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Abstract

This paper presents a volumetric formulation for the nmuikiw stereo problem which is
amenable to a computationally tractable global optimisatising Graph-cuts. Our approach is
to seek the optimal partitioning of 3D space into two regitaielled as ‘object’ and ‘empty’ under
a cost functional consisting of the following two terms: Ajerm that forces the boundary between
the two regions to pass through photo-consistent locatamts (2) a ballooning term that inflates
the ‘object’ region. To take account of the effect of ocatuson the first term we use an occlusion
robust photo-consistency metric based on Normalised Comsselation, which does not assume
any geometric knowledge about the reconstructed obje@.dltbally optimal 3D partitioning can

be obtained as the minimum cut solution of a weighted graph.

. INTRODUCTION

This paper considers the problem of reconstructing theadgaemetry of a 3D object from
a number of images in which the camera pose and intrinsioypeteas have been previously
obtained. This is a classic computer vision problem that lbeen extensively studied and
a number of solutions have been published. Work in the field i categorised according
to the geometrical representation of the 3D object with tlagonity of papers falling under
one of the following two categories: (1) algorithms thataesr depth-maps with respect to
an image plane and (2) volumetric methods that representdluene directly, without any
reference to an image plane.

In the first class of methods, a reference image is selectédhatisparity or depth value
is assigned to each of its pixels using a combination of in@geslation and regularisation.
An excellent review for image based methods can be found aiStein and Szeliski [22].
These problems are often formulated as minimisations ofkbMarRandom Field NRF)
energy functions providing a clean and computationakytible formulation, for which good
approximate solutions exist using Graph-cuts [5], [14])][@ Loopy Belief Propagation [27].
They can also be formulated as continuous PDE evolutione®dépth maps [26]. However,
a key limitation of these solutions is that they can only espnt depth maps with a unique
disparity per pixel,i.e. depth is a function of image point. Capturing complete cdisjen
this manner requires further processing to merge multiglettd maps. This was recently
attempted in [10] but resulted in only partially reconstaatobject surfaces, leaving holes
in areas of uncertainty. A second limitation is that the sthness term imposed by therF

is defined on image disparities or depths and hence is viewpependent.e. if a different
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Fig. 1. Toy House. This is an example of a 3D model of a real object, obtainedguie technique described
in this paper. In the top row are four images of a toy houseenhilthe bottom row, renderings of the 3D model
from similar viewpoints are shown . The first three imagesenaart of the input sequence used while the fourth
was not shown to the algorithm. The model of this small toydeo(approximately 10cm in diameter) contains
accurately reconstructed sub-millimetre details suclhasdnce and the relief of the roof.

view is chosen as the reference image the results may beediffe

The second class comprises of methods that usdlanetric representationf shape. For
a recent, very thorough review of related techniques see [B&ler this framework multiple
viewpoints can be easily integrated and surface smootltssde enforced independent of
viewpoint. This class consists of techniques using implagpresentations such as voxel occu-
pancy grids [16], or level-sets of 3D scalar fields [7], [283d explicit representations such as
polygonal meshes [8], [11]. While some of these methods aosvk to produce high quality
reconstructions their convergence properties in the poesef noise are not well understood.
Due to lack of regularisation, methods based on Space Guft®B]| produce surfaces that
tend tobulge outin regions of low surface texture (see the discussion abwapes priors in
[23]). In variational schemes such as level-sets and mesadbstereo, the optimal surface
is usually obtained via gradient descent optimisation. Assalt, these techniques typically
employ multi-resolution coarse-to-fine strategies to €ase the probability of getting trapped
in local minima (e.g. [7], [8], [11], [20]). Furthermore, plicit representations such as meshes
are known to suffer from topological and sampling probled®].[

The approach described in this paper combines the advantddeoth classes described
above. We adopt an implicit volumetric representation dase voxel occupancy, but we
pose the reconstruction problem as finding the minimum cug ofeighted graph. This

computation is exact and can be performed in polynomial.tifitie benefits of our approach
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are the following:

1) Obijects of arbitrary topology can be fully represented emmputed as a single surface
with no self-intersections.
2) The representation and geometric regularisation is @reagl viewpoint independent.

3) Global optimisation is computationally tractable, @sexisting max-flow algorithms.

A. Background and previous work

The inspiration for the approach presented in this papehéswork of Boykov and
Kolmogorov [2] which establishes a theoretical link betwaaaximum flow problems in
discrete graphs and minimal surfaces in an arbitrary Riemaanmetric. In particular the
authors show how a continuous Riemannian metric can be =pmpaited by a discrete
weighted graph so that the max-flow/min-cut solution for ¢maph corresponds to a local
geodesic or minimal surface in the continuous case. Thaagipin described in that paper
is interactive 2D or 3D segmentation. A probabilistic fotation of interactive segmentation
with a more elaborate foreground/background model wasngneBlake et al [1].

In [29] we showed how the basic idea of [2] can be applied towbleimetric, multi-
view stereo problem by computing a photo-consistency b&ethannian metric in which
a minimal surface is computed. In that method two basic aptons are made: Firstly, it
is assumed that the object surface lies between two patadliehdary surfaces. The outer
boundary is usually obtained from the visual hull while thaear boundary lies at a constant
distance inside the outer boundary. This effectively lgrtie depth of concavities that can
be represented in the reconstructed object. The secondhpsen is that the visibility of
each point on the object's surface can be determined fronvitleility of the closest point
on the outer surface. Even though both of these assumptrensatisfied for a large class
of objects and acquisition set-ups, they restrict the appllity of the method considerably.
Nevertheless, by demonstrating promising results andligiging the feasibility of solving
multi-view stereo using volumetric graph cuts, [29] ingpira number of techniques [4], [9],
[13], [17], [24], [25], [28] that built on our formulation ahattempted to address some of its
shortcomings.

In Furukawaet al. [9] and Sinhaet al. [24] two different ways were proposed for in-
corporating the powerful silhouette cue into the graph{tamework while Starcket al.
[25] and Tranet al. [28] showed how to enforce sparse feature matches as hastraimts.

Hornung and Kobbelt [13] improved the construction of th&elagrid and cast the method
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in a hierarchical framework that allows for a significant epep at the expense of no longer
obtaining a global optimum. Finally, Boykov and Lempitsiy] offer an alternative approach
for visibility reasoning, while in [4] this is expanded tociorporate the idea gbhoto-flux
as a data-driven ballooning force that helps reconstruct pinotrusions and concavities.
Additionally, [4] and [17] were the first papers to proposelabgl optimisation scheme for
volumetric multi-view stereo that did not require any iaiisation (e.g. visual hull). However
the reconstructions shown were less detailed than thosenebt with other state-of-the-art
techniques and no comparison or quantitative analysis wasded.

In this paper we improve the original formulation of the noethof [29] by relaxing the
two assumptions described above. Hence, in the presenufation (a) the object surface
is not geometrically constrained to lie between an inner andouter surface and (b) no
explicit reasoning about visibility is required. This ishaéeved through the use of a robust
shape-independent photo-consistency cost first used [nTh& key idea behind that scheme
is that occluded pixels are treated as outliers in the madciprocess. Furthermore, the
formulation presented here achieves reconstructiontsestifar superior accuracy than [29],
as demonstrated by results from a scene where ground trathaisble (Fig. 5 and Table I).

The rest of the paper is laid out as follows: Section Il démsihow multi-view stereo can
be formulated as a graph-cut optimisation. In section Il describe the photo-consistency
functional associated with any candidate surface whila@etV explains how this functional
is approximated with a discrete flow graph. Section V present 3D reconstruction results

on real objects and section VI concludes with a discussigh@paper’s main contributions.

II. GRAPH-CUTS FOR VOLUMETRIC STEREO

In [2] and subsequently in [1] it was shown how graph-cuts @ptimally partition 2D or
3D space into ‘foreground’ and ‘background’ regions undey aost functional consisting
of the following two terms:

« Foreground/background cost: for every point in space there is a cost for it being

‘foreground’ or ‘background’.
« Discontinuity cost: for every point in space, there is a cost for it lying on the rbary
between the two partitions.
Mathematically, the cost functional described above casden as the sum of a weighted

surface areaof the boundary surface and a weighteslumeof the ‘foreground’ region as
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follows:

E[S] = //s p(x)dA + ///\/(5) o(x)dV (1)

where S is the boundary between ‘foreground’ and ‘backgrounid(,S) denotes the ‘fore-
ground’ volume enclosed by andp ando are two scalar density fields.

The application described in [2] was the problem of 2D/3Dnseqtation. In that domain
p(x) is defined as a function of the image intensity gradient afx) as a function of the
image intensity itself or local image statistics. In thigppawe show how multi-view stereo
can also be described under the same framework with thegifoved’ and ‘background’
partitions of 3D space corresponding to the reconstruchgelco and the surrounding empty
space respectively.

Our model balances two competing terms: The first one mimisne surface integral of
photo-consistency while the second one maximises volurhe.fdllowing two subsections

describe the two terms of our multi-view stereo cost funian more detail.

A. Foreground/background cost

A challenge specific to the multi-view stereo problem, ist ttere is no straightforward
way to define the foreground/background modéxk). This is because in this problem our
primary source of geometric information is tleerrespondence cuehich is based on the
following observation: A 3D point locatedn the object surface projects to image regions
of similar appearance in all images where it is not occluded. Usingdhé one can label
3D points as beingn or off the object surface but cannot directly distinguish between
pointsinsideor outsideit. In contrast, thesilhouette cuas based on the requirement that all
pointsinside the object volume must project inside the silhouettes ofabject that can be
extracted from the images. Hence the silhouette cue candereeme foreground/background
information by giving a very high likelihood of beingutsidethe object to 3D points that
project outside the silhouettes. In [4] a data driven, fosagd/background model based on
the concept ofphoto-fluxhas been introduced. To compute photo-flux, surface otienta
must be either estimated (in the case of global optimisatothecurrentsurface orientation
is used (in the case of gradient-descent surface evolution)

In this work we adopt a very simple, data-independent moderers(x) is defined as a
negative constank that produces an inflationarpdllooning tendency. The motivation for

this type of term in the active contour domain is given in [@}f intuitively, it can be thought
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of as a shape prior that favours objects that fill the boundimigme in the absence of any
other information. If the value ok is too large then the solution tends to over-inflate, filling
the entire bounding volume while X is too small then the solution collapses into an empty
surface. For values of in between these two cases the algorithm converges to theedes
surface. In practice it is quite easy to find a value\afhich will work by performing a few
trial runs. As there is a large range of suitablevalues, all of which give nearly identical
results, no detailed search for the optimaVvalue is necessary.

Additionally we can encode any silhouette information thety be available by setting
o(x) to be infinitely large whernx is outside the visual hull. Furthermore if we can also
assume, as in [29], that the concavities of the object are maaimum depthD from the
visual hull then we can set(x) to be infinitely small wherx is inside the visual hull at a
distance, at leasb from it. In many cases such as the experiments of Figure 1 amdete
the objects have relatively simple topology, a bounding Qoaranteed to contain the object
is sufficient to obtain a good reconstruction. To encode khiswledge we just need to set

o(x) to be infinitely large wherx is outside that bounding box.

B. Discontinuity cost

The second challenge of multi-view stereo is that the sarfaca densityp, which
corresponds to the discontinuity cost, is a function of thetp-consistency of the point
in space, which in turn depends on which cameras are vigibia that point. Consequently
in multi-view stereo the discontinuity cost has the fopifx, S) since the surface itself
determines camera visibility. The graph-cut formulatidn2 cannot easily be adapted to
cope with this type of cost functional. In [13], [29] the pteim is solved by assuming the
existence of an approximate surfagg,,..., provided by the visual hull or otherwise, which
provides visibility information. However, as self-ocdoiss not captured by the approximate
surface will be ignored, the accuracy of the results mayesufflso, such approximate object
surface may not be readily available. Our approach is to ys@o#o-consistency metric that
accounts for occlusions using robust Normalised CrosseGaiion (NCC) voting without any

dependence on approximate object geometry. The surfatéurmsional that we optimise is

£ls) = [ [ swaa-x [[[ e )

The next section will describe the photo-consistency roeifk) in more detail.

May 30, 2007 DRAFT



[1I. PHOTO-CONSISTENCY METRIC

The input to our method is a sequence of images., Iy calibrated for camera pose and
intrinsic parameters. The photo-consistency of a potestiene pointk can be evaluated by
comparing its projections in the images where it is visitMe propose the use of a robust
photo-consistency metric similar to the one described 1} fiat does not need any visibility
computation. This choice is motivated by the excellentltesabtained by this type of photo-
consistency metric in the recent comparison of 3D modeli@apniques carried out by [23].
The basic idea is that all potential causes of mismatchesddclusion, image noise, lack of
texture or highlights are uniformly treated as outliers hie tnatching process. Matching is
then seen as a process of robust model fitting to data comggmitliers. Specifically, for a
given 3D pointx, its photo-consistency valygx) is computed by asking every imageo

give a vote for that location. Specifically, we define

p(x) = exp{—p Z VOTE; (x)}. (3)

wherey is very stable rate-of-decay parameter which in all our @rpents was set t0.05.

The value ofvOTE;(x) is computed as follows:

« Compute the corresponding optic ray
0;(d) = x + (¢; —x)d 4)

that goes through the camera’s optic cenrty@nd the 3D poini,

. As a function of the depth along the optic rdyproject the 3D poinb;(d) into the M
closest camera¥/(i) and computel/ correlation scores;(d) between imagé;c ;) and
the reference imagé. Each scores;(d) is obtained using normalised cross correlation
between two square windows centred on the projections(@f into 7; and ;e ;). For
the experiments presented here we uskedc 11 pixel windows.

« combine the)/ correlation scores;(d) into a single scor€(d), and give a vote to the

3D locationx, i.e., 0;(0), only if C(0) is the global maximum of as follows:

VOTE, — C(0) if C(0)>C(d) Vd . 5)
0 otherwise

One of the simplest ways of combining tiié correlation scores for every depthis to
simply average themi,e,,
Cld) =Y 5. (6)

JEN (i)
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Fig. 2. Robust voting vs averaging.Our algorithm robustly estimates the depth of a pixel in ggutrimage
(left) by computing NCC scores between a patch centred drptkal and patches along points on corresponding
epipolar lines in théI closest images, two of which are shown in the middle columhis wayM correlation
curves are obtained (in our examlé = 6). These curves are plotted here in red across depth alongptite

ray. Curves corresponding to un-occluded viewpoints (fagthe top-middle image) share a local optimum in
the same location which corresponds to the correct surfapthdCurves from occluded viewpoints (such as the
bottom-middle image) do not have an optimum in that locagiod hence a simple averaging of the curves (dashed
line) does not work. By computing a sliding Parzen filter oa litcal maxima of the correlation curves (here we
have used a Gaussian kernel) the correct depth can be redatghe point of maximum response.

However, averaging does not allow the robust handling ofuseans, highlights or lack of
texture. In order to obtain a better scatel), we make an important observation: because of
different types of noise in the image, the global maximum sfragle correlation curve does
not always correspond to the correct depth. However, if tiréase is seen by the camera
without occlusion or sensor saturation, the correlatioorescdoes show a local maximum
near the correct depth, though it may not be the global onerdar to take into account this
observation, we build a ne@ by detecting all the local maximé&, of S;, i.e, %(dk) =

0. 25

, 52 (dr) > 0, and using a Parzen window [19] with a kerriél as follows:

CU(d)= > Y Si(d)W(d— dy). (7)

JEN(i) K
The Parzen window technique provides an effective way ahtakito account the actual
scores of the local maximand reinforcing those local maxima that are close to each other.
It provides very good robustness against occlusion andemagse, which in practice makes
it the core of a photo-consistency measure that does noteg@itit visibility computation.
Figure 2 demonstrates the benefits of the Parzen filteringnigue as opposed to simple
averaging of correlation scores. For the example of figure Qaassian kernel has been

used. In practice we discretise the 3D volume into voxelswaadtount the number of local
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Bounding volume

SOURCE

7\
Optimal surface P h

Fig. 3. Surface geometry and flow graph construction.On thé left: a 2D élice of spaée showing the bounding
volume and the optimal surface inside it that is obtaineddwyauting the minimum cut of a weighted graph. Note
that complicated topologies such as holes or disjoint velsioan be represented by our model and recovered after
optimisation. On the right: the correspondence of voxett wodes in the graph. Each voxel is connected to its
neighbours as well as to the source.

maxima that fall inside a voxel. This corresponds to using@&angular kernel with width

equal to the size of the voxel grid.

IV. GRAPH STRUCTURE

To obtain a discrete solution to Equation (2) 3D space is tiseoh into voxels of size
h x h x h. The graph nodes consist of all voxels whose centres arenvathertain bounding
box that is guaranteed to contain the object. For the reguisented in this paper these
nodes were connected with a regular 6-neighbourhood gigheB neighbourhood systems
can be used which provide a better approximation to the woatis functional (2), at the
expense of using more memory to store the graph. Now assumeaxels centred at; and

x; are neighbours. Then the weight of the edge joining the twoesponding nodes on the

ATh?  [x; + x;
Wij = 3 P( B J) (8)

wherep(x) is the matching cost function defined in Equation (3). In &ddito these weights

graph will be [2]

between neighbouring voxels there is also the ballooningef@dge connecting every voxel
to the source node with a constant weightugf= \h3. Finally, the outer voxels that are part
of the bounding box (or the voxels outside the visual hulhittis available) are connected
with the sink with edges of infinite weight. The configuratiointhe graph is shown in figure
3 (right).

It is worth pointing out that the graph structure describedve can be thought of as a
simple binaryMRF. Variables correspond to voxels and can be labelled as beside or

outsidethe scene. The unitary clique potential is jast the voxel is outside and, if it is
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inside the scene while the pairwise potential between tvighteur voxels andj is equal to
w;; if the voxels have opposite labels anatherwise. As a binary MRF with sub-modular

energy function [15] it can be solved exactly in polynomiale¢ using Graph-cuts.

V. RESULTS

In this section we present some 3D reconstruction resuligiredd by our technique. The
system used for all the models shown was a Linux-based letedidin IV with 2GB RAM
and running at 3.0 GHz. The spatial resolution for the voxasgwas3003 voxels for the
toy house sequence (Figure 2J)0° voxels for the Hygeia sequence (Figure 4) axad? v
voxels for the Temple sequence (Figure 5). The ballooningrpater\ was set to values
between0.1 and 1.0. Computation time is strongly dominated by the photo-cstesicy cost
calculation which takes betwee minutes andl.5 hours depending on number of images
and their resolution. Generally the computational comipjeaf this part of the algorithm
grows linearly with the total number of pixels in the sequenthe computation time required
by the graph-cut computation for380° grid is approximatelyt5 minutes. We used the graph-
cut algorithm proposed in [3] and in particular the impletagion available at the authors’
website.

The first experiment was performed on a plaster bust of thelGgeddess Hygeia (36
images) photographed with a 5M pixel digital camera. Thecdbjas mounted on a turntable
and camera pose was obtained automatically using the @bgbbuettes [12]. Note however
that these silhouettes were not used for any other compatstich as visual hull construction.
The reconstruction results are shown in figure 4.

Our second experiment (Figure 5) used images of a replicch@fGastor and Pollux
(Dioscuri) temple in Agrigento, Sicily with a resolution 6#0 x 480 pixels. Four of these
images are shown in the first row of Figure 5. This sequenceus@d as part of a multi-view
stereo evaluation effort which was presented in [23]. Canmeotion is known and ground
truth is available through the use of a laser scanner dewee (23] for details). Three
different subsets of the sequence each with a different eurabimages are provided: the
full set of 312 images (Full), a medium sized sequence witln#ages (Ring) and a sparse
sequence with only 16 images (SparseRing). As the objedhasographed against a black
background, silhouettes can be computed by simple threéstgpl The visual hull obtained
from those silhouettes is shown in the second row of Figurgvé.have encoded this in

our foreground/background term as described in sectigh Figure 5 shows the results of
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Fig. 4. Reconstruction results. Reconstruction of plaster bust of Greek goddess Hygeia.iffhg sequence

consists of 36 images. Four of these are shown in the first rbikevhe second row shows similar views of the
reconstructed model.

our reconstruction for the Full subsequence (fourth rowngared to the results obtained
using the original formulation of Volumetric Graph-cutQ]third row). The improvement

in geometric accuracy is especially evident in the rear \oéthe temple where, due to self-
occlusions the visibility assumptions of [29] were sewenrgblated. Our present formulation
makes no such visibility approximations and hence is abléully extract the geometry

information contained in the images.

Figure 6 provides a qualitative demonstration of the d#fee in discriminative power
between the photo-consistency metric of [29] (left) and ourrent method (right). The
figure shows slices of the two photo-consistency fields spweding to the upper part of
the temple above the columns. It demonstrates a signifieghitction in photo-consistency
noise brought about by the robust voting scheme of section II

A quantitative analysis of our results and comparison wiiesof-the-art techniques across
all three subsequences is presented in Table I. The accorattyc shown is the distancé
(in millimetres) that brings 90% of the reconstructed scefavithin d from some point on
the ground truth surface. The completeness figure measueesercentage of points in the
ground truth model that are within 1.25mm of the reconsadiahodel. Under both metrics
our method currently ranks among the top performers. In fes®Ring sequence with only
16 images our method performs best in terms of both accunagycampleteness.

The final example, shown in Figure 1 is from a high-resolusequence of 140 images

(3456 x 2304 pixels) of a toy house of about 10cm diameter. Camera céltordnas been
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hull obtained from silhouettes. Third row: Results obtadiméth the original Volumetric Graph-cuts formulation
of [29]. Fourth row: Results obtained with the method présérere. The occlusion robust photo-consistency
metric greatly enhances the detail of the reconstruction.

Fig. 6. Noise reduction in photo-consistencyleft: a slice of the photo-consistency volume taken through

the entablature of the temple. Centre: the metric of [29}taims falsely photo-consistent regions (e.g. near the

corners). Right: the occlusion robust metric proposed Bignaificantly suppresses noise and the correct surface
can be accurately localised.
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Accuracy / Completeness

Full (312 images)

Rlng (47 images)

SparseRingi6 images)

Hernandez [11]

0.36mm / 99.7%

0.52mm / 99.5%

0.75mm / 95.3%

Goesele [10]

0.42mm / 98.0%

0.61mm / 86.2%

0.87mm / 56.6%

Hornung [13]

0.58mm / 98.7%

Pons [20]

0.60mm / 99.5%

0.90mm / 95.4%

Furukawa [9]

0.65mm / 98.7%

0.58mm / 98.5%

0.82mm / 94.3%

Vogiatzis [29]

1.07mm / 90.7%

0.76mm / 96.2%

2.77mm [ 79.4%

Present method

0.50mm / 98.4%

0.64mm / 99.2%

0.69mm / 96.9%

TABLE |

COMPARISON OF OUR METHOD WITH STATEOF-THE-ART TECHNIQUES AGAINST GROUND TRUTH DATA(FROM [23]).

obtained automatically using silhouettes [12]. As in thstfexperiment however, we did not
include these silhouettes in our foreground/backgrounah.t& he mesh obtained from the

300° voxel grid contains accurately reconstructed sub-miltieeetails.

VI. DISCUSSION

This paper introduces the use of graph-cut optimisationh® olumetric multi-view
stereo problem. We begin by defining an occlusion-robustghonsistency metric which is
then approximated by a discrete flow graph. This metric usesbast voting scheme that
treats pixels from occluded cameras as outliers. We thew s$twov graph-cut optimisation
can exactly compute thminimal surface that encloses the largest possible volume, where
surface areds just a surface integral in this photo-consistency fielde €xperimental results
presented, demonstrate the benefits of combining a voliorsirface representation with a

powerful discrete optimisation algorithm such as Grapts-cu
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