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Abstract

This paper presents an extension of the relevance vector machine (RVM) algorithm
to multivariate regression. This allows the application to the task of estimating the
pose of an articulated object from a single camera. RVMs are used to learn a one-
to-many mapping from image features to state space, thereby being able to handle
pose ambiguity.
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This paper considers the problem of estimating the 3D pose of an articu-
lated object such as the human body from a single view. This problem is
difficult due to the large number of degrees of freedom and the inherent am-
biguities that arise when projecting a 3D structure into the 2D image [5,10].
Once the pose estimation task is solved, temporal information can be used to
smooth motion and resolve potential pose ambiguities. This divides continuous
pose estimation into two distinct tasks: (1) estimate a distribution of possible
configurations from a single frame, (2) combine frame-by-frame estimates to
obtain smooth trajectories.

Generative methods estimate the pose by projecting a geometric model into
the scene and evaluating a likelihood function that measures agreement with
the image. Single frame pose estimation then becomes a complex optimiza-
tion problem that can be approached with methods such as dynamic program-
ming [8], MCMC [12] or hierarchical search [19].
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Fig. 1. (a) Multiple mapping functions. Given a single view, the mapping from
image features to pose is inherently one-to-many. Mutually exclusive regions in state
space can correspond to overlapping regions in feature space. This ambiguity can be
resolved by learning several mapping functions from the feature space to different
regions of the state space. (b) Feature extraction. The features are obtained from
matching costs (Hausdorff fractions) of shape templates to the edge map. These costs
are used for creating the basis function vector φHD.

Discriminative methods follow a different approach by trying to learn a map-
ping from image features directly to the 3D pose. A straightforward way to
do this is to generate a database of images from a 3D model and use efficient
search to find the best match [16,19]. The number of templates required to
represent the pose space depends on the range of possible motion and required
accuracy, and can be in the order of hundreds of thousands of templates. Only
a fraction of the them is searched for each query image, however all templates
need to be stored.

The method for hand pose estimation from a single image by Rosales et al.

addressed some of these issues [15]. Image features were directly mapped to
likely hand poses using a set of specialized mappings. A 3D model was projected
into the image in these hypothesized poses and evaluated using an image based
cost function. The features used were low-dimensional vectors of silhouette
shape moments, which are often not discriminative enough for precise pose
estimation.

Agarwal and Triggs proposed a method for selecting relevant features using
RVM regression [1,4]. The image features were shape-contexts descriptors of
silhouette points and pose estimation was formulated as a one-to-one mapping
from the feature space to pose space. This mapping required about 10% of
the training examples. The method was further extended to include dynamic
information by joint regression with respect to two variables, the feature vector
and a predicted state obtained with a dynamic model [2].

The mapping from silhouette features to state space is inherently one-to-many,
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1. Initialize
Partition the training set V into K subsets by applying the K-means algorithm
on the state variable xn of each data point vn. Initialize probability matrix C.
2. Iterate
(i) Estimate regression parameters

Given the matrix C ∈ R
N×K , where element cnk = c

(n)
k is the probability that

sample point n belongs to mapping function k, learn the parameters
{

Wk,Sk
}

of each mapping function, by multivariate RVM regression minimizing the
following cost function

Lk =
N

∑

n=1

c
(n)
k

(

y
(n)
k

)T
Sk

(

y
(n)
k

)

, where y
(n)
k = x(n) −Wkφ(z(n)). (1)

Note: for speed up, samples with low probabilities may be ignored.
(ii) Estimate probability matrix C
Estimate the probability of each example belonging to each of the mapping
function:

p(x(n)|z(n),Wk,Sk) =
1

2π|S|1/2
exp

{

−0.5
(

y
(n)
k

)T
Sk

(

y
(n)
k

)

}

, (2)

c
(n)
k =

p(x(n)|z(n),Wk,Sk)
∑K

j=1 p(x(n)|z(n),Wj ,Sj)
. (3)

Fig. 2. EM for learning multiple mapping functions Wk

as similar features can be generated by regions in the parameter space that
are far apart, see Figure 1(a). Hence it is important to maintain multiple
hypotheses over time. In this paper the pose estimation problem from template
matching is formulated as learning one-to-many mapping functions that map
from the feature space to the state space. The features are Hausdorff matching
scores, which are obtained by matching a set of shape templates to the edge
map of the input image, see Figure 1(b). A set of RVM mapping functions
is then learned to map these scores to different state-space regions to handle
pose ambiguity, see Figure 1(a). Each mapping function achieves sparsity by
selecting a small fraction of the total number of templates. However, each RVM
function will select a different set of templates. This work is closely related
to the work of Sminchisescu et al. [18] and Agarwal et al. [3,4]. Both follow
a mixture of experts [13] approach to learn a number of mapping functions
(or experts). A gating function is learned for each mapping function during
training, and these gating functions are then used to assign the input to one
or many mapping functions during the inference stage. In contrast, we use
likelihood estimation from projecting the 3D-model to verify the output of
each mapping function.

3



−3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

1

2

3

4

5
Training Data

Input z

O
ut

pu
t x

Cluster 1
Cluster 2
Cluster 3

(a)

−3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

1

2

3

4

5
Experts

Input z

O
ut

pu
t x

Cluster 1
Cluster 2
Cluster 3
Regressor 1
Regressor 2
Regressor 3

(b)

−3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

1

2

3

4

5
Experts

Input  z

O
ut

pu
t x

Cluster 1
Cluster 2
Cluster 3
Regressor 1
Regressor 2
Regressor 3

(c)

−3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

1

2

3

4

5
Experts

Input z

O
ut

pu
t x

Cluster 1
Cluster 2
Cluster 3
Regressor 1
Regressor 2
Regressor 3

(d)

Fig. 3. RVM regression on a toy dataset. The data set consists of 200 samples
from three polynomial functions with added Gaussian noise. (a) Initial clustering
using K-means. (b), (c),(d) Learned RVM regressors after the 1st, 4th and 10th
iteration, respectively. Each sample data is shown with the colour of the regressor
with the highest probability. A Gaussian kernel with a kernel width of 1.0 was used
to create the basis functions. Only 14 samples were retained after convergence.

The rest of the paper is organized as follows: The algorithm for learning the
one-to-many mapping using multiple RVMs is introduced in section 2. Sec-
tion 3 describes a scheme for training a single RVM mapping function with
multivariate outputs. The pose estimation and tracking framework is presented
in section 4, and results on hand and full body tracking are shown in section 5.

1 Learning multiple RVMs

The pose of an articulated object, in our case a hand or a full human body,
is represented by a parameter vector x ∈ R

M . The features z are Canny
edges extracted from the image. Given a set of training examples or templates
V = {v(n)}N

n=1 consisting of pairs v(n) = {(x(n), z(n))} of state vector and
feature vector, we want to learn a one-to-many mapping from feature space
to state space. We do this by learning K different regression functions, which
map the input z to different regions in state space. We choose the following
model for the regression functions

x = Wkφ(z) + ξk, (4)

where ξk is a Gaussian noise vector with 0 mean and diagonal covariance
matrix Sk = diag

{

(σk
1 )2, . . . , (σk

M)2
}

. Here φ(z) is a vector of basis functions

of the form φ(z) = [1, G(z, z(1)), G(z, z(2)), ..., G(z, z(N))]T , where G can be
any function that compares two sets of image features. The weights of the
basis functions are written in matrix form Wk ∈ R

M×P and P = N + 1.
We use an EM type algorithm, outlined in Figure 2, to learn the parameters
{Wk,Sk}K

k=1 of the mapping functions. The regression results on a toy dataset
are shown in Figure 3.

The case of ambiguous poses means that the training set contains examples
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Fig. 4. (a) Single vs. multiple RVMs. Results of training different numbers
of RVMs on the same dataset. Multiple RVMs learn sparser models, require less
training time and yield a smaller estimation error. (b) Robustness analysis.
Pose estimation error when using two different types of features: histograms of shape
contexts (SC) and Hausdorff matching costs (HD). Plotted is the mean and standard
deviation of the RMS error of three estimated pose parameters as a function of image
noise level. Hausdorff features are more robust to edge noise.

that are close or the same in feature space but are far apart in state space,
see Figure 1(a). When a single RVM is trained with this data, the output
states tend to average different plausible poses [1]. We therefore experimentally
evaluated the effect of learning mapping functions with different numbers of
RVMs (with Hausdorff fractions as the input to the mapping functions). The
data was generated by random sampling from a region in the 4-dimensional
state space of global rotation and scale, and projecting a 3D hand model into
the image. The size of the training set was 7000 and the size of the test set was
5000. Different numbers of mapping functions were trained to obtain a one-
to-many mapping from the features to the state space. The results are shown
in Figure 4(a). Training multiple mapping functions reduces the estimation
error and creates sparser template sets. Additionally, the total training time
is reduced because the RVM training time increases quadratically with the
number of data points and the samples are divided among the different RVMs.

2 Training an RVM with multivariate outputs

The RVM is a Bayesian regression framework, in which the weights of each
input example are governed by a set of hyperparameters. These hyperpa-
rameters describe the posterior distribution of the weights and are estimated
iteratively during training. Most hyperparameters approach infinity, causing
the posterior distributions of the effectively setting the corresponding weights
to zero. The remaining examples with non-zero weights are called relevance

vectors. The attraction of the RVM is that it has good generalization perfor-
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mance, while achieving sparsity in the representation. The formulation in [21]
only allows regression from multivariate input to a univariate output variable.
One solution is to use a single RVM for each output dimension. For example,
Williams et al. used separate RVMs to track the four parameters of a simi-
larity transform of an image region [24]. This solution has the drawback that
one needs to keep separate sets of selected examples for each RVM. We intro-
duce the multivariate RVM (MVRVM) which extends the RVM framework to
multivariate outputs, making it a general regression tool. 1

The data likelihood is obtained as a function of weight variables and hyperpa-
rameters. The weight variables are then analytically integrated out to a obtain
marginal likelihood as function of the hyperparameters. An optimal set of hy-
perparameters is obtained by maximizing the marginal likelihood over the
hyperparameters using a version of the fast marginal likelihood maximization
algorithm [22]. The optimal weight matrix is obtained using the optimal set
of hyperparameters.

The rest of this section details our proposed extension of the RVM framework
to handle multivariate outputs and how this is used to minimize the cost
function described in equation (1) and learn the parameters of a mapping
function, Wk and Sk. We can rewrite equation (1) in the following form

Lk =
N

∑

n=1

logN (x̂
(n)
k |Wkφ̂k(z

(n)),Sk), (5)

where, x̂
(n)
k =

√

c
(n)
k x(n) and φ̂k(z

(n)) =
√

c
(n)
k φ(z(n)) (6)

We need to specify a prior on the weight matrix to avoid overfitting. We
follow Tipping’s relevance vector approach [21] and assume a Gaussian prior
for the weights of each basis function. Let A = diag(α−2

1 , . . . , α−2
P ), where each

element αj is a hyperparameter that determines the relevance of the associated
basis function. The prior distribution over the weights is then

p(Wk|Ak) =
M
∏

r=1

P
∏

j=1

N (wk
rj|0, α

−2
j ) , (7)

where wk
rj is the element at (r, j) of the weight matrix Wk. We can now com-

pletely specify the parameters of the kth mapping function as {Wk,Sk,Ak}.
As the form and the learning routines of parameters of each expert are the
same, we drop the index k for clarity in the rest of the section. A likelihood

1 Code is available from http://mi.eng.cam.ac.uk/˜ at315/MVRVM.htm
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distribution of the weight matrix W can be written as

p({x̂(n)}N
n=1|W,S) =

N
∏

n=1

N (x̂(n)|Wφ̂(z(n)),S) . (8)

Let wr be the weight vector for the rth component of the output vector x,
such that W = [w1, . . . ,wr, . . . ,wM ]T and let τr be the vector with the rth

component of all the example output vectors. Exploiting the diagonal form
of S, the likelihood can be written as a product of separate Gaussians of the
weight vectors of each output dimension:

p({x̂(n)}N
n=1|W,S) =

M
∏

r=1

N (τr|wrΦ̂, σ2
r) , (9)

where Φ̂ = [1, φ̂(z1), φ̂(z2), . . . , φ̂(zN)] is the design matrix. The prior distri-
bution over the weights is rewritten in the following form

p(W|A) =
M
∏

r=1

P
∏

j=1

N (wrj|0, α
−2
j ) =

M
∏

r=1

N (wr|0,A). (10)

Now the posterior on W can be written as the product of separate Gaussians
for the weight vectors of each output dimension:

p(W|{x̂}N
n=1,S,A) ∝ p({x̂}N

n=1|W,S) p(W|A) (11)

∝
M
∏

r=1

N (wr|µr,Σr) , (12)

where µr = σ−2
r ΣrΦ

T τr and Σr = (σ−2
r ΦTΦ + A)−1 are the mean and the

covariance of the distribution of wr. Given the posterior for the weights, we
can choose an optimal weight matrix if we obtain a set of hyperparameters
that maximise the data likelihood in equation (12). The Gaussian form of
the distribution allows us to the remove the weight variables by analytically
integrating them out. Exploiting the diagonal form of S and A once more, we
marginalize the data likelihood over the weights:

p({x̂}N
n=1|A,S)=

∫

p({x̂}N
n=1|W,S) p(W|A) dW (13)

=
M
∏

r=1

∫

N (τr|wrΦ̂, σ2
r)N (wr|0,A) (14)

=
M
∏

r=1

|Hr|
− 1

2 exp(−
1

2
τT
r H−1

r τr) , (15)

where Hr = σ2
rI+ Φ̂A−1Φ̂

T
.An optimal set of hyperparameters {αopt

j }P
j=1 and
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noise parameters {σopt
r }M

r=1 is obtained by maximising the marginal likelihood
using bottom-up basis function selection as described by Tipping et al. in [22].
Again, the method was extended to handle the multivariate outputs. Details
of this extension can be found in [20]. The optimal hyperparameters are then
used to obtain the optimal weight matrix:

Aopt = diag(αopt
1 , . . . , α

opt
P ) Σopt

r = ((σopt
r )−2 Φ̂

T
Φ̂ + Aopt)−1 (16)

µopt
r = (σopt

r )−2 Σopt
r ΦT τr Wopt = [µopt

1 , . . . , µ
opt
M ]T (17)

We performed experiments comparing the feature robustness in the presence
of noise. This was done for features GHD based on the Hausdorff distance and
features based on 100-dimensional shape-context histograms GSC [4]. A set
of images is created by sampling a region in state space, in this case three
rotation angles over a limited range, and using the sampled pose vectors to
project a 3D hand model into the image. Because the Hausdorff features are
neither translation nor scale invariant, additional training images of scaled and
locally shifted examples are generated. After RVM training, a set of around
30 templates out of 200 are chosen for both, shape context and Hausdorff fea-
tures. However note that the templates chosen by the RVM for each methods
may differ. For testing, 200 poses are generated by randomly sampling the
same region in parameter space and introducing different amounts of noise
by introducing edges of varying length and curvature. Figure 4(b) shows the
dependency of the RMS estimation error (mean and standard deviation) on
the noise level. Hausdorff features are more robust to edge noise than shape
context features.

3 Pose estimation and tracking

Given a candidate object location in the image we obtain K possible poses
from the mapping functions, see Figure 6(a). For each mapping function Wk

the templates selected by the RVM are matched to the input and the resulting
Hausdorff fractions [11] form the basis function vector φHD. We then use
regression to obtain K pose estimates via xk = WkφHD. A set of candidate
object locations is obtained by skin colour detection for hands and background
estimation for full human body motion. Given M candidate positions we thus
obtain K×M pose hypotheses, which are used to project the 3D object model
into the image and obtain image likelihoods.

The observation model for the likelihood computation is based on edge and
silhouette cues. As a likelihood model for hand tracking we use the function
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proposed in [19], which combines chamfer matching with foreground silhou-
ette matching, where the foreground is found by skin colour segmentation.
The same likelihood function is used in the full body tracking experiments,
with the difference that in this case the foreground silhouette is estimated by
background subtraction.

The question arises as to whether it is necessary to use the more computation-
ally expensive model projection process for the likelihood evaluation. Being
based on Gaussian regression models, RVMs do provide likelihood estimates.
However, we observed that in some cases the RVM variances are too low.
In order to demonstrate this we generated silhouette data from two differ-
ent motions in the CMU mocap database [7], one running (173 frames) and
one exercise motion sequence (4591 frames). The 62 dimensional state vector
was first reduced to 6 dimensions via PCA. The RVM selected 16 training
samples. When estimating the motion of the unseen exercise sequence, one
expects a high uncertainty, thus large σ values for the RVM predictions, as
shown in Figure 3. However, in some cases the σ values are low even though
the pose is far from any pose in the training set. In other words, the RVM can
be overconfident, particularly in areas of the state space that had little or no
representation in the training data. Therefore, in contrast to [4] our method
uses the RVM predictions only as hypotheses for a likelihood evaluation based
on projecting a 3D body model into the image. It can therefore be seen as a
hybrid of learning based and model based approaches.

Temporal information is needed to resolve the ambiguous poses and to ob-
tain a smooth trajectory through the state-space after the pose estimation is
done at every frame. We embed pose estimation with multiple RVMs within a
probabilistic tracking framework, which involves representing and maintaining
distributions of the state x over time.

The distributions are represented using a piecewise Gaussian model [6] with L

components. The evaluation of the distribution at one time instant t involves
the following steps (see Figure 6(b)):

(1) Predict each of the L components,

(2) perform RVM regression to obtain K hypotheses,

(3) evaluate likelihood computation for each hypothesis,

(4) compute the posterior distribution for each of L × K components,

(5) select L components to propagate to next time step.

The dynamics are modelled using a constant velocity model with large process
noise [6], where the noise variance is set to the variance of the mapping error
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Fig. 5. Overconfidence of RVM estimates. This figure shows the variance values
(a) for RVM predictions for three inputs (c): one of the training sequence and two
of a test sequence with previously unseen motion. We expect low uncertainty, i.e.
small σ values for the training input, but large uncertainty for the unseen inputs (as
for frame 400). However, in some cases the RVM is overconfident, see values for
frame 4300 which are nearly identical to the values for the training input. On the
other hand, the likelihood computed from the reprojection error (b) results in values
that are very different from the training input.

estimated at the RVM learning stage. At step (5) k-means clustering is used to
identify the main components of the posterior distribution in the state space,
similar to [23]. Components with the largest posterior probability are chosen
from each cluster in turn, ensuring that not all components represent only one
region of the state-space.

For a given frame the correct pose does not always have the largest poste-
rior probability. Additionally, the uncertainty of pose estimation is larger in
some regions in state space than in others, and a certain number of frames
may be needed before the pose ambiguity can be resolved. The largest peak
of the posterior fluctuates among different trajectories as the distribution is
propagated. Hence a history of the peaks of the posterior probability needs
to be considered before a consistent trajectory is found that links the peaks
over time. In our experiments a batch Viterbi algorithm is used to find such
a path [14].
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Fig. 6. (a) Pose estimation. At each candidate location the features are obtained
by Hausdorff matching and the RVMs yield pose estimates. These are used to project
the 3D model and evaluate likelihoods. (b) Probabilistic tracking. The modes of
likelihood distribution, obtained through the RVM mapping functions, are propagated
through a bank of Kalman filters [6]. The posterior distributions are represented with
an L-mode piecewise Gaussian model. At each frame, the L Kalman filter predictions
and K RVM observations are combined to generate possible L×K Gaussian distri-
butions. Out of these, L Gaussians are chosen to represent the posterior probability
and propagated to the next level. The circles in the figure represent the covariance
of Gaussians.

4 Experimental results

The RVM tracking framework is applied to the problem of tracking 3D global
and articulated motion of the hand and the whole human body. Throughout
the experiments a Gaussian kernel with a standard deviation of 0.5 is used, a
value that was found in initial experiments. The number of principal compo-
nents was determined for each data set separately and was set to the minimum
number of components that result in a reprojection error of less than 10%.

Full body articulation: In order to track full body motion, we use a data
set from the CMU motion capture database of walking persons (∼ 9000 data
points). In order to reduce the RVM training time, the data is projected onto
the first six principal components.

The first input sequence is a person walking fronto parallel to the camera.
The global motion is mainly limited to translation. The eight-dimensional
state-space is defined by two global and six articulation parameters. A set of
13,000 training samples were created by sampling the region. We use 4 RVM
mapping functions to approximate the one-to-many mapping. A set of 118
relevant templates is retained after training. Background subtraction is used
to remove some of the background edges. The tracking results are shown in
Figure (7). The second input sequence is a video of a person walking in a circle
from [17]. The range of global motion is set to 360° around axis normal to the
ground plane and 20° in the tilt angle. The range of scales is 0.3 to 0.7. The
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nine-dimensional state-space region is defined by these three global and six
articulation parameters. A set of 50 000 templates is generated by sampling
this region. We use 50 RVM mapping functions to approximate the one-to-
many mapping. A set of 984 relevant templates is retained after training.
Background subtraction is used to remove some of the background edges. The
tracking results are shown in Figure (8).

Hand articulation: In this experiment we estimate the rigid body param-
eters as well as a lower-dimensional representation of the articulation param-
eters of an opening and closing hand. The method is applied to the hand
sequence containing 88 frames from [19], where approximately 30 000 tem-
plates were required for tracking. To capture typical hand motion data, we
use a large set of 10 dimensional joint angle data obtained from a data glove.
The pose data was approximated by the first four principal components. We
then projected original hand glove data into those 4 dimensions. The global
motion of the hand in that sequence was limited to a certain region of the
global space (80°, 60°and 40° in rotation angles and 0.6 to 0.8 in scale). The
eight-dimensional state space is defined by the four global and four articula-
tion parameters. A set of 10 000 templates is generated by random sampling
in this state space. After training 10 RVMs, 455 templates out of 10 000 are
retained. Due to the large amount of background clutter in the sequence, skin
colour detection is used in this sequence to remove some of the background
edges for this sequence. Tracking results are shown in Figure (9).

Computation time: The execution time in the experiments varies from 5
to 20 seconds per frame (on a Pentium IV, 2.1 GHz PC), depending on the
number of candidate locations in each frame. The computational bottleneck
is the model projection in order to compute the likelihoods (approximately
100 per second). For example, for 30 search locations and 50 RVM mapping
functions result in 1500 model projections, requiring 15 seconds. It can be
observed that most mapping functions do not yield high likelihoods, thus
identifying them early will help to reduce the computation time.

5 Summary

This paper has introduced a framework for single camera pose estimation
and tracking that is a hybrid of learning based and generative model based
approaches. To this end we have developed a multivariate generalization of
Tipping and Faul’s [22] bottom-up method for learning a sparse RVM re-
gressor. The method has been used as a component of a system for tracking
and estimating 3D human pose from monocular image sequences. We have
combined several techniques to solve this problem: (1) multivalued regression
based on Gaussian mixtures to allow for multiple solutions, (2) multivariate
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Fig. 7. Tracking a person walking fronto parallel to the camera . The first
and second rows shows the frames from [17], overlaid with the body pose correspond-
ing to the optimal path through the posterior distribution and the corresponding the
3D model, respectively. Similarly, second and third rows show the second best path.
Notice that the second path describes the walk equally well except for the right-left
leg flip which is one of the common ambiguity that arises in human pose estimation
from monocular view. A total of 118 templates with 4 RVM mapping functions were
used.

Fig. 8. Tracking a person walking in a circle. This figure shows the results of the
tracking algorithm on a sequence from [17]. Overlaid is the body pose corresponding
to the optimal path through the posterior distribution, the 3D model is shown below.
A total of 1429 templates with 50 RVM mapping functions were used.

RVM for the individual regressors, (3) reprojection of a 3D model to evalu-
ate a posteriori probabilities for the resulting 3D hypothesis, and (4) global
optimization using dynamic programming to find 3D trajectories through the
resulting sets of static 3D pose hypotheses.
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