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Coarse-to-Fine Vision-Based Localization by
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Abstract—This paper presents a novel coarse-to-fine global
localization approach inspired by object recognition and text
retrieval techniques. Harris–Laplace interest points characterized
by scale-invariant transformation feature descriptors are used
as natural landmarks. They are indexed into two databases: a
location vector space model (LVSM) and a location database.
The localization process consists of two stages: coarse localization
and fine localization. Coarse localization from the LVSM is fast,
but not accurate enough, whereas localization from the location
database using a voting algorithm is relatively slow, but more
accurate. The integration of coarse and fine stages makes fast and
reliable localization possible. If necessary, the localization result
can be verified by epipolar geometry between the representative
view in the database and the view to be localized. In addition, the
localization system recovers the position of the camera by essential
matrix decomposition. The localization system has been tested
in indoor and outdoor environments. The results show that our
approach is efficient and reliable.

Index Terms—Coarse-to-fine localization, scale-invariant fea-
tures, vector space model, visual vocabulary.

I. INTRODUCTION

MOBILE robot localization aims to estimate a robot’s
position relative to its environment. It is a prerequisite

for robot autonomous navigation. Two key problems of mobile
robot localization are global localization and local tracking
[25]. Global localization aims to determine the robot’s position
in an a priori or previously learned map without any other
information than that the robot is somewhere on the map.
Given the initial robot position, local tracking is the problem
of keeping track of that position over time. Global localization
gives mobile robots capabilities to deal with initialization and
recovery from “kidnaps” [20]. Vision-based global localization
using natural landmarks is highly desirable for a wide range
of applications. Different from other sensors such as sonar
sensors and range finders, visual sensors do not suffer from
the reflection problem. Moreover, other tasks such as object
recognition can be integrated into one vision system using
context information [23], [27].
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The difficulty with vision-based localization is how to deter-
mine the identity of views of an environment in the presence
of viewpoint changes, different illumination and occlusion. Vi-
sual features invariant to viewpoints and illumination changes
are critical for an effective localization system using visual
landmarks. In recent years, great progress has been made in
the use of invariant features for object recognition and image
matching. Schmid and Mohr propose a rotation-invariant fea-
ture detector to solve general image recognition problems [19].
Mikolajczyk and Schmid extend this idea to the Harris–Laplace
detector which can detect scale-invariant features [12]. Lowe
proposes another scale-invariant feature detector which finds
local scale space maxima of Difference-of-Gaussian (DoG)
[10]. Perspective or affine invariance of the visual feature set
is ideal for a localization system. However, the computation
of affine-invariant features usually is very expensive [14]. The
detection of perspective-invariant features is difficult especially
in a cluttered scene. Recently, a projective-invariant feature
detector has been proposed based on the cross-ratio invariance
[16]. The feature extraction consists of detection of straight
line using the computationally expensive Hough transform
and construction of a cross-ratio histogram. This detector does
not provide good performance especially in a cluttered scene.
The Harris–Laplace feature detector is selected in this work
for its efficiency and flexibility [14]. Feature descriptors are
also important for image matching. We use the scale-invariant
transformation feature (SIFT) descriptor proposed by Lowe
[10].

The matching of one image to many is slow especially when
a lot of images are used to represent a large environment. The
vector space model (VSM), which has been successfully used in
text retrieval, is employed in this work to accelerate the local-
ization process. In the VSM, a collection of documents is rep-
resented by an inverted file [29]. In this file, each document is a
vector and each dimension of the vector represents a count of the
occurrence for a term [17], [29]. The documents for retrieval are
parsed into terms based on a vocabulary; then different weights
are assigned to each term according to the frequency of the term
in the document. A visual vocabulary is constructed to realize
these ideas in our localization system. A location vector space
model (LVSM) is built using this visual vocabulary. Localization
based on the LVSM is fast, but not accurate enough; whereas lo-
calization from the location database is relatively slow, but more
accurate. We propose a coarse-to-fine framework to enhance the
efficiency and accuracy of localization. The localization process
includes two stages: coarse localization and fine localization.
The coarse localization results ranked in the top list are taken
as candidates for the fine localization stage. The integration of
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Fig. 1. Flowchart of our localization system.

coarse and fine stages realizes a fast and reliable localization
system.

A very important issue in a vision-based localization system
is how to represent the world model [4], [24]. Metric and
topological models have been used widely for environment
representation. Metric approaches represent an environment by
evenly spaced grids whereas topological methods describe it
by graphs. Compared to a topological map, two-dimensional
(2-D) or even three-dimensional (3-D) metric maps (e.g. [2])
have a few disadvantages [24]. First, the detection and recog-
nition is computationally expensive and memory consuming.
Secondly, path planning is not convenient especially in large
environments. Finally, the major problem is the cumulative
error built-up. Topological representations are more robust.
The construction of such a topological map is easy because of
the employment of scale-invariant features. The topological
approach is adopted here to describe environments.

A. Overview

The main contribution of this work is the coarse-to-fine
localization framework that leads to a reliable and efficient
system. Other contributions include the LVSM, the term selec-
tion method for the visual vocabulary, the indexing of feature
orientation information, and the verification of localization
results.

In Section II, related work will be addressed. The
coarse-to-fine localization system will be introduced (Fig. 1) in
the following sections.

In the first exploration, representative images are cap-
tured. Scale-invariant interest points are detected by the
Harris–Laplace detector [12]. The Harris–Laplace detector is
built in a multiscale framework, which makes these interest
points robust to scale changes (Section III-A). Local features
are described by the SIFT descriptor (Section III-B). Feature
and description are computed on the monochrome version of
images; color information is not used in this work. A visual
vocabulary is learned from these descriptors using the -means
algorithm (Section IV-A). The detected features will be indexed

into two databases: an LVSM (Section IV-C) and a location
database (Section V-A). All of the above are done offline.

When a mobile robot roams in the environment, it obtains its
location by retrieval from the LVSM. The coarse localization
results are taken as the candidates for the following fine local-
ization. Each candidate in the location database is matched with
the image for localization, and the correct location is the one
getting the largest number of votes. In the case where the local-
ization result is still ambiguous, epipolar geometry constraints
are employed to verify the result (Section VI). The epipolor ge-
ometry is used to recover the robot’s accurate position relative
to the location in the database (Section VII).

II. RELATED WORK

Vision-based localization is one of the active research areas
in robotics. It is not possible to cover the history in this paper.
For a complete review, refer to the excellent work by DeSouza
and Kak [3].

Many previous works use local visual features such as vertical
lines (indoor) or road boundaries (outdoor) for controlling robot
motion [15]. Such features are simple and can be easily detected.
However, these features are not always available. Furthermore,
localization based on these features usually can only deal with
local tracking.

Localization by using object recognition techniques is
promising because it uses natural visual features. Se et al.
use scale-invariant visual marks to deal with mobile robot
localization based on the local feature detector and the SIFT
descriptor proposed by Lowe [18]. They use Triclops, a vision
system that has three cameras. Their system can deal with
small areas such as a room. Our approach can work in a much
larger environment. In addition, only one camera is used in this
work for localization. Wang, Cipolla and Zha have proposed
a localization strategy based on the Harris–Laplace interest
point detector and the SIFT descriptor [28]. In their system,
each location is represented by a set of interest points that can
be reliably detected in images. This system is robust in the
environments where occlusion and outliers exist. Kosecka and
Yang also characterize scale-invariant key points by the SIFT
descriptor in their localization system [9]. These localization
systems have to match a new view to the views in the database
by nearest neighbor search which is not efficient enough for
robot localization. Katsura et al. developed an outdoor local-
ization system based on segmentation of the images [8]. Their
system can obtain the location by matching areas of trees, sky,
and buildings. However, occlusions bring much trouble to the
matching. Moreover, it cannot recover the relative position of
the robot.

In this work, VSM and other techniques from the text re-
trieval literature are used to accelerate the localization process.
Although term weighting and inverted file have been used in
image [22] and video retrieval [21], none of their systems can
be extended to a localization system because they use different
feature detectors, which are slow and not suitable for localiza-
tion. To the best of our knowledge, the term selection method
proposed in this work has not been used in image, video retrieval
and localization.
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Fig. 2. Interest points detected by the Harris–Laplace detector. Centers of the circles are the Harris–Laplace interest points. The radii of the circles indicate the
characteristic scale of the interest points.

III. SCALE-INVARIANT FEATURE DETECTION AND DESCRIPTION

Scale-invariant features used in this work are detected by the
Harris–Laplace detector and described by the SIFT descriptor.

A. Scale-Invariant Feature Detection

The Harris–Laplace detector can detect scale-invariant fea-
tures. It detects Harris interest points at several scales and then
selects the right scale by finding the maximum of the Laplacian
function [12]. In our implementation, Harris interest points are
detected at four scales with the initial scale 1.2. Harris–Laplace
interest points are detected based on scale selection. Accord-
ingly, our detector can not deal with scale changes more than
2. However, our approach can detect reliable local features and
the scale change is enough for a localization system. At the same
time, the feature detection time is significantly reduced. The de-
tection takes around 0.6 seconds in an image (640 480).

B. Feature Description

The output of the Harris–Laplace detector is scale-invariant
features of different sizes (Fig. 2). A reliable feature description
is critical for feature matching. The SIFT descriptor is selected
here according to [13], in which many descriptors are evaluated
and the SIFT is the best one with respect to the overall perfor-
mance. In the SIFT descriptor, gradient direction histograms are
built in the local area. Multiple orientation planes represent the
number of gradient orientations. The SIFT is sampled over a 4

4 grid in the neighborhood of an interest point. The size of
each grid is determined by the scale of the interest point. The
descriptor we get is a 128-dimension vector.

IV. LOCATION RETRIEVAL FROM THE LVSM

The representative images of the locations are indexed into
the LVSM. Local features detected in these images are described
by the SIFT descriptor. The visual vocabulary is learned from
these features by using the -means algorithm. Based on this
visual vocabulary, the descriptors are weighted and indexed into
the LVSM.

A. Visual Vocabulary Construction

Construction of a visual vocabulary is to build a “code book”
for the indexing of local features. This is realized by clustering

similar SIFT descriptors into terms that can be used for in-
dexing. The -means algorithm is used in this work to group
similar data objects into clusters. The centroid of each cluster is
taken as terms of the visual vocabulary.

The Lloyd algorithm is a simple implementation of the
-means. However, it may get stuck in locally minimal solu-

tions that are far from optimal [7]. It is necessary to consider
heuristics based on local search, in which centers are swapped
in and out of an existing solution. A hybrid algorithm which
combines these two approaches (Lloyd’s algorithm and local
search) is used here in the learning of the visual vocabulary [7].

According to our experiments, the input of the vocabulary
learning algorithm should have enough variety. Otherwise the
learning results tend to construct a vocabulary in which most
terms only have one or two features. In our implementation,
11732 interest points are detected in 212 images captured in in-
door and outdoor environments. The descriptors of these fea-
tures are input for the -means algorithm as data objects. The

-means algorithm is run several times with different values of
. The vocabulary with the best performance is used. We use

the one in which is set to 1024. The output of the -means is
1024 centroids representing different terms.

The contribution of these terms to localization is different.
Some terms are not very discriminative because they appear in
almost every representative image; some terms which appear
only once or twice have little impact on the retrieval perfor-
mance. The other terms with appropriate frequency of appear-
ance usually contribute more to the retrieval process. In a text
corps, term frequency distributions tend to follow Zipf’s law
[11]

(1)

where is the frequency of a term and is its rank. For the terms
providing a high contribution, the product of and is approx-
imately a constant . Similar distribution is observed in Fig. 3
where occurrence of each term is counted. The top 23 terms are
put into the stop list because they appear too frequently; 681
terms appearing only once or twice are also discarded (Fig. 3).
The remaining 320 terms constitute the visual vocabulary for the
retrieval. We also use a vocabulary including all the 1024 terms
to evaluate the effectiveness of the term selection. Experimental
results show that the above selection method brings higher cor-
rect ratio in the coarse localization.
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Fig. 3. Term selection using the Zipf’s law.

Fig. 4. Four sample terms of the visual vocabulary. These features have
different orientations and have not been normalized.

Fig. 4 shows samples of the terms learned from SIFT features.
Descriptors with similar appearance are clustered into one term.

B. LVSM Building

In the LVSM, the representative image of each location is
expressed as a vector

(2)

The components of each vector include all the possible terms
in the visual vocabulary. Each index term has

an associated weight that indicates the importance of the
index term for the identification. There are several methods
available to compute the values of the weights . This work
adopts the method combining two factors: the importance of
each index term in the representative view of location and
the importance of the index term in the whole collection of
locations

(3)

The importance of the index term in the representative view of
location is denoted as term frequency (tf). It can be measured by
the number of times the term appears in the location

(4)

where is the number of occurrences of term in the location
, and is the total number of terms in the location .

The importance of the index term in the location collection is
denoted as inverse document frequency (idf). An index term that
appears in every location in the collection is not very discrimi-
native, whereas a term that occurs only in a few locations may
indicate that these few locations could be relevant to a query
view that uses this term. In other words, the importance of an
index term in the collection can be quantified by the logarithm
of the inverse of the frequency with which this term appears in
the locations in the LVSM. It is computed by

(5)

where is the number of locations in the LVSM and is the
number of locations that contain the term .

C. Indexing of SIFT Orientation

A consistent orientation is assigned to each SIFT descriptor
based on local properties of the interest point. The descriptor
is represented relative to this orientation and therefore achieves
invariance to image rotation. Orientation is very helpful infor-
mation in matching images. The descriptors are not directly in-
dexed into the LVSM using the above algorithm. We propose
a method that makes orientation information usable in the first
stage of localization.

The SIFT descriptors to be indexed are projected in four di-
rections. Indexing weights are accumulated in four bins:

, , , and . The vector is ex-
panded to

(6)

Using the orientation information of the descriptor increases
the correct ratio of location retrieval from LVSM. The benefit
of using orientation information is shown in Section VIII. In
addition, this method is robust for in-plane rotation, which is
also shown in Section VIII.

D. Coarse Localization

In this stage, the degree of similarity of a representative view
with regard to the query view is evaluated by computing the
correlation between the two vectors and (or and ). The
query view is also a vector

(7)

The of is computed by using (4) and the of each term
uses the same value of (5). The is also extended to include
orientation information

(8)

It is assumed that the similarity value is an indication of the rel-
evance of the location to the given query. Thus, the system ranks
the retrieved locations by the similarity value. In this work, the
co-sine of the angle between the two vectors is employed to
measure the similarity between the query view and the repre-
sentative view in the LVSM

(9)
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To obtain an acceptable compromise of the accuracy and ef-
ficiency of the localization system, the locations whose similar-
ities rank in the top five will be taken as the input of the next
stage.

Using the LVSM increases the efficiency of localization. The
details of the performance will be shown in Section VIII.

V. FINE LOCALIZATION

The coarse localization results are ranked and the top five
locations are input of the fine localization stage.

A. Database Building

The location database contains a set of locations . Each
location can be defined by a set of vectors of scale-invariant
interest point description. Each vector contains the coordinates

, orientation and value of the SIFT descriptor :

(10)

(11)

(12)

During the database building process, each vector is added into
the database with a link to the location where the corresponding
representative image is captured.

B. Fine Localization

Localization at this stage is carried out based on the results
of coarse localization. The top five candidates computed by the
coarse localization are considered for location recognition.

Fine localization is realized by using a voting scheme. The
new view for localization is represented by

(13)

The Euclidean distances between a SIFT descriptor in and
those in an are computed. The nearest neighbor of this de-
scriptor in is found by comparing all the Euclidean distances
with high discrimination capability. A SIFT descriptor whose
nearest neighbor is at least 0.7 times closer than the second
nearest neighbor are considered as a possible vote. The votes
for each location in the database are accumulated. The location
that gets the largest number of votes is the most likely location.

VI. VERIFICATION

It is well known that the relationship between images taken
at different viewpoints is determined by epipolar geometry. The
epipolar geometry is the intrinsic projective geometry between
two views. A fundamental matrix contains this intrinsic geom-
etry. Fundamental matrix is estimated from correspondences of
points by using the RANSAC algorithm that is robust to out-
liers. The error function in the estimation is a negative likeli-
hood function [26].

Epipolar geometry is employed in this work to verify the lo-
calization result by discarding the outliers. In most cases, the lo-
calization system gets the correct location after the above two-
stage localization. Nevertheless, it is possible that the result of
the location recognition is ambiguous. There might be two or
even three locations getting almost the same number of votes.
If a vote (correspondence between the interest point in image

Fig. 5. Result of localization and verification. Only three locations with the
largest number of votes are displayed. The third Location is correctly found after
using epipolar geometry constraints. Epipolar lines are drawn on these images.

captured and features in the database) is accepted by using the
fundamental matrix, it is a correct correspondence. Otherwise
it is an outlier. The correct location can be found by discarding
outliers.

In Fig. 5, the first and the second location get 21 votes, the
third location gets 18 votes. Under this circumstance, it is diffi-
cult to decide which location is the correct one. Only the correct
matches are counted base on the fundamental matrix. The loca-
tion that has the largest number of correct correspondences is
the correct location. In Fig. 5, the localization system can now
decide that the second location is the correct one because it has
16 correct matches.

In this work, the verification will be carried out only under the
condition that the votes that the second possible location gets are
more than 80% of those that the first possible location gets.

VII. RELATIVE POSE ESTIMATION

The relative pose of the robot is recovered after the global lo-
calization stage. Interest points detected in the captured image
are matched with the features in the database that represent
this location. Many correspondences between interest points are
found to compute relative pose with respect to the reference
view by decomposing the essential matrix.

We can get two camera internal parameter matrix and
using a camera calibration method, where are the internal
parameters of the camera used in the first explorations, and
are the internal parameters of the camera used in the exploration.
The camera internal parameters do not change during the navi-
gation phase.

Based on the fundamental matrix and the camera internal
parameters , , the essential matrix is computed [1]

(14)

The essential matrix can be decomposed into rotation and
translation [1]

(15)

where denotes the cross product matrix associated with the
translation vector.
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Fig. 6. Layout of the ground floor. L , L , and L are locations in database (Other locations are not shown in this figure). T , T , and T are sites where the
images for localization are taken.

The essential matrix has two equal singular values and one
zero singular value [1], [5]. We can compute the rotation [(18)
and (19)] and the translation [(21) and (22)] based on singular
value decomposition of the essential matrix [5]:

(16)

where

(17)

(18)

or

(19)

where

(20)

(21)

or

(22)

The solution of the pose is one of following four possible
matrices [5]:

(23)

(24)

(25)

(26)

The points in the images must lie in front of both cameras.
The right solution can be computed by checking whether the
point lies before the camera [5].

VIII. EXPERIMENTS

The global localization strategy described above has been im-
plemented and tested in indoor and outdoor environments. All
of these tests are conducted on a 1.4-GHz laptop with 128-M
memory.

The size of the images is 640 480. The cameras are cal-
ibrated and the internal parameters are known. Cameras with

Fig. 7. Correct ratio of coarse localization. y (Vertical axis) is the correct ratio.
The correct location is ranked among the first x (Horizontal axis) of retrieved
locations. Test-C and Test-D have better performance than Test-A and Test-B.
This is due to the employment of orientation information.

different internal parameters can be used in the exploration and
localization stages. However, the internal parameters do not
change during the localization stage.

The localization result is taken as correct when the following
conditions are met: 1) the correct location is retrieved in the first
five results in the coarse localization stage; 2) the correct one is
found in the fine localization stage; and 3) there are more than
eight correct matches which make the recovery of relative pose
possible.

A. Indoor Experiments

The indoor environment model is obtained in the first explo-
ration stage. These images were captured, using a camera at dif-
ferent locations in the ground floor of a building.

Fig. 6 is a sketch of the ground floor. Most images are taken
at an interval of 2 m. The visual vocabulary is learned from
the SIFT descriptors of Harris–Laplace interest points. The first
database contains 34 representative images.

Three image sequences are captured for testing our approach.
The first one (Sequence-I) is captured roughly along the path
of the first exploration by a camcorder. The second one (Se-
quence-II) is captured in a path that deviates from the one of
exploration (about 0.5 m from the first exploration path). The
third image sequence is captured with different viewpoints or
under different illumination conditions. (Sequence-III).
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Fig. 8. Localization results. In each row, the first image is the image for localization, others are coarse localization results with descending order of matches. The
correct locations (denoted by black frames) are found after fine localization. (a) Image with in-plane rotation is ranked at the first in the coarse localization. (b)
Image with translation is ranked at the second in the coarse localization. (c) Image with rotation is ranked at the third in the coarse localization. (d) Image with
illumination change is ranked at the first in the coarse localization.

TABLE I
COMPARISON OF AVERAGE TIMES USED IN LOCALIZATION PROCESS (SECONDS)

Four experiments are carried out based on Sequence-I and
Sequence-II. First, the representative images are indexed into
a LVSM and a database without orientation information.
Using this index, Test-A tests Sequence-I, and Test-B tests
Sequence-II. Then orientation information is indexed into the
second database and the second LVSM. Using the later index,
Test-C tests Sequence-I, Test-D tests Sequence-II. The correct
ratios of the coarse localization are shown in Fig. 7. It is clear
that the employment of orientation information increases the
correct ratio. The employment of orientation information does
not have much effect on in-plane rotation. In Fig. 8(a), there are
30 degrees in-plane rotation, and the location ranked the first
during the coarse localization stage is correctly found.

Fig. 9. Layout of the outdoor environment in a campus.

Test-E tests Sequence-III. We get correct location from the
database when the image for localization ( in Fig. 6) is taken
at one meter away from the location ( in Fig. 6) in the data-
base [Fig. 8(b)]. An image taken at a different viewpoint is cor-
rectly retrieved from the database. Localization is accurate when
the pan angle between the image in the database (taken at
Fig. 6) and the captured image (taken at in Fig. 6) is 20 de-
grees [Fig. 8(c)]. An image taken under very bad illumination
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Fig. 10. Examples of the representative images used in the outdoor environment model building stage.

condition (taken at in Fig. 6) was also correctly found in
the database [Fig. 8(d)]. The localization result shows that our
system is robust against viewpoint and illumination changes. It
demonstrates the advantage of using scale-invariant features.

Scalability: To test the scalability of our method, the number
of locations is increased to 127 and 93 more locations were ex-
plored. Representative images were captured in the first and the
second floor of the same building. These locations are indexed
into a LVSM and a location database using the same visual vo-
cabulary. Test-F uses Sequence-I and Sequence-II based on the
LVSM and the location database that contains 127 locations.
The result is shown in Fig. 7.

Computation Time: It takes 0.58 0.14 seconds to de-
tect and describe Harris–Laplace interest points in an image
(640 480) by using the Harris–Laplace detector and the SIFT
descriptor.

The computation determination of the location includes term
assignment, coarse localization from the LVSM and fine local-
ization from the database. The time for term assignment that
is the most time consuming process depends on the number of
features detected on the input image and the number of terms in
the vocabulary. The time for coarse localization is linear to the
number of locations. The time for fine localization depends on
the number of features in the input image.

The time for localization is shown in Table I. To compare the
computation time using our approach with the one that directly
does fine localization, two more tests directly using the fine lo-
calization method are carried out: Direct-A retrieves the loca-
tion from the database that contains 34 locations and Direct-B

Fig. 11. Correct ratio of the coarse localization in the outdoor experiments. y
(vertical axis) is the correct ratio. The correct location is ranked among the first
x (horizontal axis) of the retrieved locations.

retrieves the location from the database that contains 128 lo-
cations. It is clear that our approach is more efficient than the
method that directly uses the fine localization [28]. The fine
localization time and the term assignment time do not change
when the location number changes. Therefore, the advantage of
our approach will become even more evident if the number of
locations increases.

The computation time of Test-F (127 locations) is almost the
same as the time for Test-C and Test-D (34 locations). This is
due to the fact that most of the time is spent on matching the
SIFT features to the visual terms in the visual vocabulary.
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Fig. 12. Examples of localization results. The first image in each row is the one for localization. Localization results are correct in the first row and the third row.
The results are wrong in the second row and the fourth row because the correct locations are not retrieved within the top five.

B. Outdoor Experiments

The outdoor localization experiments are carried out in a
campus (Fig. 9). At the environment model building stage, 124
images are captured along a route at around every 7 m (Fig. 10).
These images are indexed into a LVSM and a database by using
the visual vocabulary constructed in indoor experiments. The
test set consists of 215 images, which are different from the im-
ages for indexing. These images are taken randomly along the
route but within 2-m deviation from the first exploration path,
at different viewpoints, under different weather conditions. The
correct ratio of the coarse localization is described in Fig. 11.
Considering the complexity of the outdoor environment, the
localization result is rather good. The computation time for
localization is similar to the indoor experiments.

In Fig. 12, there are two cases that the localization fails: one
is because the image for localization has too much occlusion
[Fig. 12(b)]; the other is because the image for localization is
taken from a very different viewpoint [Fig. 12(d)]. In such a very
different viewpoint, the features resulting from trees change
very much. These features become outliers and cannot be dealt
with by the Harris–Laplace detector and the SIFT descriptor.

IX. CONCLUSIONS AND FUTURE WORK

We have described a vision-based coarse-to-fine localization
framework. The introduction of the LVSM makes the localiza-

tion process fast. The visual vocabulary is built by learning the
descriptors and a term selection method is presented. The em-
ployment of orientation information increases the correct ratio
of coarse localization. Our approach is robust against illumina-
tion and viewpoint changes. Epipolar geometry is used to verify
the localization results.

Our work is a possible solution to the initialization and kidnap
problems of the SLAM system. We will integrate this approach
into a SLAM system which can work in a large environment.

Our localization system can be further improved if we con-
sider the history of movement in the localization process [24],
[25], [27]. We are also working on context-based localization
by using the Hidden Markov Model.
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