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a b s t r a c t

The objective of this work is to recognize faces using video sequences both for training and novel input, in
a realistic, unconstrained setup in which lighting, pose and user motion pattern have a wide variability
and face images are of low resolution. There are three major areas of novelty: (i) illumination generaliza-
tion is achieved by combining coarse histogram correction with fine illumination manifold-based nor-
malization; (ii) pose robustness is achieved by decomposing each appearance manifold into semantic
Gaussian pose clusters, comparing the corresponding clusters and fusing the results using an RBF net-
work; (iii) a fully automatic recognition system based on the proposed method is described and exten-
sively evaluated on 600 head motion video sequences with extreme illumination, pose and motion
pattern variation. On this challenging data set our system consistently demonstrated a very high recog-
nition rate (95% on average), significantly outperforming state-of-the-art methods from the literature.

! 2008 Elsevier Inc. All rights reserved.

1. Introduction

For decades, the personal identification task had shown pro-
gress by employing technological means like secret knowledge, such
as Personal Identification Numbers, and by using personal posses-
sions, such as Identity Cards and Radio Frequency Identification
chips. As opposed to these means which are generally easy targets
for fraud, biometric modalities like facial geometry, ear form and
iris are universal and consistent over time.

Automatic face recognition (AFR) has long been established as
one of the most active research areas in computer vision [1]. In
spite of a large number of developed algorithms, real-world perfor-
mance of AFR has been, to say the least, disappointing. Even in very
controlled imaging conditions, such as those used for passport
photographs, the error rate has been reported to be as high as
10% [2], while in less controlled environments the performance de-
grades even further [3]. We believe that the main reason for the
apparent discrepancy between results reported in the literature
and those observed in the real world is that the assumptions that
most AFR methods rest upon are hard to satisfy in practice (see
Section 2).

In this paper, we are interested in recognition using video se-
quences. This problem is of enormous interest as video is readily
available in many applications, while the abundance of informa-
tion contained within it can help resolve some of the inherent
ambiguities of single-shot based recognition. In practice, video
data can be extracted from surveillance videos by tracking a face

or by instructing a cooperative user to move the head in front of
a mounted camera.

We assume that both the training and novel data available to an
AFR system is organized in a database where a sequence of images
for each individual contains some variability in pose, but is not ob-
tained in scripted conditions or in controlled illumination. The rec-
ognition problem can then be formulated as taking a sequence of
face images from an unknown individual and finding the best
matching sequence in the database of sequences labelled by the
identity.

2. Related previous work

Good general reviews of recent AFR literature can be found in
[1,4,5]. In this section, we focus on AFR literature that deals specif-
ically with recognition from image sequences, and with invariance
to pose and illumination.

2.1. Recognition from multiple-image input

Compared to single-shot recognition, face recognition from im-
age sequences is a relatively new area of research. Some of the
existing algorithms that deal with multi-image input use temporal
coherence within the sequence to enforce prior knowledge on
likely head movements [6–8]. In contrast to these, a number of
methods that do not use temporal information have been pro-
posed. Recent ones include statistical [9,10] and principal angle-
based methods with underlying simple linear [11], kernel-based
[12] or Gaussian mixture-based [13] models. By their very nature,
these are inherently invariant to changes in head motion pattern.
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Other algorithms implement the ‘‘still-to-video” scenario [14,15],
not taking full advantage of sequences available for training.

2.2. Recognition under varying illumination

Illumination invariance for AFR, while perhaps the most signif-
icant challenge for AFR [16] remains a virtually unexplored prob-
lem for recognition using video. Most methods focus on other
difficulties of video-based recognition, employing simple prepro-
cessing techniques to deal with changing lighting [17,18]. Others
rely on availability of ample training data but achieve limited gen-
eralization [9,19].

Two influential generative model-based approaches for illumi-
nation-invariant single-shot recognition are the illumination cones
[20,21] and the 3D morphable model [22,23]. Both of these have
significant shortcomings in practice. The former is not readily ex-
tended to deal with video, assuming accurately registered face
images, illuminated from several well-posed directions for each
pose, which is difficult to achieve in practice (see Section 4 for data
quality). Similar limitations apply to the related method of Riklin-
Raviv and Shashua [24]. On the other hand, the 3D morphable
model is easily extended to video-based recognition, but it requires
(in our case prohibitively) high resolution [18], struggles with non-
Lambertian effects (such as specularities) and multiple light
sources, and has convergence problems in the presence of back-
ground clutter and partial occlusion (e.g. glasses, facial hair).

2.3. Recognition across pose

Broadly speaking, there are three classes of algorithms aimed at
achieving pose invariance. The first, a model-based approach, uses
an explicit 2D or 3D model of the face, and attempts to estimate
the parameters of the model from the input [22,25]. This is a
view-independent representation. A second class of algorithms
consists of global, parametric models, such as the eigenspace
method [26] that estimates a single parametric (typically linear)
subspace from all the views for all the objects (also see [27]). In
AFR tests, such methods are usually outperformed by methods
from the third class: view-based techniques e.g. the view-based
eigenspaces [28] (also [6,7]), in which a separate subspace is con-
structed for each pose. These algorithms usually require an inter-
mediate step in which the pose of the face is determined, and
then recognition is carried out using the estimated view-depen-
dent model. A common limitation of these methods is that they re-
quire a fairly restrictive and labour-intensive training data
acquisition protocol, in which a number of fixed views are col-
lected for each subject and appropriately labelled. This is not the
case with the method proposed in this paper.

3. Recognition from face motion manifolds

A video sequence of a moving face carries information about its
3D shape and texture. In terms of recognition, this information can
be used either explicitly, by recovering parameters of a generative
model (e.g. as in [22]), or implicitly by modelling face appearance
and trying to achieve invariance to extrinsic causes of its variation
(e.g. as in [17]). In this paper we employ the latter approach, as
more suited for low-resolution input data [18] (see Section 4 for
typical data quality).

Concepts in this paper heavily rely on the notion of face mani-
folds. Under the standard rasterized representation of an image,
images of a given size can be viewed as points in a Euclidean image
space RD, its dimensionality D being equal to the number of pixels.
However, the surface and texture of a face is mostly smooth mak-
ing its appearance constrained and confining it to an embedded

face manifold of dimension d! D [9,29], as conceptually illus-
trated in Fig. 1.

In the proposed method, face manifold [9,29] are modelled
using at most three Gaussian pose clusters describing small face
motion around different head poses. Given two such manifolds,
first (i) the pose clusters are determined, then (ii) those corre-
sponding in pose are compared and finally, (iii) the results of pair-
wise cluster comparisons are combined to give a unified measure
of similarity of the manifolds themselves. Each of the steps, aimed
at achieving robustness to a specific set of nuisance parameters, is
described in detail next.

3.1. Face registration

It can be observed that the corresponding variations due to
head motion, i.e. pose changes, are highly nonlinear, see Fig. 2a
and b. A part of the difficulty of recognition from appearance man-
ifolds is then contained in the problem of what is an appropriate
way of representing them, in a way suitable for the analysis of
the effects of varying illumination or pose.

In the proposed method, face motion manifolds are repre-
sented in piece-wise linear manner by a set of semantic Gauss-
ian pose clusters, see Fig. 2b and c. Seeing that each cluster
describes a locally linear mode of variation, this approach to
modelling manifolds becomes increasingly difficult as their
intrinsic dimensionality is increased. Therefore, it is advanta-
geous to normalize the raw, input frames as much as possible
so as to minimize this dimensionality. In this first step of our
method, this is done by registering faces i.e. by warping them
to have a set of salient facial features aligned (for related ap-
proaches see [17,30]).

We compute warps that align each face with a canonical frame
using four point correspondences: the locations of pupils (2) and
nostrils (2). These are detected using a two-stage feature detector
of Fukui and Yamaguchi [31]1. Briefly, in the first stage, shape
matching is used to rapidly remove a large number of locations in

(b)

(a)

Fig. 1. Shown is a face appearance manifold, conceptually depicted as 2-dimen-
sional, embedded in a 3-dimensional principal component space. In this paper we
explicitly separate motion-affected appearance changes which give rise to (a,b) face
motion manifolds (FMMs), shown as 1-dimensional in red, and illumination-affected
appearance changes which in turn define face illumination manifolds, shown in grey
as connecting two FMMs. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

1 We thank the authors for kindly providing us with the original code of their
algorithm.
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the input image that do not contain features of interest. Out of the
remaining, ‘promising’ features, true locations are chosen using the
appearance-based, distance from feature space criterion. We found
that the described method reliably detected pupils and nostrils
across a wide variation in illumination conditions and pose.

From the four point correspondences between the locations of
the facial features and their canonical locations (we chose canoni-
cal locations to be the mean values of true feature locations) we
compute optimal affine warps on a per-frame basis. Since four cor-
respondences over-determine the affine transformation parame-
ters (eight equations with six unknown parameters), we estimate
them in the minimum L2 error sense. Finally, the resulting images
are cropped, so as to remove background clutter, and resized to the
uniform scale of 30 " 30 pixels. An example of a face registered
and cropped in the described manner is shown in Fig. 3 (also see
Fig. 2c).

3.2. Pose-invariant recognition

Achieving invariance to varying pose is one of the most chal-
lenging aspects of face recognition and yet a prerequisite condi-
tion for most practical applications. This problem is complicated
further by variations in illumination conditions, which inevita-
bly occur due to movement of the user relative to the light
sources.

We propose to handle changing pose in two, complemen-
tary stages: (i) in the first stage an appearance manifold is
decomposed to Gaussian pose clusters, effectively reducing the
problem to recognition under a small variation in pose param-
eters; (ii) in the second stage, fixed-pose recognition results
are fused using a neural network, trained offline. The
former stage is addressed next, while the latter is the topic
of Section 3.4.1.

(a) Input video sequence
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(b) Face Motion Manifold (c) Clusters

Fig. 2. A typical input video sequence of random head motion performed by the user (a) and the corresponding face motion manifold (b). Shown is the projection of affine-
registered data (see Section 3.1) to the first three linear principal components. Note that while highly nonlinear, the manifold is continuous and smooth. Different poses are
marked in different styles (red stars, blue dots and green squares). Examples of faces from the three clusters can be seen in (b) (also affine-registered and cropped). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(a) Original (b) Detections (c) Cropped (d) Registered

Fig. 3. Feature-based face localization and registration: (a) original input frame (resolution 320 " 240 pixels), (b) superimposed detections of the two pupils and nostrils (as
white circles), (c) cropped face regions with background clutter removed, and (d) the final affine registered and cropped image of the face (30 " 30 pixels).
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3.2.1. Defining pose clusters
Inspection of manifolds of registered faces in random motion

around the fronto-parallel face shows that they are dominated by
the first nonlinear principal component. This principal component
corresponds to lateral head rotation, i.e. changes in the face yaw,
see Fig. 2a and b. The reason for this lies in the greater smoothness
of the the face surface in the vertical than in the horizontal direc-
tion—pitch changes (‘‘nodding”) are largely compensated for by
using the affine registration described in Section 3.1. This is not
the case with significant yaw changes, when self-occlusion occurs.

Therefore, the centres of Gaussian clusters used to linearize an
appearance manifold correspond to different yaw angle values. In
this work we describe manifolds using three Gaussian clusters, cor-
responding to the frontal face orientation, face left and face right,
see Fig. 2a–c. The choice of the number of clusters was determined
by fitting a Gaussian Mixture Model to a small number of training
sequences, manually selected to ensure that each contains the full
range of head motion modelled, and examining the optimal num-
ber of components as determined using the Minimum Description
Length criterion. This procedure is very much like in [9].

3.2.2. Finding pose clusters
As the extent of lateral rotation, as well as the number of frames

corresponding to each cluster, can vary between video sequences, a
generic clustering algorithm, such as the k-means algorithm, is
unsuitable for finding the three Gaussians.

With prior knowledge of the semantics of clusters, we decide on
a single face image membership on a frame-by-frame basis. We
show that this can be done in a very simple and rapid manner from
already detected locations of the four characteristic facial features:
the pupils and nostrils, see Section 3.1.

The proposed method relies on motion parallax based on inher-
ent properties of the shape of faces. Consider the anatomy of a hu-
man head shown in profile view in Fig. 4a. It can be seen that the
nostrils are further away than the pupils from the vertical axis de-
fined by the neck. Hence, assuming no head roll takes place, as the
head rotates laterally, nostrils travel a longer projected path in the
image. In other words, the midpoint between the nostrils in the
image drifts relative to the midpoint of the pupils in the direction
of head rotation. Using this observation, we define the quantity g
as follows:

g ¼ xce $ xcn ð1Þ

where xce and xcn are the mid-points between, respectively, the eyes
and the nostrils:

xce ¼
xe1 þ xe2

2
xcn ¼

xn1 þ xn2
2

: ð2Þ

It can now be understood that g approximates the discrepancy be-
tween distances travelled by the mid-points between the eyes and
nostrils, measured from the frontal face orientation. Finally, we nor-
malize g by dividing it by the distance between the eyes, to obtain
ĝ, a scale-invariant parallax measure:

ĝ ¼ g
kxe1 $ xe2k

¼ xce $ xcn
kxe1 $ xe2k

ð3Þ

3.2.3. Learning the parallax model
In our method, discrete poses used for linearizing appearance

manifolds are automatically learnt from a small training corpus
of video sequences of faces in random motion. To learn the model,
we took 20 sequences of 100 frames each, acquired at 10 fps, and
computed the value of ĝ for each registered face. We then applied
the k-means clustering algorithm [32] on the obtained set of paral-
lax measure values and fitted a 1D Gaussian to each, see Fig. 4b.

To apply the learnt model, a frame in our method is classified to
the maximal likelihood pose. In other words, when a novel face is
to be classified to one of the three pose clusters (i.e. head poses),
we evaluate pose likelihood given each of the learnt distributions
and classify it to the one giving the highest probability of the
observation. Fig. 5 shows the proportions of faces belonging to
each pose cluster.

3.3. Illumination-invariant recognition

Illumination variation of face patterns is extremely complex
due to varying surface reflectance properties, face shape, and type
and distance of lighting sources. Hence, in such a general setup,
this is a difficult problem to approach in a purely discriminative
fashion.

Our method for compensating for illumination changes is based
on the observation that on a coarse level most of the variation can
be described by the dominant light direction e.g. ‘strong light from
the left’. Such variations are addressed much more easily. We will
also demonstrate that it is the case that once normalized at this,
coarse level, the learning of residual illumination changes is signif-
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Fig. 4. (a) A schematic illustration of the motion parallax used for coarse pose clustering of input faces (the diagram is based on a figure taken from [33]). (b) The distributions
of the scale-normalized parallax measure ĝ defined in (3) for the three pose clusters on the offline training data set. Good separation is demonstrated.

116 O. Arandjelović, R. Cipolla / Computer Vision and Image Understanding 113 (2009) 113–125



icantly simplified as well. This motivates the two-stage, per-pose
illumination normalization employed in the proposed method:

(1) Coarse level: Region-based gamma intensity correction (GIC),
followed by
(2) Fine level: Illumination subspace normalization.

The algorithm is summarized in Fig. 6 while its details are ex-
plained in the sections that follow.

3.3.1. Gamma intensity correction
Gamma Intensity Correction (GIC) is a well-known image inten-

sity histogram transformation technique that is used to compen-
sate for global brightness changes [34]. It transforms pixel values
(normalized to lie in the range [0.0,1.0]) by exponentiation so as
to best match a canonically illuminated image. This form of the
operator is motivated by non-linear exposure-image intensity re-
sponse of the photographic film that it approximates well over a
wide range of exposure. Formally, given an image I and a canoni-
cally illuminated image IC, the gamma intensity corrected image
I* is defined as follows:

I(ðx; yÞ ¼ Iðx; yÞc
(
; ð4Þ

where c* is the optimal gamma value and is computed using

c( ¼ argmin
c

kIc $ ICk ð5Þ

¼ argmin
c

X

x;y

½Iðx; yÞc $ ICðx; yÞ*2: ð6Þ

This is a nonlinear optimization problem in 1D. In our implementa-
tion of the proposed method it is solved using the Golden Section
search with parabolic interpolation, see [35] for details.

3.3.2. Region-based gamma intensity correction
Gamma intensity correction can be used across a wide range of

types of input to correct for global brightness changes. However, in
the case of objects with a highly variable surface normal, such as
faces, it is unable to correct for the effects of side lighting. This is
recognized as one of the most difficult problems in AFR [16].
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Fig. 5. Histograms of the number of correctly registered faces using four point
correspondences between detected facial features (pupils and nostrils) for each of
the three discrete poses and in total for each sequence.

Fig. 6. Illumination compensation overview: coarse appearance changes due to illumination variation are normalized using region-based gamma intensity correction, while
the residual variation is modelled using a linear, pose-specific illumination subspace, learnt offline. Local manifold shape is employed as a constraint in the second, ‘fine’ stage
of normalization in the form of the Mahalanobis distance for the computation of the optimal additive illumination subspace component.
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Region-based GIC proposes to overcome this problem by divid-
ing the image (and hence implicitly the imaged object/face as well)
into regions corresponding to surfaces with a near-constant sur-
face normal. Regular gamma intensity correction is then applied
to each region separately, see Fig. 7.

An undesirable result of this method is that it tends to produce
artificial intensity discontinuities at region boundaries [36]. This
occurs due to discontinuities in the computed gamma values be-
tween neighbouring regions. We propose to first Gaussian-blur
the obtained gamma value map image C*:

C(
S ¼ C( ( Gr¼2; ð7Þ

before applying it to an input image to give the final, region-based
gamma corrected output I(S:

8x; y:I(Sðx; yÞ ¼ Iðx; yÞC
(
Sðx;yÞ ð8Þ

This method almost entirely remedies the problem with boundary
artefacts, as illustrated in Fig. 7. Note that because smoothing is per-
formed on the gamma map, not the processed image, the artefacts
are removed without any loss of discriminative, high frequency de-
tail, see Fig. 8.

3.3.3. Pose-specific illumination subspace normalization
After region-based GIC is applied to all images, it is assumed

that the lighting variation for each of the pose clusters can be mod-
elled using a linear, pose-specific illumination subspace. Given a ref-
erence and a novel cluster corresponding to the same pose, each
frame of the novel cluster is normalized for the illumination
change. This is done by adding a vector from the pose illumination
subspace to the frame so that its distance from the reference clus-
ter’s centre is minimized.

3.3.4. Learning the model
We define a pose-specific illumination subspace to be a linear

manifold that explains intra-personal appearance variations due

to illumination changes across a narrow range of poses. In other
words, this is the principal subspace of the within-class scatter.

Formalizing the definition above, given that xk
i;j is the k-th of

Nf(i,j) frames of person i under the illumination j (out of Nl(i)),
the within-class scatter matrix is:

SB ¼
XNp

i¼1

XNlðiÞ

j¼1

XNf ði;jÞ

k¼1

ðxk
i;j $ !xiÞðxk

i;j $ !xiÞT; ð9Þ

where Np is the total number of training individuals and !xi is the
mean face of the person in the range of considered poses:

!xi ¼
PNlðiÞ

j¼1

PNf ði;jÞ
k¼1 xk

i;jP
jNf ði; jÞ

: ð10Þ

The pose-specific illumination subspace basis BI is then computed
by eigen decomposition of SB as the principal subspace explaining
90% of data energy variation.

For offline learning of illumination subspaces we used 10 s vi-
deo sequences of 20 individuals, each in five illumination condi-
tions, acquired at 10 fps. The first few basis vectors learnt in the
described manner are shown as images in Fig. 9.

(a)Mean‘left’face (b) Original (c) GIC output (d) Smooth output
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Fig. 7. Coarse illumination normalization: canonical illumination image and the regions used in region-based GIC (a), original unprocessed face image (b), region-based GIC
corrected image without smoothing (c), region-based GIC corrected image with smoothing (d), original gamma value map (e) and smoothed gamma value map (f). Notice
artefacts at region boundaries in the gamma corrected image (c). The output of the proposed smooth region-based GIC in (d) does not have the same problem. Finally, note
that the coarse effects of the strong side lighting in (b) have been greatly removed.

Fig. 8. (a) Seamless output of the proposed smooth region-based GIC. Boundary
artefacts are removed without blurring of the image. Contrast this with the output
of the original region-based GIC, after Gaussian smoothing of the output (b). Image
quality is significantly reduced, with boundary edges still clearly visible.
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3.3.5. Employing the model
Let C1 ¼ fxð1Þ

1 ; . . . ; xð1Þ
N1
g and C2 ¼ fxð2Þ

1 . . . ; xð2Þ
N2
g be two corre-

sponding pose clusters of different appearance manifolds, previ-
ously preprocessed using the region-based gamma correction
algorithm described in Section 3.3.1. Cluster C1 is then illumina-
tion-normalized with respect to C2 (we will therefore refer to C2

as the reference cluster), under the null assumption that the identi-
ties of the two people they represent are the same. The normaliza-
tion is performed on a frame-by-frame basis, by adding a vector
BIa(

i from the estimated pose-specific illumination subspace:

8i:x̂ð1Þ
i ¼ BIa(

i þ xð1Þ
i ð11Þ

where we define a(
i as:

a(
i ¼ argmin

ai
kBIai þ xð1Þ

i $ hC2ik; ð12Þ

and |+ + +| is a vector norm and hC2i the mean face of cluster C2. We
then define cluster C1 normalized to C2 to be Ĉ1 ¼ fx̂ð1Þ

1 . . . x̂ð1Þ
N1
g. This

form is directly motivated by the definition of a pose-specific
subspace.

To understand the next step, which is the choice of the vector
norm in (12), it is important to notice in the definition of the
pose-specific illumination subspace, that the basis BI explains not
only appearance variations caused by illumination: reflectance
properties of faces used in training (e.g. their albedos), as well as
subjects’ pose changes also affect it. This is especially the case as
we do not make the common assumption that surfaces of faces
are Lambertian, or that light sources are point lights at infinity.

The significance of this observation is that the subspace of a
dimensionality sufficiently high to explain the modelled phenom-
enon (illumination changes) will, undesirably, also be able to ex-
plain ‘distracting’ phenomena, such as differing identity. The
problem is therefore that of constraining the region of interest in
the subspace to that which is most likely to be due to illumination
changes for a particular individual. For this purpose we propose to

exploit the local structure of appearance manifolds, which are
smooth. We do this by employing the Mahalanobis distance (using
the probability density corresponding to the reference cluster)
when computing the illumination subspace correction for each no-
vel frame using (12). Formally:

a(
i ¼ argmin

ai
ðBIai þ xð1Þ

i $ hC2iÞTB2K
$1
2 BT

2ðBIai þ xð1Þ
i $ hC2iÞ; ð13Þ

where B2 and K2 are, respectively, reference cluster’s orthonormal
basis and the diagonalized covariance matrix. We found that the
use of the Mahalanobis distance, as opposed to the usual Euclidean
distance, achieved better explanation of novel images when the
person’s identity was the same, and worse when it was different,
achieving better inter-to-intra class separation.

This quadratic minimization problem is solved by differentia-
tion and the minimum is achieved for:

a(
i ¼ BT

I B2K
$1
2 BT

2BI

! "$1
BT
I B2K

$1
2 BT

2 hC2i$ xð Þ ð14Þ

Examples of registered and cropped face images before and after
illumination normalization can be seen in Fig. 10a.

3.3.6. Practical considerations
The computation of the optimal value a* using (14) involves

inversion and Principal Component Analysis (PCA) on matrices of
size D " D, where D is the number of pixels in a face image (in
our case equal to 900, see Section 3.1). Both of these operations
put high demands on computer resources. To reduce the computa-
tional overhead, we exploit the assumption that the data modelled
is of much lower dimensionality than D.

Formalizing the model of low-dimensional face manifolds, we
assume that an image y of subject i’s face is drawn from the prob-
ability density pðiÞ

F ðyÞ within the face space, and embedded in the
image space by means of a mapping function f ðiÞ : Rd ! RD. The
resulting point in the D-dimensional space is further perturbed
by noise drawn from a noise distribution pn (note that the noise
operates in the image space) to form the observed image x. There-
fore the distribution of the observed face images of the subject i is
given by the integral:

pðiÞðxÞ ¼
Z

pðiÞ
F ðyÞpnðfiðyÞ $ xÞdy ð15Þ

This model is then used in two stages:

(1) Pose-specific PCA dimensionality reduction.
(2) Exact computation of the linear principal subspace and rapid
estimation of the complementary subspace of a pose cluster.

Specifically, we first perform a linear projection of all images in
a specific pose cluster to a pose-specific face subspace that explains
95% of data variation in a specific pose. This achieves data dimen-
sionality reduction from 900 to 250.

Referring back to (15), to additionally speed up the process, we
estimate the intrinsic dimensionality of face manifolds (defined as
explaining 95% of within-cluster data variability) and assume that
all other variation is due to isotropic Gaussian noise pn. Hence, we
can write the basis of the PCA subspace corresponding to the refer-
ence cluster as consisting of principal and complementary sub-
spaces [37] represented by orthonormal basis matrices,
respectively VP and VC:

B2 ¼ ½VPVC * ð16Þ

where VP 2 R250"6 and VC 2 R250"244. The principal subspace and the
associated eigenvectors v1, . . . ,v6 are rapidly computed, e.g. using
[38]. The isotropic noise covariance and the complementary sub-
space basis are then estimated in the following manner:

(a) Frontal

(b) Left

0 50 100 150 200
0

5

10

15

Eigenvalue index

En
er

gy
 (%

)

Frontal head pose
Left head pose

(c) Eigenvalues

Fig. 9. Shown as images are the first 5 bases of pose-specific illumination subspaces
for the (a) frontal and (b) left head orientations. The distribution of energy for pose-
specific illumination variation across principal directions is shown in (c).
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kn ¼ x
X6

i¼1

ki VC ¼ nullðVPÞ ð17Þ

where the nullspace of the principal subspace is computed using
QR-decomposition [35], while the value of x is estimated from a
small training corpus; we obtained x ,2.2e$4. The diagonalized
covariance matrix is then simply:

K2 ¼ diagðk1; . . . ; k6; kn; . . . ; kn
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{244

Þ ð18Þ

3.4. Comparing normalized pose clusters

Having illuminationnormalizedone face cluster tomatchanother,
we want to compute a similarity measure between them, a distance,
expressing our degree of belief that they belong to the same person.

At this point it is instructive to examine the effects of the de-
scribed method for illumination normalization on the face pat-
terns. Two clusters before and after one has been normalized, are
shown in Fig. 10b and c. An interesting artefact can be observed:
the spread of the normalized cluster is significantly reduced. This
is easily understood by referring back to (11) and (12) and noticing
that the normalization is performed frame-by-frame, trying to
make each normalized face as close as possible to the reference
cluster’s mean, i.e. a single point. For this reason, dissimilarity mea-
sures between probability densities common in the literature, such
as the Bhattacharyya distance, the Kullback-Leibler divergence
[9,10] or the Resistor-Average distance [39], are not suitable
choices. Instead, we propose to use the simple Euclidean distance
between normalized cluster centres:

DðC1;C2Þ ¼
PN1

i¼1x̂
ð1Þ
i

N1
$
PN2

j¼1x
ð2Þ
j

N2
: ð19Þ

3.4.1. Inter-manifold distance
The last stage in the proposed method is the computation of an

inter-manifold distance, or an inter-manifold dissimilarity mea-
sure, based on the distances between corresponding pose clusters.
There are two main challenges in this problem: (i) depending on
the poses assumed by the subjects, one or more clusters, and hence
the corresponding distances, may be void; (ii) different poses are
not equally important, or discriminative, in terms of face recogni-
tion [40].

Writing d for the vector containing the three pose cluster dis-
tances, we want to classify a novel appearance manifold to the gal-
lery class giving the highest probability of corresponding to it in
identity, P(s—d). Then, using Bayes’ theorem:

PðsjdÞ ¼ pðdjsÞPðsÞ
pðdÞ

¼ pðdjsÞPðsÞ
pðdjsÞPðsÞ þ pðdj:sÞPð:sÞ

ð20Þ

¼ 1
1þ pðdj:sÞPð:sÞ=pðdjsÞPðsÞ ð21Þ

Assuming that the ratio of same-identity to differing-identities pri-
ors Pð:sÞ=PðsÞ is constant across individuals, it is clear that classify-
ing to the class with the highest P(sjd) is equivalent to classifying to
the class with the highest likelihood ratio:

lðdÞ ¼ pðdjsÞ
pðdj:sÞ

ð22Þ

(a) Illumination normalization
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Fig. 10. In (a) are respectively, top to bottom, shown the original registered and cropped face images from an input video sequence, the same faces after the proposed
illumination normalization and a sample from the reference video sequence. The effects of strong side lighting have been greatly removed, while at the same time a high level
of detail is retained. The corresponding data from the two sequences, before and after illumination compensation are shown under (b) and (c). Shown are their projections to
the first two principal components. Notice that initially the clusters were completely non-overlapping. Illumination normalization has adjusted the location of the centre of
the blue cluster, but has also affected its spread. After normalization, while overlapping, the two sets of patterns are still distributed quite differently. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this paper.)
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3.4.2. Learning pose likelihood ratios
Writing d = [D1,D2,D3]T, we assume statistical independence be-

tween pose cluster distances:

pðdjsÞ ¼
Y3

i¼1

pðDijsÞ pðdj:sÞ ¼
Y3

i¼1

pðDij:sÞ ð23Þ

We propose to learn likelihood ratios lðDiÞ ¼ pðdjsÞ=pðdj:sÞ offline,
from a small data corpus labelled by the identity, in two stages.
First, (i) we obtain a Parzen window estimate of intra- and inter-
personal pose distances by comparing all pairs of training appear-
ance manifolds; then (ii) we refine the estimates using a Radial
Basis Functions (RBF) artificial neural network trained for each pose.

A Parzenwindow-based [32] estimate ofl(D) for the frontal head
orientation, obtained by directly comparing appearance manifolds
as described in Sections 3.1–3.4 is shown in Fig. 11a. In the proposed
method, this, and the similar likelihood ratio estimates for the other
two head poses are not used directly for recognition as they suffer
from an important limitation: the estimates are ill-defined in do-
main regions sparsely populated with training data. Specifically,
an artefact caused by this problem can be observed by noting that
the likelihood ratios are not monotonically decreasing. What this
means is thatmore distantpose clusters can result in a higher chance
of classifying two sequences as originating from the same individual.

To overcome the problem of insufficient training data, we train
a two-layer RBF-based neural network for each of the discrete
poses used in approximating face motion manifolds, see Fig. 11c.
In its basic form, this means that the estimate l̂ðDiÞ is given by
the following expression:

l̂ðDiÞ ¼
X

j

ajGðDi; lj;rjÞ ð24Þ

where

GðDi;lj;rjÞ ¼
1

r
ffiffiffiffiffiffiffi
2p

p exp$
ðDi $ ljÞ

2

2r2 ð25Þ

In the proposed method, this is modified so as to enforce prior
knowledge on the functional form of l(Di) in the form of its
monotonicity:

l̂(ðDiÞ ¼ max
d>Di

X

j

ajGðDi;lj;rjÞ; l̂ðdÞ
( )

ð26Þ

Finally, to ensure that the networks are trained using reliable data
(in the context of training sample density in the training domain),
we use only local peaks of Parzen window-based estimates. Results
using a network with six second-layer neurons, each with the
spread of rj = 60, see (26), are summarized in Figs. 11 and 12.

4. Experimental evaluation

Methods in this paper were evaluated on a database of video se-
quences kindly provided to us by Toshiba Corporation (from here
on referred to as FaceDB60). This database contains 60 individuals
of varying age, mostly male and Japanese, and 10 sequences per
person. Each sequence corresponds to a different illumination set-
ting, acquired for 10 s at 10 fps and 320 " 240 pixel resolution
(face size ,60–120 pixels), see Fig. 13. Typical variations in pose
and expression within a single sequence are illustrated in Fig. 14,
while Fig. 15 shows different illumination conditions both within
and across different sequences.2

To establish baseline performance, we compared our recogni-
tion algorithm to:

- Kernel Principal Angles (KPA) of Wolf and Shashua [12].3

- Mutual Subspace Method (MSM) of Fukui and Yamaguchi [11],
used in a state-of-the-art commercial system FacePass" [41].

- KL divergence-based algorithm of Shakhnarovich et al. (KLD) [10].
- Majority vote across all pairs of frames using Eigenfaces (MVE) of

Turk and Pentland [42].

In the KL divergence-based method we used principal subspac-
es that explain 85% of data variation energy. In MSM we set the
dimensionality of linear subspaces to nine and used the first three
principal angles for recognition, as suggested by the authors in
[11]. For the Eigenfaces method, the 22-dimensional eigenspace
used explained 90% of total training data energy. The methods
were evaluated using three face representations:

- raw appearance images X,
- Gaussian high-pass filtered images—used for face recognition in

[17,43]:

XH ¼ X$ ðX ( Gr¼1:5Þ; ð27Þ

- local intensity-normalized high-pass filtered images—similar to
the Self Quotient Image [44] (also see [45]):

XQ ¼ XH:=ðX$ XHÞ ð28Þ

the division being element-wise.

Offline training, i.e. learning of the pose-specific illumination
subspaces and likelihood ratios, was performed using 20 randomly
chosen individuals in five illumination settings, for a total of 100
sequences. These were used for neither gallery data nor test input
for the evaluation reported in this section.

Recognition performance of the proposed system was assessed
by training it with the remaining 40 individuals in a single illumi-
nation setting, and using the rest of the data as test input. In all
tests, both training data for each person in the gallery, as well as
test data, consisted of only a single sequence.

4.1. Results

The performance of the proposed method is summarized in Ta-
ble 1. We tabulated the recognition rates achieved across different
combinations of illuminations used for training and test input, so
as to illustrate its degree of sensitivity to the particular choice of
data acquisition conditions. An average rate of 95.2% was achieved,
with a mean standard deviation of only 4.7%. Therefore, we con-
clude that the proposed method is successful in recognition across
illumination, pose and motion pattern variation, with high robust-
ness to the exact imaging setup used to provide a set of gallery
videos.

This conclusion is further corroborated by Fig. 16a, which shows
cumulative distributions of inter- and intra-personal manifold dis-
tances (see Section 3.4.1) and Fig. 16b which plots the Receiver-
Operator Characteristic of the proposed algorithm. Good class sep-
aration can be seen in both, illustrating the suitability of our meth-
od for verification (one-against-one matching) applications: less
than 0.5% false positive rate is attained for 91.2% true positive rate.
Additionally, it is important to note that good separation is main-
tained across a wide range of distances, as can be seen in Fig. 16a
from low gradients of inter- and intra-class distributions (e.g. on
the interval between 1.0 and 15.0). This is significant as it implies
that the interclass threshold choice is not very numerically sensi-
tive: by choosing a threshold in the middle of this range, we can

2 Also see urlhttp://mi.eng.cam.ac.uk/oa214/ for more information on this database
and examples of video sequences. 3 We used the original authors’ implementation.
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expect the recognition performance to generalize well to different
data sets.

4.1.1. Pose clusters
One of the main premises that this work rests on is the idea that

illumination and pose robustness in recognition can be achieved by
decomposing an appearance manifold into a set of pose ranges (see
Section 3.2.1) which are, after being processed independently,
probabilistically combined (see Section 3.4.1). We investigated
the discriminating power of each of the three pose clusters used
in the proposed context by performing recognition using the in-
ter-cluster distance defined in Section 3.4. Table 2 show a sum-
mary of the results. High recognition rates were achieved even
using only a single pose cluster. Furthermore, the proposed meth-
od for integrating cluster distance into a single inter-manifold dis-
tance can be seen to improve the average performance of the most
discriminative pose. In the described recognition framework, side
poses contributed more discriminative information to the distance
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Fig. 11. Likelihood ratio corresponding to the frontal head pose obtained from the training corpus using Parzen windows (a) and the RBF network-based likelihood ratio (b).
The corresponding RBF network architecture is shown in (c). Note that the initial estimate (a) is not monotonically decreasing, while (b) is.
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Fig. 12. Joint RBF network-based likelihood ratio for the frontal and left head
orientations.
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Fig. 13. Detected faces: Histograms of (a) the number of detected faces across sequences in the entire database FaceDB60 (10 sequences for each of the 60 individuals in the
database) and (b) the detected face sizes (assumed square).
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than the frontal pose (in spite of a lower average number of side
faces per sequence, see Fig. 5 in Section 3.1), as witnessed by both
a higher average recognition accuracy and lower standard devia-
tion of recognition. It is interesting to observe that this is in agree-
ment with the finding that appearance in a roughly semi-profile
head pose is inherently most discriminative for AFR [40].

4.1.2. Other algorithms
The result of the comparison with the other evaluated meth-

ods is shown in Table 3. The proposed algorithm outperformed
others by a significant margin when raw data was used. Kernel
Principal Angles, majority vote using Eigenfaces and the KL diver-
gence algorithm performed with statistically insignificant differ-
ence, while MSM showed least robustness to the extreme
changes in illumination conditions. It is interesting to note that
all three algorithms achieved perfect recognition when training
and test sequences were acquired in same illumination condi-
tions. Thus, the observed performance improvement with both
the high-pass and even further Self Quotient Image representa-
tions is unsurprising. This also highlights the need for an explicit
illumination model, even if ample motion data is available. Fur-
thermore, the consistently superior performance of the KPA in
comparison to the MVE, KLD and MSM, as well as the overall best
performance of the proposed algorithm, supports another aspect
of our work which concerns the amodelling of pose-affected non-
linearities in face manifolds. Overall, our combination of illumina-
tion and pose models outperformed the best competing method/

Illumination 01:

Illumination 02:

Illumination 03:

Illumination 04:

Illumination 05:

Illumination 06:

Illumination 07:

Illumination 08:

Illumination 09:

Illumination 10:

Fig. 15. Registered and automatically cropped faces (30 " 30 pixels) from typical sequences used for the comparison of recognition methods in this paper. All frames are of
the same person, in frontal pose, each row corresponding to one of 10 different illumination conditions used for the evaluation. Cast shadows and specularities are common.
Notice extreme illumination changes both between and within sequences.

Fig. 14. Input data: Frames from a typical input video sequence used for evaluation of methods in this paper. Notice the presence of cast shadows and overall extreme imaging
conditions: pose, illumination and even occlusion, in the form of facial wear (glasses) and hands. The size of the face area is also greatly variable.

Table 1
Recognition performance (%) of the proposed method using different illuminations for
training and test input

IL. 1 IL. 2 IL. 3 IL. 4 IL. 5 Mean std

IL. 1 100 90 95 95 90 94 4.2
IL. 2 95 95 95 95 90 94 2.2
IL. 3 95 95 100 95 100 97 2.7
IL. 4 95 90 100 100 95 96 4.2
IL. 5 100 80 100 95 100 95 8.7

Mean 97 90 98 96 95 95.2 4.5

Excellent results are demonstrated with little dependence of the recognition rate on
the data acquisition conditions.
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representation combination, with the corresponding average rec-
ognition errors of 5% and 12%.

4.1.3. Failure modes
Finally, we investigated the main failure modes of our algo-

rithm. An inspection of failed recognitions suggests that the largest
difficulty was caused by significant user motion to and from the
camera. During the data acquisition, for some of the illumination
conditions the dominant light sources were relatively close to
the user (from ,0.5 m). This invalidated the implicit assumption
that illumination conditions were unchanging within a single vi-
deo sequence i.e. that the main cause of appearance changes in
images was head rotation. Some examples of very differently illu-
minated faces within a single sequence can be seen in Fig. 15.

Another limitation of the method was observed in cases when
only few faces were clustered to a particular pose, either because
of facial feature detection failure or because the user did not spend
enough time in a certain range of head poses. The noisy estimate of
the corresponding cluster density in (16) propagated the estima-

tion error to illumination normalized images and finally to the
overall manifold distance, reducing separation between classes.

5. Summary and conclusions

In this paper we introduced a novel algorithm for face recogni-
tion from video, robust to changes in illumination, pose and the
motion pattern of the user. This was achieved by combining per-
son-specific face motion appearance manifolds with generic
pose-specific illumination manifolds, which were assumed to be
linear. Integrated into a fully automatic practical system, the meth-
od has demonstrated a high degree of robustness in realistic and
uncontrolled data acquisition conditions—specifically to changes
in illumination, pose and the motion pattern of the user. We de-
scribed an extensive empirical evaluation and a comparison with
state-of-the-art algorithms in the literature. On average the system
correctly recognized in 95% of the cases, exhibiting little sensitivity
to the imagining conditions used for data acquisition and consis-
tently outperforming other methods.

We intend to investigate several improvements to the method.
Firstly, by employing a more sophisticated reflectance model, we
hope to implicitly model nonlinearities in the pose-specific illumi-
nation subspaces. Another possible improvement we are consider-
ing is the use of quasi illumination-invariant image filters for
precise pose matching between faces from two manifolds.
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[9] O. Arandjelović, G. Shakhnarovich, J. Fisher, R. Cipolla, T. Darrell, Face
recognition with image sets using manifold density divergence, in: Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, 2005,
581–588.

100 101 102 103 104 105
0

0.2

0.4

0.6

0.8

1

Distance

Tr
ue

 p
os

iti
ve

 ra
te

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

X: 0.004474
Y: 0.9125

Fig. 16. Cumulative distributions of intra-personal (dashed line) and inter-personal (solid line) distances (a). Good separability is demonstrated. The corresponding ROC curve
can be seen in (b)—less than 0.5% of false positive rate is attained for 91% true positive rate. The corresponding distance threshold choice is numerically well-conditioned, as
witnessed by close-to-zero derivatives of the plots in (a) at the corresponding point.

Table 2
A comparison of identification statistics for recognition using each of the pose-specific
cluster distances separately and the proposed method for combining them using an
RBF-based neural network

Measure Manifold distance Front clusters distance Side clusters distance

Mean 95 90 93
std 4.7 5.7 3.6

In addition to the expected performance improvement when using all over only
some poses, it is interesting to note different contributions of side and frontal pose
clusters, the former being more discriminative in the context of the proposed
method.

Table 3
Average recognition rates (%) of the compared methods across different illumination
conditions used for training and test

Representation Measure Proposed KPA MVE KLD MSM

X Mean 95 49 43 39 24
std 4.7 25.0 31.9 32.5 38.9

XH mean — 61 43 48 53
std — 18.9 31.9 21.1 19.1

XQ mean — 88 43 57 79
std — 11.2 31.9 19.5 12.7

The performance of the proposed method is by far the best, both in terms of the
average recognition rate and its variance.
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[13] T. Kim, O. Arandjelović, R. Cipolla, Learning over sets using boosted manifold
principal angles (BoMPA), in: Proc. IAPR British Machine Vision Conference
(BMVC), vol. 2, September 2005, pp. 779–788.

[14] Y. Li, S. Gong, H. Liddell, Modelling faces dynamically across views and over
time, in: Proc. IEEE International Conference on Computer Vision (ICCV), vol. 1,
2001, pp. 554–559.

[15] S. Palanivel, B.S. Venkatesh, B. Yegnanarayana, Real time face recognition
system using autoassociative neural network models, Acoustics, Speech and
Signal Processing 2 (2003) 833–836.

[16] Y. Adini, Y. Moses, S. Ullman, Face recognition: the problem of compensating
for changes in illumination direction, IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI) 19 (7) (1997) 721–732.
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