

separated frames are here shown only for clarity; this paper considers

neighboring frames.

Fig. 2. Edges and Regions. (a) A region labeling and layer ordering (in
this case black is on top) fully defines the edge labeling. The edge
labeling can also give the region labeling. (b) T-junctions (where edges
of different motion labelings meet) can be used to determine the layer
ordering (see text).



the dark circle is the foreground object. Since it is on top, all
of its edges are visible and move with the foreground
motion, labeled as black in the edge label image on the
right. All of the edges of the gray background regions,
except those that also bound the foreground region, move
with the background motion and so are labeled as gray. The
edge labeling is thus uniquely determined.

If, instead, the edge labeling is known (but not the layer
ordering), it is still possible to make deductions about both
the region labeling and the layer ordering. Regions which
are bound by edges of different motions must be on a layer
at least as far away as the furthest of its bounding edges (if
it were nearer, its edges would occlude edges at that layer).
However, for each edge, at least one of the regions that it
divides must have the same layer as the edge. A region
labeling can be produced from an edge labeling, but
ambiguities may still be present—specifically, a single
region in the middle of a foreground object may be a hole
through to the background, although this is unlikely.

A complete segmentation also requires the layer ordering
to be determined and, importantly, this can usually be
determined from the edge labeling. Fig. 2b highlights a
T-junction from the previous example, where edgeswith two
different labelingmeet.Todeterminewhichof the twomotion
layers is on top, both of the two possibilities are hypothesized
and tested. Regions A and B are bounded by edges of two
different motions, which can only occur when these regions
are bounded by edges obeying their ownmotion and also an
edge of the occluding object. These regions therefore must
belong to the relative “background.” The question is: Which
of the two motions is the background motion? If it is
hypothesized that the backgroundmotion ismotion 2 (black),
then these regions should be labeled as obeyingmotion 2, and
the edge between them should also obeymotion 2. However,
it is already known that the edge between themobeysmotion
1, so this cannot be the correct layer ordering. Ifmotion 1were
background and motion 2 foreground, then the region
labeling would be consistent with the edge labeling, indicat-
ing that this is the correct layer ordering.

Fig. 3 shows an ambiguous case. Here, there are no
T-junctions and so the layer ordering cannot be determined.
There are two possible interpretations, both consistent with
the edge labeling. Cases such as these are ambiguous under
any motion segmentation scheme and at least the system
presented here is able to identify such ambiguities.

This section has shown that edges are not only a necessary
element in an accurate motion segmentation, they are also
sufficient. Edges canbedetected in a frame, labeledwith their
motion, and then used to label the regions in between. In real
images, it is not possible to determine an exact edge labeling

and so instead the next section develops a probabilistic
framework for performing this edge and region labeling.

3 BAYESIAN FORMULATION

There are a large number of parameters which must be
solved to give a complete motion segmentation and for
which the most likely values must be estimated. Given that
the task is one of labeling, the regions of a static
segmentation, finding their motion and determining the
layer ordering, the complete model of the segmentation MM

consists of the elements MM ¼ ��; FF;RRf g, where

. �� is the parameters of the motion models,

. FF is the foreground-background ordering of the
motion layers, and

. RR is the motion label (layer) for each region.

The region edge labels are not an independent part of the
model, but are completely defined by RR and FF from the
Edge Labeling Rule of Section 2.

Given the image data DD (and any other prior information
assumed about the world), the task is to find the model MM
with the maximum probability given this data and priors:

arg max P
MM

ðMMjDDÞ ¼ arg max P
RRFF��

ðRRFF��jDDÞ: ð1Þ

This can be further decomposed, without any loss of general-
ity, into a motion estimation component and region labeling:

arg max
RRFF��

P ðRRFF��jDDÞ ¼ arg max
RRFF��

P ð��jDDÞ P ðRRFF j��DDÞ: ð2Þ

At this stage, a simplification is made: It is assumed that the
motion parameters �� can be maximized independently of
the others, i.e., the correct motions can be estimated without
knowing the region labeling (just from the edges). This
relies on the richness of edges available in a typical frame
and the redundancy this provides. This motion estimate
approaches the global maximum but, if desired, a global
optimization may be performed once an initial set of
motions and region labeling has been found; this is
discussed in Section 6. Given this simplifying assumption,
the expression to be maximized is:

arg max
��

P ð��jDDÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

a

arg max
RRFFRRFF

P ðRRFF j��DDÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
b

; ð3Þ

where the value of �� used in term b is that which
maximizes term a. The two components of (3) can be
evaluated in turn: first a, the motions, and then b, the region
labeling and layer ordering.

3.1 Estimating the Motions ��

The first term in (3) estimates the motions between frames
(�� encapsulates the parameters of all the motions). Thus far,
this statistical framework has not specified how the most
likely motion is estimated and neither are edges included.
As explained in Section 2, edges are robust features to track,
and they provide a natural link to the regions which are to
be labeled. The labeling of edges must be introduced into
the statistical model: They are expressed by the random
variable ee which gives, for each edge, the probability of it
obeying each motion. This is a necessary variable, since in
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Fig. 3. Ambiguous edges and regions. If there is no interaction between
the edges of the two objects, there are two possible interpretations of the
central edge labeling. Either of the two motions could be foreground,
resulting in slightly different region labeling solutions. In Case 1, the
black circle is the foreground object. In Case 2, it is on the background
(viewed through a rectangular window).



order to estimate the motion models from the edges it must
be known which edges belong to which motion. However,
simultaneously labeling the edges and fitting motions is a
circular problem, which may be resolved by expressing the
estimation of �� and ee in terms of the Expectation-
Maximization algorithm [17], with ee as the hidden variable.
This is expressed by the following equation:

arg max
��nþ1

X
ee

logPðeeDj��nþ1Þ P ðeej��nDDÞ: ð4Þ

This iterates between two stages: The E-stage computes the
expectation, which forms the bulk of this expression (the
main computation work here is in calculating the edge
probabilitiesPðeej��nDDÞ) and theM-stage thenmaximizes this
expression, performing the maximization of (4) over ��nþ1.
Some suitable initialization is used and then the two stages
are iterated to convergence, which has the effect of maximiz-
ing (3a). An implementation of this is outlined in Section 4.

3.2 Estimating the Labelings RR and FF .

Having obtained the most likely motions, the remaining
parameters of the model MM can be maximized. These are
the region labeling RR and the layer ordering FF , which
provide the final segmentation. Once again, the edge labels
are used as an intermediate step. Given the motions ��, the
edge label probabilities Pðeej��DDÞ can be estimated, and from
Section 2 the relationship between edges and regions is
known. Term (3b) is augmented by the edge labeling ee,
which must then be marginalized, giving

arg max
RRFF

PðRRFF j��DDÞ ¼ arg max
RRFF

X
ee

P ðRRFF jee��DDÞ P ðeej��DDÞ

ð5Þ

¼ arg max
RRFF

X
ee

P ðRRFF jeeÞ P ðeej��DDÞ; ð6Þ

where the first expression in (5) can be simplified since ee
encapsulates all of the information from �� and DD that is
relevant to determining the final segmentation RR and FF , as
shown in Section 2.

The second term, the edge probabilities, can extracted
directly from the motion estimation stage—it is used in the
EM algorithm. The first term is more difficult to estimate,
and it is easier to recast this using Bayes’ Rule, giving

PðRRFF jeeÞ ¼ P ðeejRRFF Þ P ðRRFF Þ
P ðeeÞ : ð7Þ

The maximization is over RR and FF , so PðeeÞ is constant. The
prior probabilities ofRR andFF are independent, sincewhether
a particular layer is called “motion 1” or “motion 2” does not
change its labeling. Any foregroundmotion is equally likely,
soPðF Þ isconstant,but the last term,PðRÞ, isnotconstant.This
term is used to encode likely labeling configurations since
some configurations of region labels are more likely than
others.2 This leaves the following expression to be evaluated:

arg max
RRFF

X
ee

P ðeejRRFF Þ P ðRÞ P ðeej�DÞ: ð8Þ

The P ðeejRRFF Þ term is very useful. The edge labeling ee is
only an intermediate variable, and is entirely defined by the
region labeling RR and the foreground motion FF . This
probability, therefore, takes on a binary value—it is 1 if that
edge labeling is implied and 0 if it is not. The sum in (8) can
thus be removed and the ee in the final term replaced by the
function eeðRR;FF Þ, which provides the correct edge labels for
given values of RR and FF .

arg max
RRFF

Pðee R; Fð Þj��DDÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
a

PðRÞ|ffl{zffl}
b

: ð9Þ

The variable FF takes only a discrete set of values (for
example, in the case of two layers, only two: either onemotion
is foreground, or the other). Equation (9) can therefore be
maximized in two stages: FF can be fixed at one value and the
expression maximized over RR and the process then repeated
with other values of FF and the global maximum taken.3 The
maximization over RR can be performed by hypothesizing a
complete region labeling and then testing the evidence
(9a)—determining the implied edge labels and then calculat-
ing the probability of the edge labeling given the motions
—and the prior (9b), calculating the likelihood of that
particular labeling configuration. An exhaustive search is
impractical and, in the implementationpresented inSection4,
region labelingsarehypothesizedusing simulatedannealing.
Maximizing this expression is identical to maximizing (3b)
and is the last stage of the motion segmentation algorithm:
The most likely RR and FF represent the most likely region
labeling and layer ordering.

4 IMPLEMENTATION FOR TWO MOTIONS, TWO

FRAMES

The Bayesian framework presented in Section 3 leads to an
efficient implementation. This section describes how a
video frame may be divided into two layers (foreground
and background) using the information from one more
frame. This is a common case and also the simplest motion
segmentation situation. Many of the details in this two
motion, two frame case apply to more general cases, which
are mostly simple extensions. Sections 5 and 6 cover the
multiple-frame and multiple-motion cases, respectively.

The system progresses in two stages, as demonstrated in
Fig. 4. The first is to detect edges, find motions and label the
edges according to their probability of obeying each motion.
These edge labels are sufficient to label the rest of the image.
In the second stage the frame is divided into regions of
similar color using these edges and the motion labeling for
these regions which best agrees with the edge labeling is
then determined.

4.1 Estimating the Motions �� and Edge Labels ee

As explained in Section 2, edges are fundamental to the
segmentation problem, and also provide the only robust
source of motion information. The motion segmentation
approach proposed in this paper begins with finding edge
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2. For example, individual holes in a foreground object are unlikely. This
prior enables the ambiguous regions mentioned in Section 2 to be given
their most likely labeling.

3. This stage is combinatorial in the number of layers. This presents
difficulties for sequences with many layers, but there are many real
sequences with a small number of motions (for example, 34 sequences are
considered in this work, all with two or three layers).



chains in the frame, in this caseusing theCanny edgedetector
[33] followed by the grouping of edgels into chains (e.g.,
Fig. 4b). Themotions of these edge chainsmust then be found
so that they can be assigned to clusters belonging to each of
the different moving objects. The object and background
image motions are here modeled by 2D affine transforma-
tions, which have been found by many to be a good
approximation to the small interframe motions [10], [14].

Multiple-motion estimation is a circular problem. If it
were known which edges belonged to which motion, these
could be used to directly estimate the motions. However,
edge motion labeling requires making a comparison
between different known motions. In order to resolve this,
Expectation-Maximization (EM) is used [17], implementing
the formulation (4) as described below.

4.1.1 Maximization: Estimating the Motions

If the edge label probabilities Pðee�njDÞ are known, (4) can
be maximized, and here the expression logP ðeeDj��nþ1Þ is
estimated and maximized using techniques derived from
group-constrained snake technology [34]. For each edge,
sample points are assigned at regular intervals along the
edge (see Fig. 5a). The motion of these sample points are
considered to be representative of the edge motion (there
are about 1,400 sample points in a typical frame). The
sample points from the first frame are mapped into the next
(either in the same location or, in further iterations,
according to the current motion estimate), and a search is
made for the true edge location. Because of the aperture
problem, the motion of edges can only be determined in a
direction normal to the edge, but this is useful as it restricts
the search for a matching edge pixel to a fast one-
dimensional search along the edge normal.

To find a match, color image gradients are estimated in
both the original image and the proposed new location
using a 5� 5 convolution kernel in the red, green, and blue
components of the image. The match score is taken to be the

sum of squared differences over the three colors, in both the
x and y directions. The search is made over the pixels
normal to the sample point location in the new image, to a
maximum distance of 20 pixels.4 The image distance dk,
between the original location and its best match in the next
image, is measured (see Fig. 5b). If the score is below a
threshold, “no match” is returned instead.

At each sample point the expected image motion due to a
2D affine motion �� can be calculated. A convenient
formulation uses the Lie algebra of image transformations
[34]. According to this, transformations in the General
Affine group GA(2) may be decomposed into a linear sum
of the following generator matrices:

GG1 ¼
0 0 1
0 0 0
0 0 0

2
4

3
5 GG2 ¼

0 0 0
0 0 1
0 0 0

2
4

3
5 GG3 ¼

0 �1 0
1 0 0
0 0 0

2
4

3
5

GG4 ¼
1 0 0
0 1 0
0 0 0

2
4

3
5 GG5 ¼

1 0 0
0 �1 0
0 0 0

2
4

3
5 GG6 ¼

0 1 0
1 0 0
0 0 0

2
4

3
5:

ð10Þ

These act on homogeneous image coordinates ðx y 1ÞT ,
and are responsible for the following six motion fields in the
image:

LL1 ¼
1
0

� �
LL2 ¼

0
1

� �
LL3 ¼

�y
x

� �

LL4 ¼
x
y

� �
LL5 ¼

x
�y

� �
LL6 ¼

y
x

� �
:

ð11Þ

The task is to estimate the amount, �i, of each of these
deformation modes.

Since measurements can only be taken normal to the
edge, �i may be estimated by minimizing the geometric
distance between the measurements dk and the projection of
the fields onto the unit edge normal n̂nnnk, over all of the
sample points on that edge, or set of edges

X
k

dk �
P

j�j LjLj
k � n̂nnnk

� �� �2
; ð12Þ

which is the negative log probability of logPðeDeDj�nþ1Þ,
from (4), given an independent Gaussian statistical model.
This expression may be minimized by using the singular
value decomposition to give a least squares fit. In practice,
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4. Testing has revealed that the typical maximum image motion is of the
order of 10 pixels, so this is a conservative choice. An adaptive search
interval, or a multiresolution approach, would be appropriate in more
extreme cases.

Fig. 4. Foreman segmentation from two frames. (a) Frame 1. (b) Edges labeled by their motion (the color blends from red (motion 1) to green

(motion 2) according to the probability of each motion). (c) Maximum a posteriori region labeling. (d) Final foreground segmentation.

Fig. 5. Edge tracking example. (a) Edge in initial frame, with sample
points. (b) In the next frame, where the image edge has moved, a search
is made from each sample point normal to the edge to find the new
location. The best-fit motion is the one that minimizes the squared
distance error between the sample points and the image edge.



reweighted least squares [35] is used to provide robustness

to outliers, using the weight function

wðxÞ ¼ 1

1þ jxj ; ð13Þ

(for a full description, see [36]). This corresponds to using a

Laplacian (i.e., non-Gaussian) model for the errors, and is

chosen because it gives a good fit to the observed distribution

(see Fig. 6). Having found the �i, an image motion �� is then

given by the same linear sum of the generators:

�� ¼ II þ �iGGi: ð14Þ

To implement the M-stage of the EM algorithm (4), (12) is

also weighted by Pðeej�nDÞ and then minimized to obtain

the parameters of each motion ��nþ1 in turn. These are then

combined to give ��nþ1.

4.1.2 Expectation: Calculating Edge Probabilities

The discrete probability distribution Pðeej�DÞ gives the

probability of an edge fitting a particular motion from the

set of motions �� ¼ f��1; ��2g, and the E-stage of (4) involves

estimating this. This can be done by considering the sample

points used for motion estimation (for example, in Fig. 5, the

first edge location with zero residual errors is far more likely

than the second one). It may be assumed that the residual

errors from sample points are representative of the whole

edge, and that these errors are independent.5 The likelihood

that the edge fits a given motion is thus the product of the

likelihood of a correct match at each sample point along the

edge. Given ��, the sample points are matched under each

motion and each edge likelihood calculated. Normalizing

these gives the probability of each motion.
The distribution of sample point measurement errors dk

has been extracted from sample sequences where the

motion is known. The sample points are matched in their

correct location and their errors measured, giving the

distribution shown in Fig. 6. This histogram is used as the

model when calculating the likelihood of a correct match for

a sample point given a residual error or the fact that no

match was found.

4.1.3 Initialization

The EM iteration needs to be started with some suitable
initialization. Various heuristic techniques have been tried,
for example initializing with the mean motion and the zero
motion, but it is found that (in the two motion case, at least)
the optimization well is sufficiently large for a random
initialization to be used to begin the EM. An initial match
for all the sample points is found in frame 2 by searching for
20 pixels normal to the edge. The edges are then randomly
divided into two groups, and the sample points from the
two groups are used to estimate two initial motions and the
EM begins at the E-stage. The advantage of a random
initialization is that it provides, to a high probability, two
motions which are plausible across the whole frame, giving
all edges a chance to contribute an opinion on both motions.

When using multiple frames (see Section 5), the
initialization is an estimate based on the previous motion
and the motion velocity in the previous frame. In the case
where the number of motions is more than two, or is
unknown, a more sophisticated initialization technique is
used, as outlined in Section 6.

4.1.4 Convergence

The progress of the algorithm is monitored by considering
the total likelihood of the most likely edge labeling, i.e.,Y

edges

max
j

P ðEdge is motion jj��DDÞ; ð15Þ

where these probabilities are taken from Pðeej�DÞ. This
likelihood increases as the algorithm progresses (although
not strictly monotonically) and then levels out. It is common
for some edges to be ambiguous and for these to oscillate
somewhat between the twomotions, even after convergence.
It is sufficient to declare convergencewhen the likelihood has
not increased for 10 iterations, which usually occurs after 20-
30 iterations. For a typical imageof 352� 240pixels, this takes
about three seconds on a 300MHz Pentium II.

4.2 Finding Edges and Regions

Having obtained the set of edges, and labeled these
according to their motions, it is now time to build on these
to label the rest of the pixels. First, a segmentation of the
frame is needed, dividing the image into regions of the
same color. The implementation presented here uses a
scheme developed by Sinclair [38] (also used in [30]) but
other edge-based schemes, such the morphological seg-
mentation used in [29] or variants of the watershed
algorithm [39], are also suitable.

Under Sinclair’s scheme, seed points for region growing
initialized the locations furthest from the edges (taking the
peaks of a distance transform of the edge image). Regions
are then grown, gated by pixel color, until they meet, but
with the image edges acting as hard barriers. Fig. 7 shows
two example segmentations.

4.3 Labeling Regions RR and Motions and FF

Having obtained the regions, term (3b) (the region labeling
and layer ordering) can be maximized given the motions ��.
According to (9), this can be performed by hypothesizing
possible region and foreground motion labelings and
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5. This is not, in fact, the case but making this assumption gives a much
simpler solution, while still yielding plausible statistics. See [36] for a
discussion of the validity of this assumption and [37] for an alternative
approach.

Fig. 6. Distribution of sample point measurement errors dk. The
probability of “no match” is shown on the far right. A Laplacian
distribution is overlaid, showing a reasonable match.



calculating their probabilities (9a), combining with a
configuration prior (9b), and selecting the most probable.

4.3.1 Region Probabilities from Edge Data

The first term, (9a), calculates the probability of a region
labeling and layer ordering given the data, Pðee RR; FFð Þj��DDÞ.
First, the edge labels eeðRR; FF Þ are computed using the Edge
Labeling Rule from Section 2. This implies a labeling mk for
each sample point k in the frame: they take the same label as
the edge to which they belong. Assuming independence of
the sample points, the desired probability is then given by

Pðee RR; FFð Þj��DD ¼
Y
k

Pðmkj��DDÞ: ð16Þ

The probability of a particular motion labeling for each
sample point, Pðmkj��DDÞ, was calculated earlier in the
E-stage of EM. The likelihood of the data is that from Fig. 6,
and is normalized according to Bayes’ rule (with equal
priors) to give the motion probability.

4.3.2 Region Prior

Term (9b) encodes the a priori region labeling, reflecting the
fact that some arrangements of region labels are more likely
than others. This is implemented using an approach similar
to a Markov Random Field (MRF) [20], where the
probability of a region’s labeling depends on its immediate
neighbors. Given a region labeling RRRR, a function frðRRÞ can
be defined which is the proportion of the boundary which
region r shares with neighbors of the same label. A long
boundary with regions of the same label is more likely than
very little of the boundary bordering similar regions. A
probability density function for fr has been computed from
hand-segmented examples and can be approximated by

PðfrÞ ¼
0:932

1þ exp 9� 18fð Þ þ 0:034 0 < fr < 1: ð17Þ

Pð1Þ is set to 0.9992 and Pð0Þ to 0.0008 to enforce the fact
that isolated regions or holes are particularly unlikely. The
prior probability of a region labeling RR is then given by

PðRRÞ ¼
Y

regions r

PðfrðRRÞÞPlayers
l¼1 PðfrðRRfr ¼ lgÞÞ

; ð18Þ

where frðRRfr ¼ lgÞ indicates the fractional boundary length
which would be seen if the label of region r were
substituted with a different label l.

4.3.3 Solution by Simulated Annealing

In order to maximize over all possible region labelings,
simulated annealing [40] is used. This begins with an initial
guess at the region labeling and then repeatedly tries

flipping individual region labels one by one to see how the
change affects the overall probability. (This is a simple
process since a single region label change only causes local
changes and so (18) does not need completely reevaluating.)
The annealing process is initialized with a guess based on
the edge probabilities and a reasonable initialization is to
label the regions according to the majority of its edge
labelings. The region labels are taken in turn, considering
the probability of the region being labeled motion 1 or 2
given its edge probabilities and the current motion label of
its neighbors. At the beginning of the annealing process, the
region is then reassigned a label by a Monte Carlo
approach, i.e., randomly according to the two probabilities.
As the iterations progress, these probabilities are forced to
saturate so that gradually the assignment will tend toward
the most likely label, regardless of the actual probabilities.
The saturation function, determined empirically, is

p0 ¼ p1þ n�1ð Þ0:07 ; ð19Þ

where n is the iteration number. This function is applied to
each of the label probabilities for a region before normal-
ization. The annealing process continues for 40 iterations,
which is found to be sufficient for a good solution to be
reached. Each pass of the data tries flipping each region,
but the search order is shuffled each time to avoid
systematic errors.

In order for the edge labeling to be generated from the
region labeling RR, the layer ordering FF must also be known,
but this is yet to be found. This parameter is independent of
RR and so a fixed value of FF can be used throughout the
annealing process. The process is thus repeated for each
possible layer ordering and the solution with the highest
likelihood identifies both the correct region labeling and the
correct layer ordering. Fig. 8 shows the two different
solutions in the “Foreman” case, the first solution has a
higher likelihood, so is selected as the final segmentation.
The entire maximization of (9), over RR and FF , takes around
two seconds on a 300MHz Pentium II for a 352� 240 image.

4.4 Results

The two-motion, two-frame implementation has been tested
on a wide range of real video sequences.6 Fig. 4 shows the
segmentation from the standard “Foreman” sequence. Edges
are extracted and then EM run between this frame and the
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Fig. 7. Edge-based static segmentations of frames from the “Foreman”

and “Car” sequences.
Fig. 8. “Foreman” solutions under different layer orderings. The most
likely region labelings, showing the foreground as magenta and the
background as yellow (a) with red as the foreground motion and (b) with
green as the foreground motion. Case (a) has a higher posterior
probability and, so, is the maximum likelihood segmentation over RR and

6.Thesegmentationsoftwaredeveloped for thispapermaybedownloaded
from http://mi.eng.cam.ac.uk/~pas1001/Research/edgesegment.html.



next to estimate the motions. Fig. 4b shows the edges labeled
according to howwell they fit eachmotion after convergence.
It can be seen that this process labels most of the edges
correctly, even though themotion is small (about two pixels).
The edges on his shoulders are poorly-labeled, but this is due
to the shoulders’ motion being even smaller than that of the
head. The correct motion is selected as foreground with very
high confidence (> 99 percent) and the final segmentation,
Fig. 4d, is excellent despite somepoor edge labels. In this case
the MRF region prior is a great help in producing a plausible
segmentation. Compared with the hand-picked segmenta-
tion shown in Fig. 4c, 98 percent of the regions are labeled
correctly. On a 300MHz Pentium II, it takes a total of around
eight seconds toproduce themotion segmentation (the image
is 352� 288 pixels).

Fig. 9 shows the results from the “Car” sequence,
recorded for this work. Here the car moves to the left,
and is tracked by the camera. This is a rather unusual
sequence since more pixels belong to the foreground than to
the background and some dominant-motion techniques
may therefore assume the incorrect layer ordering. In this
paper, however, the ordering is found from the edge labels
and no such assumption is made. Unfortunately, the motion
of many of the horizontal edges is ambiguous and also, with
few T-junctions, there is less depth ordering information
than in the previous cases. Nevertheless, the correct motion
is identified as foreground, although with less certainty
than in the previous cases. The final segmentation (Fig. 9d)
labels 96 percent of all pixels correctly (compared with a
hand labeling), and there are two main sources of error. As
already noted, with both motions being horizontal, the
labeling of the horizontal edges is ambiguous. More serious,
however, are the reflections on the bonnet and roof of the
car which naturally move with the background motion. The
edges are correctly labeled—as background—but this gives
the incorrect semantic labeling. Without higher-level pro-
cessing (a prior model of a car), this problem is difficult to
resolve. One pleasing element of the solution is that the

view through the car window has been correctly segmented
as background.

This implementation has been tested on a total of 34 real
sequences. Full results can be seen in [36], but Fig. 10 shows
a selection of these further results. Compared with a
manual labeling of regions, a third of all the sequences
tested are segmented near-perfectly by the system
(> 95 percent of pixels correct), and a further third are
good or very good (> 75 percent). In the cases where the
segmentation fails, this is either because the motion
between frames is extremely nonaffine, or is ambiguous,
resulting in a poor edge labeling.

For the algorithm to succeed, the edges merely have to fit
better under one motion than the other—an exact match is
not necessary. As a result, even when one or both of the
motions are significantly nonaffine, as in the first two
examples in Fig. 10, a good segmentation can still be
generated. It is a testament to the sufficiency of edges that
where the edges are labeled correctly, the segmentation is
invariably good. The principal way to improve a poor edge
labeling is to continue to track the edges over additional
frames until the two motions can be better distinguished.

5 EXTENSION TO MULTIPLE FRAMES

Accumulating evidence over a number of frames can
resolve ambiguities that may be present between the first
two frames, and also makes the labeling more robust. This
section first describes how evidence can be accumulated
over frames to improve the segmentation of one frame, and
then outlines how the techniques can be extended to
segment a whole sequence.

5.1 Accumulating Evidence to Improve
Segmentations

While the segmentation of frame 1 using a pair of frames is
often very good, a simple extension allows this to be
improved. The two-frame algorithm of Section 4 can be run
between frame 1 and other frames in the sequence to gather
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Fig. 9. “Car” segmentation from two frames. (a) Original frame. (b) Edge labels after EM. (c) Most likely region labeling. (d) Final foreground

segmentation.

Fig. 10. A sample of the 34 test sequences and their segmentations.



more evidence about the segmentation of frame 1. The

efficiency of this process can be improved by using the

results from one frame to initialize the next and, in

particular, the EM stage can be given a better initialization.

The initial motion estimate is that for the previous frame

incremented by the velocity between the previous two

frames. The edge labeling is initialized to be that implied by

the region labeling of the previous frame and the EM begins

at the M-stage.

5.1.1 Combining Statistics

The probability that an edge obeys a particular motion over

a sequence is the probability that it obeyed that motion

between each of the frames. This can be calculated from the

product of the probabilities for that edge over all those

frames, if it is assumed that the image data yielding

information about the labeling of each edge is independent

in each frame. The EM is performed only on the edge

probabilities and the motion between the frame in question

and frame 1, but after convergence the final probabilities are

multiplied together with the probabilities from the previous

frames to give the cumulative edge statistics. The region

and foreground labeling is then performed as described in

Section 4, but using the cumulative edge statistics.

5.1.2 Occlusion

The problem of occlusion was ignored when considering

only two frames since the effects are minimal, but occlusion

becomes a significant problem when tracking over multiple

frames. Knowing the foreground/background labeling for

edges and regions in frame 1, and the motions between

frames, enables this to be overcome. For each edge labeled

as background, its sample points are projected into frame 2

under the background motion and are then projected back

into frame 1 according to the foreground motion. If a

sample point falls into a region currently labeled as

foreground, this foreground region must move on top of

that point in frame 2. If this is the case, the sample point is

marked as occluded and does not contribute to the tracking

of its edge into frame 3. All sample points are also tested to

see if they project outside the frame under their motions

and if so they are also ignored. This process can be repeated

for as many frames as is necessary.

5.2 Results

The success of the multiple frame approach can be seen in
Fig. 11, showing the “Foreman” example. Accumulating the
edge probabilities over several frames allows random errors
to be removed and edge probabilities to be reinforced. The
larger motions between more widely separated frames also
removes ambiguity. It can be seen that, over time, the
consensus among many edges on the shoulders is towards
the foreground motion and the accumulated edge probabil-
ities have a positive effect on the region segmentation, which
settles down after a few frames to a very accurate solution.

Over the 34 test sequences considered in this work,
including a second frame in the labeling process increases
the average number of pixels correct from 76 to 86 percent,
with 14 sequences labeled near-perfectly, and only six with
less than 75 percent of pixels correct. The sequences which
still failed either had very large nonaffine motions (e.g.,
dancing), or very few edge features, but many challenging
sequences are very well segmented.

5.3 Templated Segmentation of a Sequence

The use of multiple frames has been motivated as a means of
improving the segmentation of a single frame, using the
extended sequence to label edges more robustly. The
segmentation scheme generates a final segmentation of
frame 1, and the foreground and background motions
between frames. However, this information can enable the
segmentation of the sequence to be approximated. The
foreground regions from frame 1 may be projected into the
other frames of the sequence according to the foreground
motion at each frame. These regions may then be used as a
template to cut out the object in each of the subsequent
frames.

Fig. 12 shows such a segmentation and it can be seen that
this provides a very good approximation. This accuracy is
not restricted to obviously rigid objects; the segmentations
in Fig. 11 were also performed by this technique and the
cut-out even in frame 5 (using the segmentation from frame
1 warped by the estimated affine transformation) is still
excellent. These results demonstrate that the affine motion
model is appropriate for these sequences, and that the
motion parameters are estimated well by the EM process.

5.4 Frame-by-Frame Segmentation of a Sequence

A more general approach to segmenting a sequence is to
perform a new static segmentation, and then labeling, for
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Fig. 11. Evolution of the “Foreman” segmentation, showing the edge probabilities and segmentations of frame 1 as the evidence is accumulated over

five successive frames. The edge probabilities become more certain and small errors are removed, resulting in an improved region segmentation.



each frame (i.e., to run the algorithm between consecutive
frames of the sequence). Finding edges and segmenting
anew in each frame ensures that the structure of each image
is best represented, but presents difficulties in propagating
statistics. The statistics in each frame are driven by the
sample points, and so the sample points on the edges in the
new frame are created in two stages. First, sample points
from the previous frame are transformed into the new
frame according to their most likely motion. If they land
near an edge (within two pixels), they are allocated to that
edge and store their previous label probabilities as their
prior for this frame. New sample points are then created on
any empty edges, with flat priors. These priors are used to
initialize EM but, as before, this proceeds just with the
probabilities from the current pair of frames, and then the
previous probabilities are included when calculating the
region labeling.

Fig. 13 shows a segmentation of 15 consecutive frames
from the “Foreman” sequence, segmented in this manner. It
can be seen that the first 10 frames or so are very well
segmented, apart from the occasional mislabeled region.
The failures in the last row are due to rapid motions which
do not fit the motion model at all well. Problems such as
this would be alleviated by a robust technique for
propagating statistics between subsequent frames and
improving the region labeling priors to reduce fragmenta-
tion. These are both areas for future research.

6 EXTENSION TO MULTIPLE MOTIONS

The theory of Section 3 applies to any number of motions,
and the implementation has been developed so as to be
extensible to more than two motions. Tracking and

separating three or more motions, however, is a nontrivial
task. With more motions for edges to belong to, there is less
information with which to estimate each motion and edges
can be assigned to a particular model with less certainty. In
estimating the edge labels, the EM stage is found to have a
large number of local minima, and so an accurate
initialization is particularly important. The layer ordering
is also more difficult to establish. As the number of motions
increase, the number of possible layer hypotheses increases
factorially. Also, with fewer regions per motion, fewer
regions interact with those of another layer, leading to
fewer T-junctions, which are the essential ingredient in
determining the layer ordering. These factors all contribute
to the difficulty of the multiple motion case and this section
proposes some extensions which make the problem easier.

6.1 EM Initialization

The EM algorithm is guaranteed to converge to a
maximum, but there is no guarantee that this will be the
global maximum. The most important element in EM is
always the initialization and, for more than two motions,
the EM algorithm will get trapped in a local maximum
unless started with a good solution. The best solution to
these local maxima problems in EM remains an open
question.

The approach adopted in this paper is hierarchical—the
gross arrangement is estimated by fitting a small number of
models and then these are split to see if any finer detail can
be fitted. The one case where local minima does not present
a significant problem is when there are only two motions,
where it has been found that any reasonable initialization
can be used. Therefore, two motions are fitted first and then
three-motion initializations are considered near to this
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Fig. 12. Templated segmentation of the “Car” sequence. The foreground segmentation for the original frame is transformed under the foreground

motion model and used as a template to segment subsequent frames.

Fig. 13. Segmentation of the “Foreman” sequence. Segmentation of 10 consecutive frames.



solution. It is worth considering what happens in the case of

labeling a three-motion scene with only two motions. There

are two likely outcomes:

1. One (or both) of the models adjusts to absorb edges
which belong to the third motion.

2. The edges belonging to the third motion are
discarded as outliers.

This provides a principled method for generating a set of

three-motion initializations. First fit two motions, then:

1. Take the set of edges which best fit one motion and
try to fit two motions to these by splitting the edges
into two random groups and performing EM on just
these edges to optimize the split. The original motion
is then replaced with these two. Each of the two
initial motions can be split in this way, providing
two different initializations.

2. A third initialization is given from the outliers by
calculating the motion of the outlier edges and
adding it to the list of motions. Outlier edges are
detected by comparing the likelihood under the
“correct motion” statistics of Section 4 with the
likelihood under an “incorrect motion” model, also
gathered from example data.

From each of these three initializations, EM is run to find

the most likely edge labeling and motions. The likelihood of

each solution is given by the product of the edge likelihoods

(under their most likely motion) and best solution is the one

with the highest likelihood. This solution may then be split

further into more motions in the same manner.

6.2 Determining the Best Number of Motions

This hierarchical approach can also be used to identify the

best number of motions to fit. Increasing the number of

models is guaranteed to improve the fit to the data and

increase the likelihood of the solution, but this must be

balanced against the cost of using a large number of

motions. This is addressed by applying the Minimum

Description Length (MDL) principle, one of many model

selection methods available [41]. This considers the cost of

encoding the observations in terms of the model and any

residual error. A large number of models or a large residual

both give rise to a high cost.
The cost of encoding the model consists of two parts.

First, the parameters of the model: Each number is assumed

to be encoded to 10-bit precision, and with six parameters

per model (2D affine), the cost is 60nm (for nm models).

Second, each edge must be labeled as belonging to one of

the models, which costs log2 nm for each of the ne edges. The

edge residuals must also be encoded, and the cost for an

optimal coding is equal to the total negative logarithm (to

base two) of the edge likelihoods, Le, giving

C ¼ 60nm þ ne log2 nm þ
X
e

log2 Le: ð16Þ

The cost C is be evaluated after each attempted initializa-

tion, and the smallest cost indicates the best solution and

the best number of models.

6.3 Global Optimization:
Expectation-Maximization-Constrain (EMC)

The region labeling is determined via two independent
optimizations which use edges as an intermediate repre-
sentation: first the best edge labeling is determined, and
then the best region labeling given these edges. It has thus
far been assumed that this is a good approximation to the
global optimum, but unfortunately this is not always the
case, particularly with more than two motions.

In the first EM stage, the edges are assigned purely on
the basis of how well they fit each motion, with no
consideration given to how likely that edge labeling is in
the context of the wider segmentation. There are always a
number of edges which are mislabeled and these can have
an adverse effect on both the region segmentation and the
accuracy of the motion estimate. In order to resolve this, the
logical constraints implied by the region labeling stage are
used to produce a discrete, constrained edge labeling before
the motions are estimated. This is referred to as Expecta-
tion-Maximization-Constrain or EMC. Once again, initiali-
zation is an important consideration. The constraints (i.e., a
sensible segmentation) cannot be applied until near the
solution, so the EMC is used as a final global optimization
stage after the basic segmentation scheme has completed.

The EMC algorithm follows the following steps:

. Constrain. Calculate the most likely region labeling
and use this, via the Edge Labeling Rule, to label
each edge with a definite motion.

. Maximization. Calculate the motions, in each case
using just the edges assigned to that motion.

. Expectation. Estimate the probable edge labels given
the set of motions.

The process is iterated until the region labeling probability
is maximized.

In dividing up (3), it was assumed that the motions could
be estimated without reference to the region labeling,
because of the large number of edges representing each
motion. This assumption is less valid for multiple motions,
and EMC places the region labeling back into the motion
estimation loop, ensuring estimated motions which reflect a
self-consistent (and, thus, more likely) edge and region
labeling. As a result, EMC helps the system better reach the
global maximum.

6.4 “One Object” Constraint

The Markov Random Field used for the region prior PðRÞ
only considers the neighboring regions, and does not
consider the wider context of the frame. This makes the
simulated annealing tractable, but does not enforce the
belief that there should, in general, be only one connected
group of regions representing each foreground object. It is
common for a few small background regions to be
mislabeled as foreground and these can again have an
adverse effect on the solution when this labeling has to be
used to estimate a new motion (for example, when using
multiple frames or EMC).

A simple solution may be employed after the region
labeling. For each foreground object with a segmentation
which consists of more than one connected group, region
labelings are hypothesized which label all but one of these

490 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 4, APRIL 2004



groups as belonging to a lower layer (i.e., further back). The
most likely of these “one object” region labelings is the one
kept.

6.5 Results

The extended algorithm, featuring all three extensions
(multiple motions, EMC and the global region constraint)
has been tested on a number of two and three-motion
sequences. Table 1 shows the results of the model selection
stage. The first two sequences are expected to be fitted by
two motions, and the other two by three motions. All the
sequences are correctly identified, although in the “Fore-
man” case there is some support for fitting the girders in the
bottom right corner as a third motion. The use of EMC and
the global-region constraint has little effect on the two-
motion solutions, which, as seen in Section 4, are already
excellent. This indicates that the basic two-frame, two-
motion algorithm already reaches a solution close to the
global optimum.

It is the three-motion sequences which present a more
difficult challenge. Fig. 14 shows a sequence where the
camera is stationary, and the white car in the foreground
begins to pull out (to the left) as the yellow van speeds by.
The size of the van’s motion means that under two motions,
the van’s edges are mainly outliers and it is here that the
value of fitting a third motion to the outliers becomes

apparent. The MDL process is clearly in favor of fitting
three motions, as seen in Table 1.

When the edges are labeled, the carmotion also fits parts of
the building well, particularly due to the repeating nature of
the classical architecture. This presents a few problems to the
region labeling stage, as can be seen in Fig. 14d where there
are a few regions on the columns which are labeled with the
car. It is in cases such as this that the “one region” constraint is
needed, in conjunctionwithEMC toproduce the clean results
seen in Figs. 14e, 14f, and 14g. The region labelingwith the car
in front, and the van at the middepth is significantly more
likely (i.e., better-supportedby theedge labels) thananyother
orders, so this correctly identifies the layer ordering.

Another three-motion sequence is shown in Fig. 15. In
this case, the scene is static but the camera moves from right
to left. The books, statue and background are at different
depths and so have different image motions. Labeling the
motion of the horizontal lines in the scene is difficult given
the horizontal camera motion and it can be seen that the
edge marking the top of the books has been incorrectly
labeled as a result and then the initial region segmentation
has incorrectly merged some of the books with the statue
(see Fig. 15c and 15d). The EMC loop is then entered,
performing the constrained global optimization. The edge
labels in Fig. 15c can be seen to have a number of logically
inconsistent labels. The EMC loop resolves these and gives
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TABLE 1
MDL Values

(For different numbers of motions (nm), the total cost is that of encoding the motion parameters (“Motion”), edge labeling (“Edge”) and the
residual (“Residual”).)

Fig. 14. “Car & Van” segmentation. (a) and (b) The two frames used for the segmentation. The car moves to the left, the van to the right. (c) Region

edges, labeled by EM. (d) and (e) Edge and region labels before and after EMC. (f) and (g) The two foreground layers. The car is labeled as being in

front of the van.



the labeling shown in Fig. 15e, which is very good. The
EMC loop is performed for each possible layer ordering (six
in this case) to determine the correct order. While the

background layer is confidently labeled, the ordering of the
two foreground layers is more ambiguous in this case. The
poor labeling of the main horizontal edge dividing the two
objects has already been mentioned and there are very few
other edges which contribute to the decision. The book is
correctly identified as being in front, but with a probability

of only 53 percent over the other foreground ordering.
The extended algorithm is somewhat slower than the basic

one. On a 300MHz PII, it takes about a minute to segment a
two-motion sequence, and about three minutes to segment a
three-motion sequence (for 320� 240-pixel images). Most of

the time is spent in the EMC loop, which has to be repeated
four extra times in the three-motion case to consider all
possible layer orderings. These results demonstrate that the
scheme can successfully be extended tomultiplemotions, but
suggest several avenues for future work.

7 CONCLUSIONS AND FUTURE WORK

This paper develops and demonstrates a novel Bayesian
framework for segmenting a video sequence into ordered
motion layers based on tracking image edges between
frames and segmenting the image into regions along these
edges. It is demonstrated that edges can be reliably labeled

according to their motion and are sufficient to label regions
and determine the motion layer ordering.

The EM algorithm is used to simultaneously estimate the
motions and the edge label probabilities. The correct layer
ordering and region labeling is identified by hypothesizing
and testing to maximize the probability of the model given

the edge data and a MRF-style prior. The algorithm runs
quickly and the results are very good even when using only
two frames. The framework can also be extended to
accumulate edge probabilities over multiple frames, which
improves robustness and resolves some ambiguities, result-

ing in a very accurate segmentation. It is shown that many
sequences are well-segmented using the affine motion
model, even when they contain significant nonaffine

motion. However, the extension of this scheme to other

motion models is one area for future work.
The framework works best when there are two clear

motions (i.e., the background and one large foreground

object), where the EM algorithm converges well. Some

extensions have been proposed to deal with the case of

more than two motions and these have been met with some

success. However, the problem of multiple-motion segmen-

tation, and model selection, is a difficult one and is on the

limit of the information that can be gathered from edges

alone. With multiple motions and smaller foreground

objects, errors are much more likely to occur and then,

with a higher number of mislabeled edges, the region

labeling and layer ordering becomes quite fragile. The main

difficulty is in the EM stage, which suffers from many local

maxima, and other solutions should be investigated, such as

Deterministically Annealed EM [42], or alternative (perhaps

optic-flow based) approaches to initializing the motions.

More informative region-label priors would also help to

resolve the region labeling issues in the presence of poor

edge labels, not just in this case, but in all the cases

considered in this paper.
The use of multiple frames to improve edge labeling has

been shown to be successful. This should be developed

further, refining the statistics and enforcing the consistent

labeling of edges and regions. In particular, this will resolve

many of the ambiguities present in labeling multiple

motions. A further extension is that, currently, weak edges

are ignored by the system, which can mean that some useful

edges can be missed. Information from the motion models

could be used to promote weak edges which are consistent

with the motion into the model, producing a genuine motion

segmentation of the sequence.
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Fig. 15. “Library” segmentation. (a) and (b) The two frames used for the segmentation. The camera moves to the left, and the books, statue, and

background move differing amounts due to parallax. (c) Region edges, labeled by EM. (d) and (e) Edge and region labels before and after EMC. (f)

and (g) The two foreground layers. The books are identified as being in front.
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