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Abstract—We address the problem of comparing sets of images for object recognition, where the sets may represent variations in an

object’s appearance due to changing camera pose and lighting conditions. Canonical Correlations (also known as principal or canonical

angles), which can be thought of as the angles between two d-dimensional subspaces, have recently attracted attention for image set

matching. Canonical correlations offer many benefits in accuracy, efficiency, and robustness compared to the two main classical

methods: parametric distribution-based and nonparametric sample-based matching of sets. Here, this is first demonstrated

experimentally for reasonably sized data sets using existing methods exploiting canonical correlations. Motivated by their proven

effectiveness, a novel discriminative learning method over sets is proposed for set classification. Specifically, inspired by classical Linear

Discriminant Analysis (LDA), we develop a linear discriminant function that maximizes the canonical correlations of within-class sets and

minimizes the canonical correlations of between-class sets. Image sets transformed by the discriminant function are then compared by

the canonical correlations. Classical orthogonal subspace method (OSM) is also investigated for the similar purpose and compared with

the proposed method. The proposed method is evaluated on various object recognition problems using face image sets with arbitrary

motion captured under different illuminations and image sets of 500 general objects taken at different views. The method is also applied to

object category recognition using ETH-80 database. The proposed method is shown to outperform the state-of-the-art methods in terms

of accuracy and efficiency.

Index Terms—Object recognition, face recognition, image sets, canonical correlation, principal angles, canonical correlation analysis,

linear discriminant analysis, orthogonal subspace method.

Ç

1 INTRODUCTION

MANY computer vision tasks can be cast as learning
problems over vector or image sets. In object recogni-

tion, for example, a set of vectors may represent a variation
in an object’s appearance—be it due to camera pose
changes, nonrigid deformations, or variation in illumination
conditions. The objective of this work is to classify an
unknown set of vectors to one of the training classes, each
also represented by vector sets. More robust object recogni-
tion performance can be achieved by efficiently using set
information rather than a single vector or image as input.
Examples of pattern sets of an object are shown in Fig. 1.

Whereas most of the previous work on matching image
sets for object recognition exploits temporal coherence
between consecutive images [20], [21], [11], [22], [28], this
study does not make any such assumption. Sets may be
derived from sparse and unordered observations acquired by
multiple still shots of a three-dimensional object or a long-
term monitoring of a scene, as exemplified, e.g., by
surveillance systems, where a subject would not face the

camera all the time. By this, training sets can be more
conveniently augmented in the proposed framework. As this
work does not exploit any data semantics explicitly, the
proposed method is expected to be applied to many other
problems requiring a set comparison.

Relevant previous approaches to set matching for set
classification can be broadly partitioned into parametric
model-based [17], [34] and nonparametric sample-based
methods [12], [14]. In the model-based approaches, each set
is represented by a parametric distribution function, typically
Gaussian. The closeness of the two distributions is then
measured by the Kullback-Leibler Divergence (KLD) [6]. Due
to the difficulty of parameter estimation under limited
training data, these methods easily fail when the training
and novel test sets do not have strong statistical relationships.

Rather, more relevant methods for comparing sets are
based on matching of pairwise samples of sets, e.g., Nearest
Neighbor (NN) and Hausdorff distance matching [12], [14].
The methods are based on the premise that similarity of a pair
of sets is reflected by the similarity of the modes (or NN
samples) of the two respective sets. This is certainly useful in
many computer vision applications where the data acquisi-
tion conditions may change dramatically over time. For
example, as shown in Fig. 1a, when two sets contain images of
an object taken from different views but with a certain overlap
inviews,globaldatacharacteristics of thesetsare significantly
different making the model-based approaches unsuccessful.
To recognize the two sets as the same class, the most effective
solution would be to find the common views and measure the
similarity of those parts of data. In spite of their rational basis,
the nonparametric sample-based methods easily fail as they
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do not take into account the effect of outliers as well as the
natural variability of the sensory data due to the 3D nature of
the observed objects. Note also that such methods are very
time consuming as they require a comparison of every pair of
samples drawn from the two sets.

The above discussion is concerned purely with how to
quantify the degree of match between two sets, that is, how
to define the similarity of two sets. However, the other
important problem in set classification is how to learn
discriminative function from training data associated with a
given similarity function. To our knowledge, the topic of
discriminative learning over sets has not been given proper
attention in the literature. In this paper, we interpret the
classical Linear Discriminant Analysis (LDA) [14], [7] and
its nonparametric variants, Nonparametric Discriminant
Analysis (NDA) [19], as techniques of discriminative
learning over sets (see Section 2.1). LDA has been
recognized as a powerful method for face recognition based
on a single face image as input. The methods based on LDA
have been widely advocated in the literature [7], [9], [29],
[30], [35], [18]. However, note that these methods do not
consider multiple input images. When they are directly
applied to set classification based on sample matching, they
inherit the drawbacks of the classical nonparametric
sample-based methods as discussed above.

Most recently, the concept of canonical correlations has
attracted increasing attention for image set matching in [36],
[8], [23], [24], [37], [27], [39], following the early works [1], [3],
[5], [2]. Each set is represented by a linear subspace and the
angles between two high-dimensional subspaces are
exploited as a similarity measure of two sets (see Section
2.2 for more details). As a method for comparing sets, the
benefits of canonical correlations over both parametric
distribution-based and sample-based matching, have been
noted in our earlier work [36] as well as in [34]. They include
efficiency, accuracy, and robustness. This will be discussed
and demonstrated in a more detailed and rigorous manner in
Section 2.2 and Section 5. A nonlinear extension of canonical
correlation has been proposed in [36], [23], [26] and a feature
selection scheme for the method in [36]. The Constrained
Mutual Subspace Method (CMSM) [24], [37] is closely related
to the approach of this paper. In CMSM, a constrained
subspace is defined as the subspace in which the entire class
population exhibits small variance. The authors showed that

the sets of different classes in the constrained subspace had
small canonical correlations. However, the principle of
CMSM is rather heuristic, especially the process of selecting
the dimensionality of the constrained subspace. If the
dimensionality is too low, the subspace will be a null space.
In the opposite case, the subspace simply captures all the
energy of the original data and, thus, cannot play the role of a
discriminant function.

This paper presents a novel method of object recognition
using image sets, which is based on canonical correlations.
The previous conference version [38] has been extended by a
more detailed discussion of the key ingredients of the method
and the convergence properties of the proposed learning, as
well as by reporting the results of additional experiments on
face recognition and general object category recognition
using the ETH80 [25] database. The main contributions of this
paper are as follows: First of all, as a method of comparing sets
of images, the benefits of canonical correlations of linear
subspaces are explained and evaluated. Extensive experi-
ments comparing canonical correlations with both classical
methods (parametric model-based and nonparametric sam-
ple-based matching) are carried out to demonstrate these
advantages empirically. A novel method of discriminant
analysis of canonical correlations is then proposed. A linear
discriminant function that maximizes the canonical correla-
tions of within-class sets and minimizes the canonical
correlations of between-class sets is defined, by analogy to
the optimization concept of LDA. The linear mapping is
found by a novel iterative optimization algorithm. Image sets
transformed by the discriminant function are then compared
by canonical correlations. The discriminative capability of the
proposed method is shown to be significantly better than
both, the method [8] that simply aggregates canonical
correlations and the kNN method applied to image vectors
transformed by LDA. Interestingly, the proposed method
exhibits very good accuracy as well as other attractive
properties: low computational matching cost and simplicity
of feature selection. The proposed iterative solution is further
compared with classical orthogonal subspace method (OSM)
[4], devised to make different subspaces orthogonal to each
other. As canonical correlations are only determined up to
rotations within subspaces, the canonical correlations of
subspaces of between-class sets can be minimized by
orthogonalizing those subspaces. To our knowledge, the
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Fig. 1. Examples of image sets. The sets contain different pattern variations caused by different views and lighting. (a) Two sets (top and bottom)

contain images of a 3D object taken from different views but with a certain overlap in their views. (b) Two face image sets (top and bottom) collected

from videos taken under different illumination settings. Face patterns of the two sets vary in both lighting and pose.



close relationship of the orthogonal subspace method and
canonical correlations has not been noted before. It is also
interesting to see that OSM has a close affinity to CMSM. The
proposed method and OSM are assessed experimentally on
diverse object recognition problems: faces with arbitrary
motion under different lighting, general 3D objects observed
from different view points, and the ETH80 general object
category database. The new techniques are shown to outper-
form the state-of-the-art methods, including OSM/CMSM
and a commercial face recognition software, in terms of
accuracy and efficiency.

The paper is organized as follows: The relevant back-
ground methods are briefly reviewed and discussed in
Section 2. Section 3 highlights the problem of discriminant
analysis over sets and presents a novel iterative solution. In
Section 4, the orthogonal subspace method is explained and
related to both the proposed method and the prior art. The
experimental results and their discussion are presented in
Section 5. Conclusions are drawn in Section 6.

2 KEY INGREDIENTS OF THE PROPOSED LEARNING

2.1 Parametric/Nonparametric Linear Discriminant
Analysis

Assume that a data matrix X ¼ fx1;x2; . . . ;xMg 2 IRN�M is

given, where xi 2 IRN is a N-dimensional column vector

obtained by raster-scanning an image. Each vector belongs to

one of object classes denoted by Ci. Classical linear

discriminant analysis (LDA) finds a transformation T 2
IRN�nðn � NÞwhich maps a vector x to ex ¼ TTx 2 IRn such

that the transformed data have maximum separation

between classes and minimum separation within classes.

The between-class and within-class scatter matrices in LDA

[7] are given by B ¼
P

c Mcðmc �mÞðmc �mÞT , W ¼
P

cP
x2Ccðx�mcÞðx�mcÞT , where mc denotes the class mean,

m is the global mean of the entire sample set and Mc

denotes the number of samples in class c. With the

assumption that all classes have Gaussian distributions with

equal covariance matrix, traceðBÞ and traceðWÞmeasure the

scatter of vectors in the between-class and within-class

populations, respectively. A nonparametric form of these

scatter matrices is also proposed in [19] with the definition of

the between-class and within-class neighbors of a sample xi 2
Cc given by

B ¼ 1

M

XM
i¼1

wið��B
i Þð��B

i Þ
T ; W ¼ 1

M

XM
i¼1

ð��W
i Þð��W

i Þ
T ; ð1Þ

where ��B
i ¼ xi � xBi , ��W

i ¼ xi � xWi ,

xB ¼ fx0 2 Cc j kx0 � xk � kz� xk; 8z 2 Ccg;
and

xW ¼ fx0 2 Cc j kx0 � xk � kz� xk; 8z 2 Ccg:

wi is a sample weight in order to deemphasize samples away
from class boundaries. LDA or Nonparametric Discriminant
Analysis (NDA) finds the optimal T which maximizes
traceð ~BÞand minimizes traceð ~WÞ, where ~B; ~Ware the scatter
matrices of the transformed data. As these are explicitly
represented withTby ~B ¼ TTBT, ~W ¼ TTWT, the solution

T can be easily obtained by solving the generalized eigen-
problem, BT ¼WT��, where �� is the eigenvalue matrix.

When we regard the training data of each class as a set,
LDA or NDA can be viewed as the discriminant analysis of
the vector sets based on similarity of parametric model-based
and nonparametric sample-based matching of sets, respec-
tively. In LDA, each set (i.e., a class) is assumed to be normally
distributed with equal covariance matrix and these para-
metric distributions are optimally separated. On the other
hand, in NDA, set similarity is measured by the aggregated
distance of a certain number of neighboring samples and the
separation of the sets is optimized based on this set similarity.

It is also worth noting that the between-class and within-
class scatter measures based on pairwise vector-distance in
LDA/NDA can be related to pairwise vector-correlation in
many pattern recognition problems. The magnitude of a data
vector is often normalized so that jxj ¼ 1. As traceðABÞ ¼
traceðBAÞ for any matrix A;B and jxj ¼ 1, traceðWÞ in (1)
equals 1

M traceð
P

i 2ð1� xTi xWi ÞÞ. The problem of minimizing
traceðWÞ can be changed into the maximization of traceðW0Þ
and similarly the maximization of traceðBÞ into the mini-
mization of traceðB0Þ, where

B0 ¼
X
i

xTi xBi ; W0 ¼
X
i

xTi xWi ð2Þ

and xBi ;x
W
i indicate the closest between-class and within-

class vectors of a given vector xi. Note the weight wi is
omitted for simplicity and the total number of training setsM
does not change the direction of the desired components. We
now see the optimization problem of classical NDA defined
by correlations of pairwise vectors. Rather than dealing with
correlations of every pair of vectors, in the proposed method,
we exploit canonical correlations of pairwise linear subspaces of
sets (see Section 3.1 for the proposed problem formulation).
By resorting to canonical correlations, the proposed method
overcomes the shortcomings of both classical model-based
and sample-based approaches in set comparison.

2.2 Definition and Solution of Canonical
Correlations

Canonical correlations, which are cosines of principal angles
0 � �1 � . . . � �d � ð�=2Þ between any two d-dimensional
linear subspaces L1 and L2 are uniquely defined as:

cos �i ¼ max
ui2L1

max
vi2L2

uTi vi ð3Þ

subject to uTi ui ¼ vTi vi ¼ 1;uTi uj ¼ vTi vj ¼ 0; i 6¼ j. There are
various ways to solve this problem. They are all equivalent
but the Singular Value Decomposition (SVD) solution [2] is
more numerically stable than the others, as the number of
free parameters to estimate is smaller. A comparison with
the method called MSM [8] is given in Appendix A.
The SVD solution is as follows: Assume that P1 2 IRN�d

and P2 2 IRN�d form unitary orthogonal bases for two linear
subspaces, L1 and L2. Let the SVD of PT

1 P2 2 IRd�d be

PT
1 P2 ¼ Q12��QT

21 s:t: �� ¼ diagð�1; . . . ; �dÞ; ð4Þ

where QT
12Q12 ¼ QT

21Q21 ¼ Q12Q
T
12 ¼ Q21Q

T
21 ¼ Id. Canoni-

cal correlations are the singular values and the associated
canonical vectors, whose correlations are defined as canoni-
cal correlations, are given by
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U ¼ P1Q12 ¼ ½u1; . . . ;ud�;V ¼ P2Q21 ¼ ½v1; . . . ;vd�: ð5Þ

Canonical vectors are orthonormal in each subspace and
Q12;Q21 can be seen as rotation matrices of P1;P2. The
concept is illustrated in Fig. 2.

Intuitively, the first canonical correlation tells us how
close are the closest vectors from two subspaces. Similarly,
the higher canonical correlations tell us about the proximity
of vectors of the two subspaces in other dimensions
(perpendicular to the previous ones) of the embedding
space. See Fig. 3 for the canonical vectors computed from the
sample image sets given in Fig. 1. The common modes (views
and/or illuminations) of the two different sets of the same
objects are well captured by the first few canonical vectors
found. Each canonical vector of one set is very similar to the
corresponding canonical vector of the other set despite the
data changes across the sets. Also, the canonical vectors of
different dimensions represent different variations of the
patterns. Compared with the parametric distribution-based
matching and the NN matching of samples, this concept is
more robust as it effectively places a uniform prior over the
subspace of possible pattern variations: Note that a set of
high-dimensional vectors of each object is well confined to a
characterisitc low-dimensional subspace which retains most
of the energy of the set. Then, the proposed subspace-based

matching is invariant to the pattern variations subject to the
subspaces. On the other hand, the parametric distribution-
based matching is highly sensitive to small shift or rotation of
the distributions, while the NN matching to small noises or a
few outliers contained in the sets. The complexity of the
canonical correlation-based method is also very low only
requiring SVD of a dxd-dimensional matrix.

3 DISCRIMINANT-ANALYSIS OF CANONICAL

CORRELATIONS (DCC)

As shown in Fig. 3, canonical correlations of two different
image sets of the same object acquired in different conditions
proved to be a promising measure of similarity of the two
sets. This suggests that by matching based on image sets one
could achieve a robust solution to the problem of object
recognition even when the observation of the object is subject
to extensive data variations. However, it is further required
to suppress the contribution to similarity of canonical vectors
of two image sets due to common environmental conditions
(e.g., in lightings, view points, and backgrounds) rather than
object identities. The optimal discriminant function is
proposed to transform image sets so that canonical correla-
tions of within-class sets are maximized while canonical
correlations of between-class sets are minimized in the
transformed data space.

3.1 Problem Formulation

Assumem sets of vectors are given asfX1; . . . ;Xmg, where Xi

describes a data matrix of the ith set containing observation
vectors (or images) in its columns. Each set belongs to one of
object classes denoted byCi. A d-dimensional linear subspace
of the ith set is represented by an orthonormal basis matrix
Pi 2 IRN�d s.t. XiX

T
i ’ Pi��iP

T
i , where ��i;Pi are the eigen-

value and eigenvector matrices of the d largest eigenvalues,
respectively, andN denotes the vector dimension. We define
a transformation matrix T ¼ ½t1; . . . ; tn� 2 IRN�n, where n �
N; jtij ¼ 1 s.t. T : Xi ! Yi ¼ TTXi. The matrix T transforms
images so that the transformed image sets are class-wise more
discriminative using canonical correlations.

Representation. Orthonormal basis matrices of the
subspaces of the transformed data are obtained from the
previous matrix factorization of XiX

T
i :
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Fig. 2. Conceptual illustration of canonical correlations. Two sets are
represented as linear subspaces which are planes here. Canonical
vectors on the planes are found to yield maximum correlations. In a two-
dimensional subspace case, the second canonical vectors u2;v2 are
automatically determined to be perpendicular to the first ones.

Fig. 3. Principal components versus canonical vectors. (a) The first five principal components computed from the four image sets shown in Fig. 1.
The principal components of the different image sets are significantly different. (b) The first five canonical vectors of the four image sets, which are
computed for each pair of the two image sets of the same object. Every pair of canonical vectors (each column) U;V well captures the common
modes (views and illuminations) of the two sets containing the same object. The pairwise canonical vectors are quite similar. The canonical vectors
of different dimensions u1; . . . ;u5 and v1; . . . ;v5 represent different pattern variations, e.g., in pose or lighting.



YiY
T
i ¼ ðTTXiÞðTTXiÞT ’ ðTTPiÞ��iðTTPiÞT : ð6Þ

Except when T is an orthogonal matrix, TTPi is not

generally an orthonormal basis matrix. Note that canonical

correlations are only defined for orthonormal basis matrices

of subspaces (4). Any orthonormal components of TTPi

now defined by TTP0i can represent an orthonormal basis

matrix of the transformed data. See Section 3.2 for details.
Set Similarity. The similarity of any two transformed

data sets represented by TTP0i, TTP0j is defined as the sum

of canonical correlations by

Fij ¼ max
Qij ;Qji

trðMijÞ; ð7Þ

Mij ¼ QT
ijP
0
i
TTTTP0jQji or TTP0jQjiQ

T
ijP
0
i
TT; ð8Þ

as trðABÞ ¼ trðBAÞ for any matrix A;B. Qij;Qji are the

rotation matrices similarly defined in the SVD solution of

canonical correlations (4) with the two transformed

subspaces.
Discriminant Function. The discriminative function (or

matrix) T is found to maximize the similarities of any pairs

of within-class sets while minimizing the similarities of

pairwise sets of different classes. Matrix T is defined with

the objective function J by

T ¼ arg max
T

J ¼ arg max
T

Pm
i¼1

P
k2Wi

FikPm
i¼1

P
l2Bi

Fil
; ð9Þ

where the indices are defined as Wi ¼ fjjXj 2 Cig and

Bi ¼ fjjXj =2 Cig. That is, the two index sets Wi;Bi denote,

respectively, the within-class and between-class sets for a

given set of class i, by analogy to [19]. See Fig. 4 for the

concept of the proposed problem. In the discriminative

subspace represented by T, canonical correlations of with-

in-class sets are to be maximized and canonical correlations

of between-class sets to be minimized.

3.2 Iterative Learning

The optimization problem of T involves the variables Q;P0

as well as T. As the other variables are not explicitly
represented by T, a closed form solution for T is hard to find.
We propose an iterative optimization algorithm. Specifically,
we compute an optimal solution for one of the three variables
at a time by fixing the other two and repeating this for a
certain number of iterations. Thus, the proposed iterative
optimization is comprised of the three main steps: normal-
ization of P, optimization of matrices Q, and T. Each step is
explained below.

Normalization. The matrix Pi is normalized to P0i for a

fixed T so that the columns of TTP0i are orthonormal. QR-

decomposition of TTPi is performed s.t. TTPi ¼ ��i��i, where

��i 2 IRN�d is the orthonormal matrix composed by the first

d columns and ��i 2 IRd�d is the d� d invertible upper-

triangular matrix. From (6), Yi ¼ TTPi

ffiffiffiffi
��
p

i ¼ ��i��i

ffiffiffiffi
��
p

i. As

��i

ffiffiffiffi
��
p

i is still an upper-triangular matrix, ��i can represent an

orthonormal basis matrix of the transformed data Yi. As ��i is

invertible,

��i ¼ TT ðPi��
�1
i Þ ! P0i ¼ Pi��

�1
i : ð10Þ

Computation of rotation matrices Q. Rotation ma-
trices Qij for every i; j are obtained for a fixed T and
P0i. The correlation matrix Mij defined in the left of (8)
can be conveniently used for the optimization of Qij, as
it has Qij outside of the matrix product. Let the SVD of
P0i

TTTTP0j be

P0i
TTTTP0j ¼ Qij��QT

ji; ð11Þ

where �� is a singular matrix and Qij;Qji are orthogonal
rotation matrices. Note that the matrices which are Singular-
Value decomposed have only d2 elements.

Computation of T. The optimal discriminant transforma-
tion matrix T is computed for given P0i and Qij by using the
definition of Mij in the right of (8) and (9). With T being on
the outside of the matrix product Mij, it is convenient to
solve for. The discriminative function is found by

T ¼ max
argT

trðTTSbTÞ=trðTTSwTÞ; ð12Þ

Sb ¼
Xm
i¼1

X
l2Bi

ðP0lQli �P0iQilÞðP0lQli �P0iQilÞT ;

Sw ¼
Xm
i¼1

X
k2Wi

ðP0kQki �P0iQikÞðP0kQki �P0iQikÞT ;

where Bi ¼ fjjXj =2 Cig and Wi ¼ fjjXj 2 Cig. Note that no
loss of generality is incurred from (9) as

ATB ¼ I� 1=2 � ðA�BÞT ðA�BÞ;

where A ¼ TTP0iQij; B ¼ TTP0jQji. The solution ftigni¼1 is
obtained by solving the following generalized eigenvalue
problem: Sbt ¼ ��Swt. When Sw is nonsingular, the optimal T
is computed by eigen-decomposition of ðSwÞ�1Sb. Note also
that the proposed learning can avoid a singular case of Sw by
preapplying PCA to data similarly with the Fisherface
method [7] and it can be speeded up by using a small number
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Fig. 4. Conceptual illustration of the proposed method. Here, the three
sets represented by the basis vector matrices Pi; i ¼ 1; . . . ; 3 are drawn.
We assume that the two sets P1;P2 are within-class sets and the third
one is coming from the other class. Canonical vectors PiQij; i ¼
1; . . . ; 3; j 6¼ i are equivalent to basis vectors Pi in this simple drawing
where each set occupies a one-dimensional space. Basis vectors are
projected on the discriminative subspace by T and normalized such that
jTTP0j ¼ 1. Then, the principal angle of within-class sets, � becomes
zero and the angles of between-class sets, �1; �2 are maximized.



of nearest neighboring sets in Bi;Wi similarly with [19].

Canonical correlation analysis for multiple sets [32] is also

noteworthy here with regard to fast learning. It may be

speeded up by reformulating the between-class and within-

class scatter matrices in (12) by the canonical correlation

analysis of multiple sets, thus avoiding the computation of the

rotation matrices of every pair of image sets in the iterations.
With the identity matrix I 2 IRN�N as the initial value of T,

the algorithm is iterated until it converges to a stable point. A

pseudocode for the learning is given in Algorithm 1 (Table 1).

Once T maximizing the canonical correlations of within-class

sets and minimizing those of between-class sets in the

training data is found, a comparison of any two novel sets is

achieved by transforming them by T and then computing

canonical correlations (see (7)).

3.3 Discussion about Convergence

Although we do not provide a proof of convergence or

uniqueness of the proposed optimization process, its con-

vergence to a global maximum was confirmed experimen-

tally. See Fig. 5 for examples of the iterative learning. Each

example is for the learning using a different training data set.

The value of the objective function J for all cases becomes

stable after first few iterations, starting with the initial

value T ¼ I. This fast and stable convergence is very

favorable for keeping the learning cost low. Furthermore, as

shown at bottom right in Fig. 5, it was observed that the

proposed algorithm converged to the same point irrespective

of the initial value of T. These results are indicative of the

defined criterion being a quadratic convex function with

respect to the joint set of variables as well as each individual

variable as argued in [15], [10].
For all of the experiments in Section 5, the number of

iterations was fixed to five. The proposed learning took

about 50 seconds for the face experiments on a Pentium IV

PC using nonoptimized Matlab code, while the OSM/

CMSM methods took around 5 seconds. Note the learning is

performed once in an offliner manner. Online matching by

the three recognition methods is highly time-efficient. See

the experimental section for more information about the

time complexity of the methods.

4 ALTERNATIVE METHODS OF DISCRIMINATIVE

CANONICAL CORRELATIONS FOR SET

CLASSIFICATION

4.1 Orthogonal Subspace Method (OSM)

Orthogonality of two subspaces means that any vector of one
subspace is orthogonal to any vector of the other subspace [4].
This requirement is equivalent to that of each basis vector of
one subspace being orthogonal to each basis vector of the
other. When recalling that canonical correlations are defined
as maximal correlations between any two vectors of two
subspaces as given in (3), it is very clear that canonical
correlations of any two orthogonal subspaces are zeros. Thus,
measuring canonical correlations of class specific orthogonal
subspaces might be a basis for classifying image sets.

Let us assume that the subspaces of the between-class
sets Bi ¼ fjjXj =2 Cig of a given data set Xi are orthogonal
to the subspace of the set Xi. If the subspaces are
orthogonal, all canonical correlations of those subspaces
would also be zero as

Pi
TPl2Bi

¼ O 2 IRd�d ! traceðQT
ilPi

TPlQliÞ ¼ 0; ð13Þ

where O is a zero matrix and Pi is a basis matrix of the set Xi.
The classical orthogonal subspace method (OSM) [4] has been
developed as a method designed to obtain class-specific
orthogonal subspaces. The OSM finds the common subspace,
which is represented by the basis matrix denoted by P0,
where data sets of different classes become orthogonal. See
Appendix B for the details of the OSM solution. By
orthogonalizing the subspaces of between-class sets, the
discrimination of image sets, in terms of canonical correla-
tions is achieved.

Comparison with the Proposed Solution, DCC. Note
that the orthogonality of subspaces is a restrictive condition,
at least when the number of classes is large. It is often the
case that the subspaces of OSM represented by Pi and Pl2Bi

are correlated. If Pi
TPl has nonzero values, canonical

correlations could be much greater than zero as

qTilPi
TPlqli � 0; ð14Þ
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TABLE 1
Proposed Iterative Algorithm for Finding T, Which Maximizes

Class Separation in Terms of Canonical Correlations

Fig. 5. Convergence characteristics of the optimization: The cost of J of

a given training set is shown as a function of the number of iterations.

The bottom right shows the convergence to a unique maximum with

different random initials of T.



where q is a column of the rotation matrix Q in the definition
of canonical correlations. Generally, the problem of mini-
mizing correlations of basis matrices Pi

TPl in OSM is not
equivalent to the proposed problem formulation where the
canonical correlations qTilPi

TPlqli are minimized. That is,
OSM tries orthogonalizatin for all axes of subspaces with
equal importance but DCC does this for canonical axes with
different importance, revealed by the canonical correlation
analysis.

The difference can also be explained in other words with
regard to robust input space: Note again that the principal
components of P are sensitive to data changes, whereas
canonical vectors PQ are consistent, as shown in Fig. 3.
Thus, the proposed optimization by canonical correlations
is expected to be more robust to possible data changes than
the OSM solution based on P (See the discussion in Further

comments on the relationship of DCC, OSM, and CMSM

in Section 5.3.) Moreover, the orthogonal subspace method
does not explicitly attempt to maximize canonical correla-
tions of the within-class sets. It combines all examples of a
class together. See Appendix B for details.

The similarity matrices of the two methods in Fig. 10
were clearly different reflecting all of the differences noted
above. The better accuracy of DCC over OSM was evident
when the number of training classes was large or the
conditions for obtaining the training and test data were
different in the experiments.

4.2 Constrained Mutual Subspace Method (CMSM)

It is worth noting that CMSM [24], [37] can be seen to be closely
related to the orthogonal subspace method. For the details of
CMSM, refer to Appendix C. CMSM finds the constrained
subspace where the total projection operators have small
variances. Each class is represented by a subspace which
maximally represents the class data variances, then the class
subspace is projected into the constrained subspace. The
projected data subspace compromises the maximum repre-
sentation of each class and the minimum representation of a
mixture of all the other classes. This is similar in concept with
the orthogonal subspace method explained in Appendix B.

Both methods try to minimize the correlation of between-class
subspaces defined by Pi

TPl2Bi
. However, the dimensionality

of the constrained subspace of CMSM should be optimized
for each application. If the dimensionality is too low, the
constrained subspace will be a null space. In the opposite case,
the constrained subspace simply retains all the energy of the
original data and thus can not play a role as a discriminant
function. This dependence of CMSM on the parameter
(dimensionality) selection makes it rather empirical. In
contrast, there is no need to choose any subspace from the
discriminative space represented by the rotation matrix P0 in
the orthogonal subspace method. A full dimension of the
matrix can simply be adopted. Note the proposed method,
DCC, also exhibited insensitivity to dimensionality, thus
being practically, as well as theoretically, very appealing (see
Section 5).

5 EXPERIMENTAL RESULTS AND DISCUSSION

The proposed method (the code is available at http://
mi.eng.cam.ac.uk/~tkk22) is evaluated on various object or
object category recognition problems: Using face image sets
with arbitrary motion captured under different illumina-
tions, image sets of 500 general objects taken at different
views, and the eight general object categories, each of which
has several different objects. The task of all of the experiments
is to classify an unknown set of vectors to one of the training
classes, each also represented by vector sets.

5.1 Database of Face Image Sets

We have collected a database called the Cambridge-Toshiba
Face Video Database with 100 individuals of varying age and
ethnicity and, equally, represented genders, which are shown
in Fig. 6. For each person, 14 (seven illuminations � two
recordings) video sequences of the person in arbitrary motion
were collected. Each sequence was recorded in a different
illumination setting for 10 s at 10 fps and at 320� 240 pixel
resolution. See Fig. 7 for samples from an original image
sequence and seven different lightings. Following automatic
localization using a cascaded face detector [31] and cropping
to a uniform scale of 20� 20 pixels, images of faces were
histogram equalized. Note that the face localization was
performed automatically on the images of uncontrolled
quality. Thus, it was not as accurate as any conventional face
registration with either manual or automatic eye positions
performed on high quality face images. Our experimental
conditions are closer to the conditions given for typical
surveillance systems.
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Fig. 6. Examples of Cambridge-Toshiba Video Database. The data set
contains 100 face classes with varying age, ethnicity, and genders. Each
class has about 1,400 images from the 14 image sequences captured
under seven different lighting conditions.

Fig. 7. Example images of the face data sets. (a) Frames of a typical
face video sequence with automatic face detection. (b) Face prototypes
of seven different illuminations.



5.2 Comparative Methods and Parameter Setting

We compared the performance of

. KL-Divergence algorithm (KLD) [17] as a represen-
tative parametric model-based method,

. Nonparametric sample-based methods such as
k-Nearest Neighbor (kNN) and Hausdorff Distance
(dðS1; S2Þ ¼ minx12S1

maxx22S2
dðx1; x2Þ) [14] of images

transformed by 1) PCA and 2) LDA [7] subspaces,
which are estimated from training data similarly
to [12],

. Nearest Neighbor (NN) by FaceIt (v.5.0), the
commercial face recognition system from Identix,
which ranked top overall in the Face Recognition
Vendor Test 2000 and 2002 [16], [13],

. Mutual Subspace Method (MSM) [8], which is equiva-
lent to a simple aggregation of canonical correlations,

. Constrained MSM (CMSM) [24], [37] used in a state-
of-the-art commercial system called FacePass [40],

. Orthogonal Subspace Method (OSM) [4], and the
proposed iterative discriminative learning, DCC.

To compare different algorithms, important parameters of
each method were adjusted and the optimal ones in terms of
test identification rates were selected. In KLD, 96 percent of
data energy was explained by the principal subspace of
training data used [17]. In kNN methods, the dimension of
PCA subspace was chosen to be 150, which represents more
than 98 percent of training data energy (Note that removing
the first three components improved the accuracy in the face
recognition experiment as similarly observed in [7]). The best
dimension of LDA subspace was also found to be around
150. The number of nearest neighbors used was chosen from
1 to 10. In MSM/CMSM/OSM/DCC, the dimension of the
linear subspace of each image set represented 98 percent of
data energy of the set, which was around 10. PCA was
performed to learn the linear subspace of each set in the
MSM/CMSM/DCC methods.

Dimension Selection of the Discriminative Subspaces in
CMSM/OSM/DCC. As shown in Fig. 8a, CMSM exhibited a
high peaking in the the relationship between accuracy and
dimensionality of the constrained subspace, whereas the
proposed method, DCC, provided constant identification
rates regardless of dimensionality of T beyond a certain
point. The best dimension of the constrained subspace of
CMSM was found to be at around 360 and was fixed. For
DCC, we fixed the dimension at 150 for all experiments (the

full dimension can also be conveniently exploited without
any feature selection). The full dimension was also used for
the rotation matrix P0 in OSM. Note that the proposed
method DCC and OSM do not require any elaborate feature
selection and this behavior of DCC/OSM is highly attractive
from the practical point of view, compared to CMSM.
Without feature selection, the accuracy of CMSM in the full
space drops dramatically to the level equivalent to that of
MSM, which is a simple aggregation of canonical correlations
without any discriminative transformation.

Number of Canonical Correlations. Fig. 8b shows the
accuracy of DCC/MSM/CMSM/OSM according to the
number of canonical correlations used. Basically, this
parameter does not affect the accuracy of the methods as
much as the dimension of the discriminative subspace, as
shown in Fig. 8a. Overall, the methods, DCC/CMSM/OSM,
were shown to be less sensitive to this parameter than
MSM, as they exploit their own discriminative transforma-
tions. To be more specific, DCC/OSM showed desirably
stable curves over this parameter whereas CMSM exhibited
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Fig. 8. (a) The effect of the dimensionality of the discriminative subspace
on the proposed iterative method (DCC) and CMSM. The accuracy of
CMSM at 400 is equivalent to that of MSM, a simple aggregation of
canonical correlations. (b) The effect of the number of canonical
correlations on DCC/MSM/CMSM/OSM.

Fig. 9. Cumulative recognition plot for the MSM/kNN-LDA/CMSM/OSM/

DCC methods.

Fig. 10. Similarity matrices for the (a) MSM, (b) CMSM, (c) OSM, and
(d) DCC methods. The diagonal and off-diagonal values in the CMSM/
OSM/DCC matrix are better distinguished than those of MSM. DCC
shows the best separation.



more or less fluctuating performance. For simplicity, the
number of canonical correlations was fixed to be the same
(i.e., this was set as the dimension of linear subspaces of
image sets) for all the methods, MSM/CMSM/OSM/DCC.

5.3 Face Recognition Experiments

Training of all the algorithms was performed with data
sequences acquired in a single illumination setting and
testing with a single other setting. We used 18 randomly
selected training/test combinations of the sequences for
reporting identification rates. In this experiment, all samples
of a training class were drawn from a single video sequence of
arbitrary head movement, so they were randomly divided
into two sets for the within-class sets in the proposed learning.
Note that the proposed method with this random partition
still worked well regardless of the number of partitions as
exemplified in Table 3. The test recognition rates changed by
less than 1 percent for all of the different trials of random
partitioning. This may be because no explicit discriminatory
information is contained in the randomly partitioned
intraclass sets. Rather, DCC is mostly concerned with
achieving the maximum possible separation of interclass sets
as CMSM/OSM does. In this case, the numerator in the
objective function (9) may just help finding the meaningful
solution that minimizes the denominator. If samples of a class
can be partitioned according to the data semantics, the
concept of within-class sets would be more useful and
realistic, which is the case in the following experiments. The
performance of the evaluated recognition algorithms is
shown in Fig. 9 and Table 2. The 18 experiments were divided
into two parts according to the degree of difference between
the training and the test data of the experiments, which was
measured by KL-Divergence between the training and test
data. Fig. 9 shows the cumulative recognition rates for the
averaged results of all 18 experiments and Table 2 shows the
results separately for the first (easier) and the second parts
(more difficult) of the experiments.

In Table 2, most of the methods generally had lower
recognition rates for the experiments with larger KL-Diver-
gence between the training and test data. The KLD method
achieved by far the worst recognition rate. Considering that

the illumination conditions varied across data and that the
face motion was largely unconstrained, the distribution of
within-class face patterns was very broad, making this result
unsurprising. In the methods of nonparametric sample-based
matching, the Hausdorff-Distance (HD) measure provided
far poorer results than the k-Nearest Neighbors (kNN)
methods defined in the PCA subspace. 10NN-PCA yielded
the best accuracy of the sample-based methods defined in the
PCA subspace, which is worse than MSM by 8.6 percent on
average. Its performance greatly varied across the experi-
ments. Note that MSM showed robust performance with a
large margin over kNN-PCA method under the different
experimental conditions. The improvement of MSM over
both KLD and HD/kNN-PCA methods was very impressive.
The benefits of using canonical correlations over both classical
approaches for set classification, which have been explained
throughout the previous sections, were confirmed.

The commercial face recognition software FaceIt (v.5.0)
yielded the performance which is in the middle of those of
kNN-PCA and kNN-LDA methods on average. Although the
NN method using FaceIt is based on individual sample
matching, it delivered more robust performance for the data
changes (the difference in accuracy between the first half and
the second half is not as large as those of kNN-PCA/LDA
methods). This is reasonable, considering that FaceIt was
trained independently with the training images used for
other methods.

Table 2 also gives a comparison for the methods
combined with discriminative learning. kNN-LDA yielded
a big improvement over kNN-PCA but the accuracy of the
method again greatly varied across the experiments. Note
that 10NN-LDA outperformed MSM for similar conditions
between the training and test sets, but it became noticeably
inferior as the conditions changed. It delivered similar
accuracy to MSM on average, which is also shown in Fig. 9.
The proposed method DCC, CMSM, and OSM constantly
provided a significant improvement over both MSM and
kNN-LDA methods as shown in Table 2 as well as in Fig. 9.

Further comments on the relationship of DCC, OSM,
and CMSM. Note that CMSM/OSM can be considered as
measuring correlation between subspaces defined by the
basis matrix P in a simple way which is different from the
canonical correlations defined by PQ. In spite of this
difference, the accuracy of CMSM/OSM was impressive in
this experiment. As explained above, when an ideal
solution of CMSM/OSM exists and Q only provides a
rotation within the subspace, the solution of CMSM/OSM
can be close to that of the proposed method DCC. However,
if class subspaces cannot be made orthogonal to each other,
then the direct optimization of canonical correlations
offered by DCC is preferred. The novel data space PQ is
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TABLE 3
Example Results for Random Partitioning

The mean and standard deviation (percent) of recognition rates of
10 random trials for two example experiments.

TABLE 2
Evaluation Results

The mean and standard deviation of recognition rates of different methods. The results are shown separately for the first (easier) and the second
parts (more difficult) of the experiments.



robust to environmental changes as shown in Fig. 3, making
the solution of DCC, which is obtained by directly
optimizing PQ space, also robust. Note that the proposed
method was better than CMSM/OSM for the second half of
the experiments in Table 2.

The differences of the three methods are clearly apparent
from the associated similarity matrices of the training data.
We trained the three methods using both training and test
sets of the worst experimental case for the methods (see the
last two of Fig. 7b), and compared their similarity matrices
of the total class data with that of MSM, as shown in Fig. 10.
Both OSM and CMSM considerably improved the ability of
class discrimination over MSM, but they were still far from
optimal compared with DCC for the given data. As
discussed above, both of the proposed method, DCC, and
OSM are preferable to CMSM as they do not involve the
selection of dimensionality of the discriminative subspaces.
While the best dimension for CMSM had to be identified
with reference to the test results, the full dimension of the
discriminative space can simply be adopted for any new
test data in the DCC and OSM methods.

We designed another face experiments with more face
image sets in the Cambridge-Toshiba face video database.
The database involves two sets of videos acquired at
different times, each of which consists of seven different
illumination sequences for each person. We used one time
set for training and the other set for testing thus having
more variations between the training and testing (see Fig. 11
for an example of the two sets acquired in the same
illumination at different times). Note the training and
testing sets in the previous experimental setting were
drawn from the same time set. In this experiment using a
single illumination set for training, the full 49 combinations
of the different lighting settings were exploited. We also
increased the number of image sets per each class for
training. We randomly drew a combination of different
illumination sequences for training and used all seven

illumination sequences for testing. Ten-fold cross validation
was performed for these experiments. Fig. 12 shows the
mean and standard deviations of recognition rates of all
experiments. The proposed method significantly outper-
formed OSM/CMSM methods when the test sets were
much different from the training sets. These results are
consistent with those of the methods in the second part of
the experiment in Table 2 (but the difference is much clearer
here). Overall, all three methods improved their accuracy
by using more image sets in training.

Matching complexity. The complexity of the methods
based on canonical correlations (MSM/CMSM/OSM/DCC),
Oðd3Þ, is much lower than that of the sample-based matching
methods (kNN-PCA/LDA),Oðm2nÞ, where d is the subspace
dimension of each set,m is the number of samples of each set
andn is the dimensionality of feature vectors, since d� m;n.
In the face experiments, the unit matching time of comparing
the two image sets which contain about 100 images is 0.004
for the canonical correlations-based method and 1.1 seconds
for the kNN method.

5.4 Experiment on Large-Scale General Object
Database

The ALOI database [33] with 500 general object categories
taken at different viewing angles provides another experi-
mental data set for the proposed method. Object images were
segmented from the simple background and scaled to
20� 20 pixel size. A training set and five test sets were set

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 6, JUNE 2007

Fig. 11. Example of the two time sets (top and bottom) of a person

acquired in a single lighting setting. They contain significant variations in

pose and expression.

Fig. 12. Recognition rates of the CMSM/OSM/DCC methods when using

a single, double, and triple image sets in training.

Fig. 13. ALOI experiment. (a) The training set consists of 18 images taken
at 10 degree intervals. (b) Two test sets (each top and bottom row) are
shown. Each test set contains nine images at 10 degree intervals,
different from the training set.

Fig. 14. Identification rates for the five different test sets. The object

viewing angles of the test sets differ from those of the training set to a

varying extent.



up with different viewing angles of the objects, as shown in
Figs. 13a and 13b. Note that the pose of all the images in the test
sets differed by at least 5 degree from every sample of the
training set. The methods of MSM, kNN-LDA, CMSM, and
OSM were compared with the proposed method in terms of
identification rate. The parameter were selected in the same
way as in the face recognition experiment. The dimension of
the linear subspace of each image set was fixed to 5,
representing more than 98 percent data energy in MSM/
CMSM/OSM/DCC methods. The best number of nearest
neighbors in the kNN-LDA method was found to be five.

Judging from Fig. 14 and Fig. 15, kNN-LDA yielded better
accuracy than MSM in all the cases. This contrasted with the
findings in the face recognition experiment. This may have
been caused by the somewhat artificial experimental setting.
The nearest neighbors of the training and test set differed only
slightly due to the five degree pose difference. Please note that
the two sets had no changes in lighting and had accurate
localization of the objects as well, making the good chance of
working for the sample-based method. Further note that the
accuracy of MSM could be improved by using only the first
canonical correlation, similarly to the results shown in Fig. 8b.
Here again, CMSM, OSM, and the proposed method DCC
were substantially superior to MSM. Overall, the accuracy of

CMSM/OSM was similar to that of kNN-LDA method, as
shown in Fig. 15. The proposed iterative method, DCC,
constantly outperformed all the other methods including
OSM/CMSM as well as kNN-LDA. Please note this experi-
ment involved a larger number of classes, compared with the
face experiments. Furthermore, the set of images of the
training class had quite different pose distributions from
those of the test set. The accuracy of CMSM/OSM methods
might be degraded by all these factors, whereas the proposed
method is still robust.

5.5 Object Category Recognition Using ETH80
Database

An interesting problem of object category recognition was

performed using the public ETH80 database. As shown in Fig.

16, there are eight categories which contain 10 objects each,

with 41 images of different views. More details about the

database can be found in [25]. We randomly partitioned 10

objects into two sets of five objects for training and testing. In

Experiment 1, we used all 41 view images of objects. In

Experiment 2, we used all 41 views for training but a random

subset of 15 view images for testing. Ten-fold cross-validation

was carried out for both experiments. Parameters such as the

dimension of the linear subspaces, the number of principal

angles and nearest neighbors were selected as in the previous

experiment. The dimension of the constrained subspace of

CMSM was also best optimized.

From Table 4, it is worth noting that the accuracy of

kNN-PCA method is similar (but slightly inferior) to that of

the PCA method reported in [25]. Note that we used only

five objects per category, in contrast to [25], where nine

objects were used for training. The recognition rates for

individual object categories also showed similar behavior to

those of [25].
As shown in Table 4, the kNN methods were much

inferior to the methods based on canonical correlations. The
sample-based matching method was very sensitive to the
variations in different objects of the same categories, failing
in object categorization. The methods using canonical
correlations provided much more accurate results. The
proposed method (DCC) delivered the best accuracy over
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Fig. 15. Cumulative recognition rates of the MSM/kNN-LDA/CMSM/

OSM/DCC methods for the ALOI experiment.

Fig. 16. Object category database (ETH80) contains (a) eight different object categories and (b) 10 different objects for each category.

TABLE 4
Evaluation Results of Object Categorization

The mean recognition rate and its standard deviation for all experiments.



all tested methods. The improvement of DCC over CMSM/
OSM was bigger in the second experiment where only a
subset of images of objects was involved in the testing. Note
that this makes the testing set very different from the
training set. The major principal components of the image
sets are highly sensitive to the variations in pose. The
accuracy of CMSM/OSM methods was considerably
decreased in the presence of this variation, while the DCC
method maintained almost the same accuracy.

6 CONCLUSIONS AND FUTURE WORK

A novel discriminative learning framework has been
proposed for set classification based on canonical correla-
tions. It is based on iterative learning which is theoretically
and practically appealing. The proposed method has been
evaluated on various object and object category recognition
problems. The new technique facilitates effective discrimi-
native learning over sets and exhibits an impressive set
classification accuracy. It significantly outperformed the
KLD method representing a parametric distribution-based
matching and kNN methods in both PCA/LDA subspaces
as examples of nonparametric sample-based matching. It
also largely outperformed the method based on a simple
aggregation of canonical correlations.

The proposed DCC method achieved not only better
accuracy but also possesses many good properties, com-
pared with CMSM/OSM methods. CMSM had to be
optimized a posteriori by feature selection. In contrast,
DCC does not need any feature selection. It exhibited a
robust performance over a wide range of dimensions of the
discriminative subspace as well as the number of canonical
correlations used. Although CMSM/OSM delivered a
comparable accuracy to DCC in particular cases, in general,
it lagged behind the proposed method.

The canonical-correlation-based methods including the
proposed method were also shown to be highly time
efficient in matching, thus offering an attractive tool for
recognition involving a large-scale database.

The interesting research direction of this study is the
nonlinear extension of the concept of DCC, which would
allow us to capture discriminatory information of image sets
contained in higher-order statistics. It may also prove
beneficial to make the proposed learning more time-efficient
so as to be incrementally updated for new training sets.

APPENDIX A

EQUIVALENCE OF SVD SOLUTION TO MUTUAL

SUBSPACE METHOD [8]

In Mutual Subspace Method (MSM), canonical correlations

are defined as the eigenvalues of the matrix P1P
T
1 P2

PT
2 P1P

T
1 2 IRN�N , where Pi 2 IRN�d is a basis matrix of a

data set i. The SVD solution in (4) for computing canonical

correlations is symmetric. That is,

QT
12P

T
1 P2Q21 ¼ ��;

QT
21P

T
2 P1Q12 ¼ ��:

By multiplying the above two equations, we obtain

ðQT
12P

T
1 P2Q21ÞðQT

21P
T
2 P1Q12Þ ¼ ��2

! QT
12P

T
1 P2P

T
2 P1Q12 ¼ ��2

! P1P
T
1 P2P

T
2 P1P

T
1 ¼ P1Q12��2QT

12P
T
1

as Q12Q
T
12 ¼ Q21Q

T
21 ¼ I. P1Q12 and ��2 are the eigenvector

matrix and eigenvalue matrix, respectively, of the matrix

P1P
T
1 P2P

T
2 P1P

T
1 . That is, the canonical correlations of MSM

simply assume the square value of the canonical correlations

of the SVD solution. Please note that the dimension of the

matrix PT
1 P2 2 IRd�d is relatively low compared with the

dimension of P1P
T
1 P2P

T
2 P1P

T
1 2 IRN�N .

APPENDIX B

OSM SOLUTION

Denote the correlation matrices of theC classes by C1; . . . ;CC

and the respective a priori probabilities by �1; . . . ; �C [4].

Then, matrix C0 ¼
PC

i¼1 �
iCi is the correlation matrix of the

mixture of all the classes. Matrix C0 can be diagonalized by

BC0B
T ¼ ��. Denoting P0 ¼ ���1=2B, we have P0C0P

T
0 ¼ I.

Then,

�1P0C
1PT

0 þ . . .�CP0C
CPT

0 ¼ I:

This means that matrices �iP0C
iPT

0 and �j6¼i�
jP0C

jPT
0

have the same eigenvectors but the eigenvalues �ik of

�iP0C
iPT

0 and �ik of �j 6¼i�
jP0C

jPT
0 are related by

�ik ¼ 1� �ik. That is, in the space rotated by matrix P0,

the most important basis vectors of class i, which are the

eigenvectors of �iP0C
iPT

0 corresponding to largest eigen-

values, are at the same time the least significant basis

vectors for the ensemble of the rest of the classes. Let Pi

be such an eigenvector matrix so that

�iPi
TP0C

iPT
0 Pi ¼ ��i:

Then,

�j6¼i�
jPi

TP0C
jPT

0 Pi ¼ I� ��i:

Since every matrix �jP0C
jPT

0 for all j 6¼ i is positive

semidefinite, �jPi
TP0C

jPT
0 Pi should be a diagonal matrix

having smaller elements than 1� �i. If we let Pj denote the

eigenvectors of jth class by �jP0C
jPT

0 	 Pj��
jPj

T , the

matrix Pi
TPj��

jPj
TPi now has small diagonal elements.

Accordingly, Pi
TPj should have all the elements close to

zero. In the ideal case when �iP0C
iPT

0 has the eigenvalues

which are exactly equal to one, the matrix Pi
TPj would be a

zero matrix for all j 6¼ i. The two subspaces defined by

Pi;Pj are called orthogonal subspaces. That is, every

column of Pi is perpendicular to every column of Pj.

Note that the OSM method does not exploit the concept

of multiple sets in a single class (or within-class sets). The

method assumes that all data vectors of a single class i are

represented by a single set Pi. From the above, the matrix

P0 could represent an alternative discriminative space
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where the canonical correlation of between-class sets are

minimized. Note that the matrix P0 is a rotation matrix in

its concept and therefore it is a square matrix.

APPENDIX C

CONSTRAINED MUTUAL SUBSPACE METHOD [24]

The constrained subspace D is spanned by Nd eigenvec-
tors d of the matrix G ¼

PC
i¼1 PiP

T
i s.t.

Gd ¼ �d;

where C is the number of training classes, Pi is a basis
matrix of the original ith class data, and eigenvector d
corresponds to the Nd smallest eigenvalues. The optimal
dimension Nd of the constrained subspace is set experi-
mentally. The subspace Pi is projected onto D and the
orthogonal components of the projected subspace, normal-
ized to unit length, are obtained as inputs for computing
canonical correlations by the method of MSM [8].
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