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Abstract—We present an algorithm and the associated single-view capture methodology to acquire the detailed 3D shape, bends, and

wrinkles of deforming surfaces. Moving 3D data has been difficult to obtain by methods that rely on known surface features, structured

light, or silhouettes. Multispectral photometric stereo is an attractive alternative because it can recover a dense normal field from an

untextured surface. We show how to capture such data, which in turn allows us to demonstrate the strengths and limitations of our

simple frame-to-frame registration over time. Experiments were performed on monocular video sequences of untextured cloth and

faces with and without white makeup. Subjects were filmed under spatially separated red, green, and blue lights. Our first finding is that

the color photometric stereo setup is able to produce smoothly varying per-frame reconstructions with high detail. Second, when these

3D reconstructions are augmented with 2D tracking results, one can register both the surfaces and relax the homogenous-color

restriction of the single-hue subject. Quantitative and qualitative experiments explore both the practicality and limitations of this simple

multispectral capture system.

Index Terms—Photometric stereo, multispectral, single view, video normals.

Ç

1 INTRODUCTION

THE modeling of dynamic cloth geometry is increasingly
based on computer vision techniques [1], [2], [3], [4], [5].

Both cloth and faces entail complex underlying dynamics
that motivate capturing motion data from the real world
whenever possible.

Existing algorithms one might employ for capturing
detailed 3D models of moving cloth or skin include
multiple view stereo [6], photometric stereo [7], [8], and
laser-based methods [9]. However, most of these techniques
require that the subject stand still during the acquisition
process, or move slowly [10]. Another substantial challenge
is that even starting from a sequence of 3D scans of the
deforming object, registration is necessary to produce a
single 3D model suitable for CG animation or further data
analysis, such as used in [11] and [12].

The technique proposed here for acquiring complex
motion data from real moving cloth and faces uses a highly
practical setup that consists of an ordinary video camera
and three colored light sources (see Fig. 1). The key
observation is that in an environment where red, green,

and blue light is emitted from different directions, a
Lambertian surface will reflect each of those colors
simultaneously without any mixing of the frequencies. The
quantities of red, green, and blue light reflected are a linear
function of the surface normal direction. A color camera can
measure these quantities, from which an estimate of the
surface normal direction can be obtained. By applying this
technique to a video sequence of a deforming object, one can
obtain a sequence of normal maps for that object which, in
turn, allows us to make the following contributions:

1. A simple acquisition setup for acquiring high detail,
per-frame reconstructions.

2. A simple calibration procedure that extends this
technique to human faces.

3. A simple registration approach for real deforming
surfaces with folds and creases, based on optical-flow.

4. An algorithm for detecting self-shadows.
5. An application of our method for “dressing” a

virtual character with real moving cloth.

Here, we apply our newest work for relaxing the need for
gray materials [13] to extend our previous work [14] with
1) a new self-shadow detection algorithm, 2) experiments on
a rigid object for quantitative comparisons, and 3) qualita-
tive experiments to show the problems with registration and
of using non-Lambertian surfaces. Video and calibration
data from our experiments is provided online.1

2 RELATED WORK

The animation and capture of cloth and face deformations is
approached from various perspectives, and we review the
most relevant ones with regard to the proposed technique.

2.1 Texture Cues

White and Forsyth [4], [5] and Scholz et al. [3] have
presented work on using texture cues to perform the specific
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task of cloth capture. Their methods are based on printing a
special pattern on a piece of cloth and capturing video
sequences of that cloth in motion, usually with multiple
cameras. The estimation of the cloth geometry is based on
the observed deformations of the known pattern as well as
texture cues extracted from the video sequence. The
techniques produce results of good quality but are ulti-
mately limited by the requirement of printing a special
pattern on the cloth, which may not be practical for a variety
of situations. In the present work, we avoid this requirement
while producing detailed results.

Pilet et al. [1] and Salzmann et al. [2] proposed a slightly
more flexible approach where one uses the pattern already
printed in a piece of cloth by presenting it to the system in a
flattened state. Pritchard and Heidrich [15] were among the
first innovators of such approaches. Using sparse feature
matching, the pattern can be detected in each frame of a
video sequence. Due to the fact that detection occurs
separately in each frame, the method is quite robust to
occlusions. However, the presented results dealt only with
minor nonrigid deformations.

2.2 Photometric Stereo

Photometric stereo [16] is one of the most successful
techniques for surface reconstruction from images. It works
by observing how changing illumination alters the image
intensity of points throughout the object surface. These
changes reveal the local surface orientations. This field of
local surface orientations can then be integrated into a 3D
shape. State-of-the-art photometric-stereo allows uncali-
brated light estimation [17], [8] and can cope with unknown
albedos [18], [19]. The main difficulty with applying
photometric stereo to deforming objects lies in the require-
ment of changing the light source direction for each
captured frame while the object remains still. This is quite
impractical when reconstructing the 3D geometry of a
moving object, though Ma et al. [20] have built an impressive
dome that uses structured and polarized multiplexed
lighting to capture human faces. Still constrained by
multiplexing, Vlasic et al. [21] demonstrated a multiview
system with eight 240 Hz cameras and 1,200 individually
controllable light sources to capture geometry similar to our
own. We show how multispectral lighting allows one to
essentially capture three images (each with a different light
direction) in a single snapshot, thus making per-frame
photometric reconstruction possible and very accessible.

To really explore the limitations of our system, we also
capture highly deforming human faces. The newest works

by Ma et al. [22] and Wilson et al. [23] are among the highest
quality face capture systems, in part because they build
precise stages to capture both photometric stereo and
precise depth. Ma et al. [22] is close to the ideal situation
in all three ways, where photometric stereo captures
detailed normals, projected structured light patterns cap-
ture accurate depth, and feature-tracking with extra
cameras provides excellent landmarks for registration over
time. They show how marker-based tracking can yield
almost as high a quality facial animation, thanks to training
a model in the heavily instrumented studio. Since heavy
multiplexing was keeping them at a maximum of 30 fps,
Wilson et al. [23] used high quality stereo cameras without
the structured light to compute good depths, and added a
new flow-based tracking to compensate for interframe
motion. It could be interesting to extend our approach to
use high quality stereo cameras in the future.

2.3 Colored and Structured Lights

The earliest related works are also the most relevant. The
first reference to multispectral light for photometric stereo
dates back 20 years to the work of Petrov [24]. Ten years
later, Kontsevich et al. [25] actually demonstrated an
algorithm for calibrating unknown color light sources and
at the same time computing the surface normals of an object
in the scene. They verified the theory on synthetic data and
an image of a real egg. Drew and Kontsevich [26] even
present evidence suggesting that the famous Lena photo
was made under spectrally varying illumination. Woodham
[27] also demonstrated that multispectral lighting could be
exploited to obtain at least the normals from one color
exposure. Also similar to our approach, his normals could
be computed robustly when some self-shadowing was
detected. Without using a calibration sphere made of the
same material as the subject, we take a practical approach
for calibration, and the same orientation-from-color cue, to
eventually convert video of un-textured cloth or skin into a
single dense surface with complex changing deformations.
For the simplified case of a rigid object, [28] uses this
principle to capture relief details by pressing it against an
elastomer with a known-albedo skin.

The parameters needed to simulate realistic cloth dy-
namics were estimated from video by projecting explicitly
structured horizontal light stripes onto material samples
under static and dynamic conditions [29]. This system
measured the edges and silhouette mismatches present in
real versus simulated sequences. Many researchers have
utilized structured lighting, and Gu et al. [30] even used color,
although their method is mostly for storing and manipulating
acquired surface models of shading and geometry. Weise
et al. [31] lead the structured light approach, and have some
advantages in terms of absolute 3D depth, but at the expense
of both spatial and temporal sampling, e.g., 17 Hz compared
to our 60 Hz (or faster, limited only by the camera used).
Zhang et al. [32] also presented a complete system that uses
structured light for face reconstruction.

2.4 Multiview Registration with 3D Templates

Sand et al. dispensed with special lighting but leverage
markered motion capture and automatic silhouettes to
deform a human skeleton and body template [33]. The
numerous and recent progress in cloth animation is based
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Fig. 1. Setup and calibration board. Left: A schematic representation
of our multispectral setup. Right: Attaching two boards with a printed
calibration pattern results in a planar trackable target for computing the
orientation of the pattern’s plane. The association between color and
orientation can be obtained from a cloth sample inserted in the square
hole between the boards.



on this concept of matching a specially-built 3D template
mesh to videos filmed in elaborate multicamera systems
with studio lighting (or structured lighting as in [34]).
Bradley et al. [35] opt for a simple manual step for template-
creation that then hinges on the video resolution to create
wrinkles. De Aguiar et al. [11] use a single 360 degree laser-
scan to create a very precise template, and then address the
challenge of preserving those wrinkles and folds while the
actor moves around. Vlasic et al. [12] have a very similar
process that also starts with a laser scan or with a template
made by Starck and Hilton [36]. Our technique, on the other
hand, expects no prior models of the cloth being recon-
structed. Instead, our algorithm could eventually be
extended to be a precursor stage for those systems. There
are potential benefits if they used time-varying templates
with our level of detail, instead of static ones.

2.5 Registration with and without Articulation

Registration is not the emphasis of our research, but it is an
inherent part of using our time-varying surfaces in
applications. Works in this area focus on the registration
problem itself, except [37], which couples registration with
its own capture system. Unlike ours, this approach both
requires and benefits from 1) a premade smooth template of
the body, 2) an articulated skeleton of each subject which is
used in its standard articulated-motion-capture framework,
and 3) a multicamera studio. Like most registration
techniques, including our own, any assumptions about
smoothly changing normals can ruin the high quality
normal fields that may have been recovered. This technique
winds up smoothing and interpolating normals over a
window of five frames, precluding capture of normals for
examples with flapping cloth, like our pirate shirt sequence
visible online.

The focus of [38] is on articulated or piecewise-rigid
shapes, where there are a known number of limbs and they
are presegmented for at least one depth image. For this
technique to succeed, consecutive frames must be close
enough to give classic ICP a good initialization, which can
be viewed as similar to our assumption about local flow on
Video Normals. Other registration techniques for articu-
lated shapes are fully automatic, such as [39], which
discretizes pose space and then seeks out favorite transfor-
mations that align large sections of the two point clouds. We
found the spin-images descriptor [40] to be brittle for single-
view surface scans, but [41] is able to make skeletons out of
similar data, enabling [42] to demonstrate good registration
on synthetic and man-made shapes.

Multiple techniques now attempt to register the available
point clouds (or volumetric scans [43]) in batch mode
instead of online. Mitra et al. [44] successfully register many
scans of stiff objects all at once, instead of using a sequence
of ICP steps chained together. Their extensions for deform-
able bodies assume very limited degrees of freedom, which
is not the case with our data, and they revert to optimizing
just one time slice, unlike the main 4D function. They
emphasized how errors crop up for them because of
incorrect normals and nonrigid motion, which are exactly
the problems we are addressing.

Also in the family of batch registration algorithms,
Süßmuth et al. [45] and Wand et al. [46] have shown very

nice general-purpose approaches that make few assumptions
and are mostly just limited by memory capacity. They have
even registered sequences of faces as long as 150 frames. This
is particularly hard with just points that are not parameter-
ized in a graph with edges. Süßmuth et al. [45] embed the
series of 3D point clouds in a 4D implicit function and apply
an EM-type optimization to find mesh deformations that
prefer rotation and keep close to the positions of the point-
clouds in the immediate temporal neighborhood. Their
algorithm can be seen as parallel to the registration steps of
our own, and is possibly more extendible in that their
embedding of the point clouds in an implicit function (though
costly) could theoretically be extended to allow the extracted
meshes to change topology over time. Wand et al. [46] present
an impressive optimization system for computing a single
shape and its time-varying deformation function from a
sequence of point clouds (as many as 201 frames). The point
clouds must overlap substantially to allow registration of
temporal neighbors, but holes and gaps can come and go, and
the technique eventually merges the deforming scans into a
single urshape, with better coverage than individual scans. At
the heart of the algorithm is a meshless volumetric deforma-
tion model with an energy function that allows consistent
parts of multiple point clouds to be aligned with each other.
Hierarchical processing in the time domain leads to a globally
consistent solution, which is attractive compared to our
frame-to-frame registration, except for the memory con-
straints and running times. We have our own data acquisition
process that rivals what the authors of this paper assume as
input, and we explicitly detect shadows and apply no data
culling. Our registration does accumulate error, but has a
simpler regularization that does not penalize volumetric,
velocity, or acceleration changes. So, speaking quite broadly,
ours is “fast and cheap,” while theirs is slow but good for
many of the same situations we care about. Qualitative
evaluation of the resulting videos is necessary to assess the
amount of detail retained in our respective registered models.

3 DEPTH-MAP VIDEO

In this section, we follow the notation of Kontsevic et al. [25].
For simplicity, we first focus on the case of a single distant
light source with direction l ¼ ½ l1 l2 l3 �T illuminating a
Lambertian surface point x with surface normal n. Let Sð�Þ
be the energy distribution of that light source as a function of
wavelength � and let �ð�Þ be the spectral reflectance function
representing the reflectance properties at that surface point.
We assume our camera consists of multiple sensors
(typically CCDs), sensitive to different parts of the spectrum.
If �ið�Þ is the spectral sensitivity of the ith sensor for the pixel
that receives light from x, then intensity measured at that
lone sensor is ri ¼ lTn

R
Sð�Þ�ð�Þ�ið�Þd�, or in matrix form

r ¼Mn; ð1Þ

where the ði; jÞth element of the three-column M is

mij ¼ lj
Z
Sð�Þ�ð�Þ�ið�Þd�: ð2Þ

To solve for the three unknowns of n, M must be rank 3,
meaning three or more rows of ri (i.e., sensors) are required.
Actually, even with three sensors, M would be of rank 1
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when using just one light source because the per-sensor dot
products are not linearly independent. When more light
sources are added, if the system is linear and lTn � 0 still
holds for each light, the response of each sensor is just a
sum of the responses for each light source individually, so
we retain (1) but with

M ¼
X
k

Mk; ð3Þ

where Mk describes the kth light source. Therefore, in the
absence of self-occlusions, three sensors and a minimum of
three different lights need to be present in the scene for a
pixel’s M to be invertible. If the surface is uniformly colored
(constant albedo), then the reflectance �ð�Þ and, conse-
quently, M will be fixed across all unoccluded locations.

Equation (1) establishes a one-to-one mapping between
an RGB pixel measurement from a color camera and the
surface orientation at the point projecting to that pixel. Our
strategy uses the inverse of this mapping to convert a video
of a deformable surface into a sequence of normal maps.

3.1 Setup and Calibration

Our setup consists of a color video camera and three light
sources which have been filtered with red, green, and blue
filters, respectively. The camera is placed 2.5-5 m away
from the target object. The light sources are at a similar
distance, not colinear, aimed at the target, and separated by
about 30 degrees from one another. The filming occurs in a
dark room with minimal ambient light. Fig. 1, left, describes
this schematically.

In [25] and [47], methods were proposed for the estimation
of the linear mappingM of (1) from the image itself, using the
constraints of uniform albedo and surface integrability that
must be satisfied by the normal map. However, the results
obtained with these techniques can be unsatisfactory,
especially in situations where the target object does not have
a wide range of surface orientations (e.g., if it is mostly
planar). We prefer to estimate the mapping by employing an
easy-to-use calibration tool (Fig. 1, right) similar to the one
used in [48]. The pattern is planar ,with special markings that
allow the plane orientation to be estimated. By placing the
cloth in the center of the pattern, we can measure the color it
reflects at its current orientation. We thus obtain a set of ðr;nÞ
pairs from which the mapping M is estimated using linear
least squares [14].

3.2 Depth from Normals

By estimating and inverting the linear mapping M linking
RGB values to surface normals, we can convert a video
sequence captured under colored light into a video of normal
maps. Each normal map is integrated independently for
each frame using a Fast Fourier Transform (FFT) method
[49]. At the end of the integration process, we obtain a video
of depth maps.

4 HUMAN FACE NORMALS

The motion of cloth can be dynamic and intricate, but cloth
is also flexible and easily used in our original flat-surface
calibration method [14]. Here we extend the previous
approach to reconstruct moving human faces.

A trivial extension for capturing Video Normals of
moving faces is to fully apply makeup to the skin, and then
use the same makeup on a flat surface in the calibration
board of Fig. 1. Such a calibration makes the assumption
that the makeup is matte and evenly applied. While
approximate and slightly inconvenient for the actor, this
simple approach is surprisingly effective (see Fig. 2).

It is worth noting that some existing facial scanning [50]
and motion capture systems can already produce excellent
results, but often at the cost of having a more complicated
setup. Ma et al. [20] use polarized spherical gradient
illumination patterns and multiplexing to recover detailed
surface geometry. Furukawa and Ponce [51] have recently
introduced a new tangential rigidity constraint for registra-
tion, but also rely on multiple synchronized cameras.
Bradley et al. [52] recently showed excellent results with a
14-camera system with special lighting that allowed them to
register geometry and textures using a stereo flow-based
technique, similar to the one we use here for single-view
capture. While they succeed by tracking highly detailed
texture, we are able to track the video of normals, though
we take no face-specific steps to counteract drift, which
eventually leads to our accumulation of errors.

Good facial expression capture should not depend on
makeup. The calibration step is extended, on the basis of
[13], to cope with unpainted faces, and more generally, with
single-hue objects that can be rotated in front of the camera
without significant deformation. In practice, during this
calibration step, the makeup-free actor need only hold some
expression while turning his head all the way to the left and
right. The head itself is used as a rigid calibration object,
and the per-frame pose and 3D shape are estimated in order
to obtain M, the skin’s response to this arrangement of
multicolored illumination.

The first step is to establish the changing pose of the
head. Although skin can appear mostly smooth, the blue
channel of facial skin shows fairly distinct (though sparse)
trackable features. The 3D pose of these points on a rigid
object is computed from the 2D tracks using established
SfM algorithms [53]. We feed our own 2D tracks to the
Boujou [54] software, producing the relative pose between
the camera and each frame of the head. If 2D tracks are not
available, silhouette-based calibration methods such as [55]
or [56] can serve this purpose.
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Fig. 2. Applying the original algorithm to a face with white makeup.
Top: Example input frames from video of an actor smiling and grimacing.
Bottom: The resulting integrated surfaces.



The second step uses the poses to help estimate the shape
of the head, to an extent slightly better than a visual hull.
We apply the silhouette and stereo fusion technique of [57]
because it is simple and reliable. Reasonable alternatives
exist for this stage, including [58] and [59]. The expectation
here is only that the surface patches with a given world
orientation have a similar color overall, so the recovered
head model’s shape can be approximate. This initial head
geometry is shown in Fig. 3B.

In the third step, the head’s poses and approximate
geometry are used to compute the illumination directions
and intensities. Here, instead of the previous calibration of
the 3� 3 M matrix using a flat material sample, we use the
estimated head model itself. Unlike Lim et al.’s reconstruc-
tion algorithm [17], we do not assume that all projected 3D
surfaces are equally informative of illumination. We follow
the RANSAC-based formulation of [8], where lighting is
estimated from partially correct geometry. Our algorithm
randomly selects a fixed number of points on the surface and
uses their corresponding pixel intensities to hypothesize an
illumination candidate. All surface points are then used for
testing this hypothesis. This process is iterated and
the candidate with the largest support is selected as the
illumination estimate. This is more robust to both inaccurate
geometry and inconsistent hue because an illumination
hypothesized based on an unfortunate choice of three points
on the head mesh will receive fewer votes and appear as an
unusual outlier compared to choices from the dominant
color. For a pure Lambertian surface and distant point light
source model, only three points are required to estimate
illumination. However, the approach can easily cope with
more complex lighting models. For example, a first order
spherical harmonic model (3� 4 matrix) could be estimated
from four points. This approximation is equivalent to a
distant point light source with ambient lighting. Fig. 3 shows
sample input and output frames from a longer face sequence
without the use of the calibration board or any face makeup.

5 TRACKING THE SURFACE

While the video of depth-maps representation can be adequate
for some applications, for texture mapping, points on
different depth maps must be brought into correspondence.

Fig. 10 (second row) shows the failure of directly texture-
mapping each depth map of moving cloth without any
registration. As mentioned in Section 2, one could choose to
register the time-varying surfaces using one of many
available algorithms, based on articulations, speed, or
subject-specific constraints. Instead, we showcase the
spatio-temporal detail of the points derived from Video
Normals by doing simple frame-to-frame registration that is
not limited by memory constraints when processing long
sequences. We use optical flow, precisely because it relies
on good texture details, and advect the first point cloud in
experiments using two different registration optimizations.
Let ztðu; vÞ denote the depth map at frame t. Our
deformable template is the depth map at frame 0, and is a
dense triangular mesh with edges E and vertices X ¼ fx0

i g:

x0
i ¼ u0

i ; v
0
i ; z

0 u0
i ; v

0
i

� �� �
; i ¼ 1 . . .N: ð4Þ

Similarly to [61], the deformations of the template are
guided by the following two competing constraints:

. The deformations should be compatible with the
frame-to-frame 2D optical flow of the original video
sequence.

. The deformations should be locally as rigid as
possible.

5.1 2D Optical Flow

We begin by computing frame-to-frame optical flow in the
video of normal maps. A standard optical flow algorithm is
used for this computation [62], which for every pixel
location ðu; vÞ in frame t, predicts the displacement dtðu; vÞ
of that pixel in frame tþ 1. Let ðut; vtÞ denote the position in
frame t of a pixel which in frame 0 was at ðu0; v0Þ. We can
advect dtðu; vÞ to estimate ðut; vtÞ using the following
equation from [33]:

ðuj; vjÞ ¼ ðuj�1; vj�1Þ þ dj�1 uj�1; vj�1
� �

; j ¼ 1 . . . t: ð5Þ

If there were no error in the flow and our template from
frame 0 had perfectly deformed to match frame t, then
vertex x0

i of the template would be displaced to point

yti ¼ uti; v
t
i; z

t uti; v
t
i

� �� �
: ð6Þ
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Fig. 3. Face sequence without makeup. Our calibration technique builds on multiview reconstruction and lighting estimation (see Section 4). It is
made possible by first moving the head around with a fixed expression (A). The initial recovered head geometry, shown in (B), is only approximate.
The integrated surfaces are shown on the right using the self-shadow processing method of [60].



5.2 Regularization

Simply moving each template vertex to the 3D position
predicted by optical flow can cause stretching and other
geometric artifacts like the ones displayed in Fig. 10 (third
row). This is due to accumulated error in the optical flow
caused in part by occlusions. We tried two different
regularization techniques. The first, described in more
detail in our original paper [14], requires that translations
applied to nearby vertices be as similar as possible. This is
achieved by finding the ŷis that optimize the energy term
E ¼ �ED þ ð1� �ÞER. Here, � determines the degree of
rigidity of the mesh, ED is the data term, and ER measures
the dissimilarity of translations being applied to neighbor-
ing vertices. Reasonably good registration results are shown
at the bottom of Fig. 10.

The alternative regularization technique is similar to the
alignment-by-deformation of Ahmed et al. [63], and is
based on Laplacian coordinates [64]. Unlike [63], we use the
computed flow instead of SIFT features with adaptive
refinement. Given the fine grid connection graph of X, we
make the N �N mesh Laplace operator L, and apply it to
the points from the template to convert them to Laplacian
coordinates, Q ¼ LX. Q now encodes the high spatial
frequency details of X and ignores its absolute coordinates.
Ŷ, the least-squares optimal absolute coordinates in the
next frame, is computed by solving the linear equation

L
�IN

� �
Ŷ ¼ Q

�Y

� �
; ð7Þ

which trades off the Laplacian coordinates against the
results of tracking, using a similar rigidity parameter �.
Section 7 describes the qualitative evaluation of how long
each of the two regularization approaches tracks our Video
Normals through large deformations before eventually
falling off. In all of the experiments, � was set to 0.9 and
� to 1e� 3.

6 SELF-SHADOWING

So far, the algorithm computes Video Normals at each pixel
in a given frame, independently of its neighbors in that
frame. Unfortunately, it is inevitable that another part of the
subject can come between the light and the camera, causing a
self-shadow. This is also a problem for regular photometric
stereo, though there are potentially fewer self-shadows

induced by one light source than by three. The three
distributed lights, however, offer a new opportunity that
can be exploited to partly compensate when computing
normals for shadowed surface patches.

For the first time in the algorithm, we consider the spatial
relationship of the pixels in an image. When a photograph is
considered as a composite of reflectance and illumination,
Sinha and Adelson [65] observed that illumination varies
more smoothly and is less likely to align with reflectance
changes. Though we must contend with three sources of
illumination, the three-channel video camera allows us to
examine each light in turn, while reflectance changes were
constrained from the outset. This justifies the use of a simple
Laplacian edge-detector in each of the color channels of
captured frame FRGB. The resulting per-channel edges are
pictured, with increased contrast for illustration, in Fig. 4D.

Per-channel edge pixels are analyzed in turn to deter-
mine gradient orientation. We compute and quantize
orientation by checking along each of the eight cardinal
directions, at a distance of �2 pixels. Pixels whose gradient
magnitude falls below a threshold � are rejected. Adjoining
pixels whose direction agrees are grouped into connected
components, and we found empirically that for our footage,
components with fewer than 20 pixels could safely be
rejected at the conservative setting of � ¼ 5%. These
parameters could change for filming under different
conditions, to match the overall brightness of the average F .

The remaining gradient pixels are used as seeds for a
conservative flood-filling algorithm which expands to neigh-
bors whose intensity is equal or darker. With shadowed-
pixels in each channel of F labeled, we compute a lookup
visibility mask for each pixel, indicating which channels are
present, if any. A dark backdrop was enough to ensure that
our algorithm labeled not only the correct regions on the
actors as having two, one, or no discernable self-shadows, but
also the surrounding scene as having all three shadows.

Finally, the parts of a surface that are self-shadowed by
just one light source (i.e., k ¼ 2) can now be specially
processed to compensate for the missing channel of
information (see Figs. 5A and 5B). Onn and Bruckstein
[66] addressed precisely this situation when dealing with
two-image photometric stereo. The same ambiguity exists
whether two gray-scale images are available or when given
FRGB of a surface illuminated by just two colored lights. The
local surface is constrained to have one of two possible
orientations, corresponding to the two acceptable roots of a
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Fig. 4. Spandex self-shadow images. (A)-(C) are the red, green, and blue components of the recorded frame, while (D) shows the edges detected
by the Laplacian filter. Note the prominent blue line running down the right leg, where the blue light cast a shadow. (E) shows where each of the lights
cast its color shadow, except that the background has already been turned off.



quadratic equation. Having classified the pixels as sha-
dowed from a particular light, we choose the root whose
normal is locally continuous with the unshadowed surface,
under a constant albedo assumption. Figs. 5A, and 5B
illustrates the effect of this improvement on the integrated
surface. For the less obvious improvement for dealing with
self-shadows (once found) and complicated albedo, see [60].

7 EXPERIMENTS

Our experiments use real-world subjects filmed using a color
video camera with resolution of either 1;280� 720 or 1;024�
1;024 at 60 fps. Since reconstruction consists of a matrix-vector
multiplication followed by a Poisson integration [67], our
FFT-based integration implemented with CUDA libraries
produces depth maps at 60 Hz. Computation times were on
the order of eight additional seconds for each registration of
the mesh to the current frame. If the shadow correction
algorithm from [60] is used, then the Poisson integration is
about 10 seconds per frame. The sweater sequence meshes
are 365 k triangles and 183 k vertices, while the makeup-free
face mesh is 611 k triangles and 307 k vertices. Computations
were carried out on a 2.8 GHz Pentium 4 processor with 4 Gb
of RAM and an nVidia GeForce 8800.

7.1 Quantitative Comparisons

To evaluate the accuracy of the per-frame depth-map
estimation, we first reconstructed a static object (a jacket)
using classic photometric stereo with three images each
taken under different illumination. The same object was
reconstructed using a single image, captured under
simultaneous illumination by three colored lights, using
our technique. Fig. 6 shows the two reconstructions side by
side. The results look very similar and the average distance
between the two meshes is only 1.4 percent of the bounding
box diagonal. This demonstrates that (1) works well in
practice. It is worth noting that even though photometric
stereo achieves comparable accuracy, it cannot be used on a
nonstatic object whose shape will change while the three
different images are captured.

We have a further measure to quantitatively evaluate our
technique. A rigid cylindrical object was wrapped in smooth
paper, and moved in front of the camera for 30 seconds,
exploring all six degrees of freedom. A best-fit cylinder

geometry is computed for the sequence so that for the
cylinder’s pose in each frame, we know the ideal normal
field, against which the Video Normals field is measured. In
Fig. 7, each frame’s mean normal-vector error in degrees and
standard deviation are plotted. Overall, the mean error was
2.67 degrees and the standard deviation was 4.29. Our test-
frames, code for evaluating them, and per-frame scores are
online, with the aim of encouraging more meaningful
algorithm comparisons, when possible.

7.2 Qualitative Tests of Cloth and Face

For the third experiment shown here, a model wearing a
white sweater was filmed dancing under our multispectral
illumination setup (see first row of Fig. 10). For qualitative
purposes, in Fig. 9 we show several views of frame #380
without the texture map and in high resolution (the mesh
consists of 180 k vertices). The images clearly show the high
frequency detail of the sweater. To the best of our
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Fig. 5. Self-shadowing and the Lambertian assumption. (A)-(B):
Integrating the surface normals where all pixels are treated equally
versus using our self-shadow detection and correction (Section 6). The
difference is most pronounced above the model’s left knee. Separate
from the matter of self-shadowing, (C)-(D) show a limitation of our
system. Since the cloth violates our Lambertian assumption, the
integrated surface of a different pose looks convincing from the front
(C), but not from the side (D).

Fig. 6. Comparison with photometric stereo. (A)-(C) show three gray-
scale images captured by a digital camera, each taken under a different
illumination, providing the input to a classic photometric stereo
reconstruction [16] shown in (D). (E) shows a frame from a jacket
sequence, where the same object is illuminated simultaneously by three
different colored lights. Our algorithm only uses one such frame to
generate the surface mesh shown in (F). Note that both algorithms give
very similar results, but only the new one (bottom row) can work with
video since only one frame is required to obtain a reconstruction. As a
quantitative comparison, the average error between both reconstruc-
tions is only 1.4 percent of the bounding box diagonal.

Fig. 7. Cylinder reconstruction evaluation. A rigid cylinder was moved
in front of the camera and the geometry estimation was evaluated
quantitatively. A best-fit cylinder geometry is computed for the sequence
so that for the cylinder’s pose in each frame, we know the ideal normal
field. The plot shows the per-frame mean and standard deviation of the
distance between the ideal and the estimated normals in degrees, as a
function of time. The overall mean error was 2.67 degrees.



knowledge, this is the only method able to reconstruct

deforming cloth with such detail. However, as expected,

materials that are far from Lambertian exhibit noticeable

artifacts, as in Figs. 5C, and 5D.
We used this sequence to evaluate the original mesh

regularization algorithm of Section 5 by texture mapping
the deforming sweater. Fig. 10 shows several approaches to
mesh registration starting with no registration at all (second
row), registration using the advected optical flow alone
(third row), and the effect of regularizing optical flow with
the rigidity constraint (fourth row). This last approach is
seen to outperform the others as it manages to track the
surface for more than 500 frames.

The fourth experiment explores tracking the much more
challenging deforming face sequence from Fig. 3. The rows
of Fig. 8 show different frames from among a sequence of
over 1,000 frames. The Video Normals surfaces are
registered using the two different regularization algorithms
described in Section 5. In this experiment, the first depth
map of the face sequence is used as a template for the rest of
the sequence. The left column of Fig. 8 shows the result of

using the same rigidity constraint on the translation vectors
as for the white sweater, and as described originally in [14].
The performance of this algorithm degenerates most
quickly. This is expected since the face undergoes much
bigger deformations than the cloth sequence, so imposing
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Fig. 8. Registering with different regularizations. Treating the first
integrated Video Normals surface as a template that receives a
checkerboard texture, we automatically register that shape throughout
a long sequence by tracking flow frame-to-frame. The rows feature
frames #10, #87, #116, and #290 out of 1,000. The left column uses the
original translation regularization from [14], while the middle column was
registered using the alternative Laplacian coordinates regularizer.
Results on the right are generated like the middle column, but with the
benefit of slits for the mouth and eyes, so some domain-specific input
from a user.

Fig. 9. Cloth reconstruction results of a deforming sweater.
Multispectral photometric reconstruction of a single frame of a longer
video sequence using the technique described in Section 3. Multiple
viewing angles (frontal, �25 degrees, �50 degrees) of frame #380 of the
sweater sequence. This frame is representative of the detail quality in
our reconstructions for this and other tested videos.

Fig. 10. Cloth tracking results of a sweater sequence. First row: Input

video sequence of a person wearing a white sweater while being

illuminated by three colored lights from three different orientations.

Second row: Video of depth maps obtained by the technique described

in Section 3 and directly texture mapped without any registration. The

approach is quickly seen to fail after a few frames. Third row: Texture-

mapping is obtained by advecting frame-by-frame 2D optical flow [33].

Error in the optical flow advection causes artifacts after about 380

frames. Fourth row: First method of Section 5, where 2D optical flow is

regularized with a translational rigidity constraint to reduce advection

errors. Last row: On the left and right, respectively, are close-ups of

frame #508 taken from the third and fourth rows. Please see the video.



rigidity on the translation vectors is not enough. The middle
column of Fig. 8 shows the tracking results using our
alternative regularization, the Laplacian coordinates algo-
rithm similar to [63]. This algorithm is better able to impose
rigidity constraints. However, the results show the limita-
tions of using optical flow for large deformations. The
optical flow easily accumulates errors, and even though
rigidity does help in recovering from flow errors, it
eventually cannot cope with the amount of deformation
shown in this sequence. One possible avenue is to
incorporate the work of [45], though memory limitations
hinder this. Their algorithm is also targeted at deforming
point clouds, which is a harder problem than ours. Their
example results do not exhibit nearly as much deformation
as this face sequence. Finally, with human supervision,
some of the deformation artifacts due to the eyes and mouth
opening and closing can be alleviated by introducing seams
on the template at the mouth and eye positions (see Fig. 8
right). The seams allow better tracking of large deforma-
tions, but the added degrees of freedom can also negatively
affect the overall shape. Naturally, eventually, even the
right-most registration accumulates too much error.

7.3 “Dressing” a Virtual Character with Moving
Cloth

To demonstrate the potential of our method for capturing
cloth for animation, we attach a captured moving mesh to
an articulated skeleton. Skinning algorithms have varying
degrees of realism and complexity, e.g., [68]. We apply a
version of smooth skinning in which each vertex vk in the
mesh is attached to one or more skeleton joints and a link to
joint i is weighted by wi;k. The weights control how much
each joint i affects the transformation of the vertex [69]

vtk ¼
X
i

wi;kS
t�1
i vt�1

k ;
X
i

wi;k ¼ 1; ð8Þ

where the matrix Sti represents the transformation from
joint i’s local space to world space at time instant t. The
mesh is attached to the skeleton by first aligning both in a
fixed pose and then finding, for each mesh vertex, a set of
nearest neighbors on the skeleton. The weights are set
inversely proportional to these distances. The skeleton is
animated using publicly available mocap data [70] while
the mesh is animated by playing back one of our captured
and registered cloth sequences. Fig. 11 shows example
frames from the rendered sequence (please also see the
video). Even though the skeleton and cloth motions are not

explicitly aligned, the visual effect of the cloth moving on a
controllable character is appealing. Such data-driven cloth
animation can serve as a useful tool and presents an
alternative to physical cloth simulation.

8 CONCLUSION

Building on the long established but surprisingly overlooked
theory of multispectral lighting for photometric stereo, we
have discovered and overcome several new obstacles. We
developed a capture methodology that parallels existing
work for capturing static cloth, but also enables one to
capture the changing shape of cloth in motion. The same
technique works well for capturing deforming faces, when
the actor wears white makeup. Further, our SfM-based
reflectance calibration technique empowers us to compute
Video Normals of natural skin color, without any makeup.
Real-time integration of the resulting normal fields is
possible with an FFT normal map integration algorithm
using CUDA libraries. We have verified the accuracy of the
depth maps against classic photometric stereo, and mea-
sured the space-time accuracy of normals using a rigid but
moving shape. When a sequence of reconstructed surfaces is
played back, they appear to change smoothly, even under
abrupt motions like flutter in strong wind. We also explored
long-term registration, and have devised a method to detect
and cope with mild self-shadowing.

The high level of detail captured by the normal fields
includes surface bends, wrinkles, and even temporary folds.
Tracking of folds and parting surfaces like eyelids is
inherently underconstrained, and continues to be a chal-
lenge, and special templates may help [34], as may other
domain-specific constraints about the subject’s surface.
Instead of [62], [71] could be used to advect flow only in
confident areas. Our system could also be extended for
some scenes to incorporate the gradual-change prior of [72].
A different mathematical model will need to be explored for
non-Lambertian and multihue materials. Another limitation
is that in-the-round capture would be challenging to
arrange because multiple triples of lights would have to
be set up and they would need to have nonoverlapping
wavelengths of light. Registration remains the biggest
limitation when making use of our monocular capture
system, as illustrated in our long sequences. This problem is
not singular to Video Normals, so we hope that our shared
data prove useful to other researchers as well.

REFERENCES

[1] J. Pilet, V. Lepetit, and P. Fua, “Real-Time Non-Rigid Surface
Detection,” Proc. IEEE CS Conf. Computer Vision and Pattern
Recognition, 2005.

[2] M. Salzmann, S. Ilic, and P. Fua, “Physically Valid Shape
Parameterization for Monocular 3-D Deformable Surface Track-
ing,” Proc. British Machine Vision Conf., 2005.

[3] V. Scholz, T. Stich, M. Keckeisen, M. Wacker, and M. Magnor,
“Garment Motion Capture Using Color-Coded Patterns,” Compu-
ter Graphics Forum, vol. 24, no. 3, pp. 439-448, Aug. 2005.

[4] R. White and D. Forsyth, “Retexturing Single Views Using Texture
and Shading,” Proc. European Conf. Computer Vision, pp. 70-81,
2006.

[5] R. White, K. Crane, and D. Forsyth, “Capturing and Animating
Occluded Cloth,” Proc. ACM SIGGRAPH, 2007.

[6] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, “A
Comparison and Evaluation of Multi-View Stereo Reconstruction
Algorithms,” Proc. IEEE CS Conf. Computer Vision and Pattern
Recognition, vol. 1, pp. 519-528, 2006.

2112 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 10, OCTOBER 2011

Fig. 11. Attaching captured moving cloth to an animated character.

We apply smooth skinning to attach a moving mesh to an articulated

skeleton that can be animated with mocap data. The mesh is simply

animated by playing back the captured and registered dancing cloth

sequence (please also see the video).



[7] A. Hertzmann and S. Seitz, “Shape and Materials by Example: A
Photometric Stereo Approach,” Proc. IEEE CS Conf. Computer
Vision and Pattern Recognition, pp. I-533-I-540, 2003.

[8] C. Hernández, G. Vogiatzis, and R. Cipolla, “Multiview Photo-
metric Stereo,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 30, no. 3, pp. 548-554, Mar. 2008.

[9] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L.
Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade,
and D. Fulk, “The Digital Michelangelo Project: 3D Scanning of
Large Statues,” Proc. ACM SIGGRAPH, pp. 131-144, 2000.

[10] T. Malzbender, D.G.B. Wilburn, and B. Ambrisco, “Surface
Enhancement Using Real-Time Photometric Stereo and Reflec-
tance Transformation,” Proc. European Symp. Rendering, 2006.

[11] E. de Aguiar, C. Stoll, C. Theobalt, N. Ahmed, H.-P. Seidel,
and S. Thrun, “Performance Capture from Sparse Multi-View
Video,” ACM Trans. Graphics, vol. 27, no. 3, pp. 1-10, 2008.

[12] D. Vlasic, I. Baran, W. Matusik, and J. Popovi�c, “Articulated Mesh
Animation from Multi-View Silhouettes,” ACM Trans. Graphics,
vol. 27, no. 3, pp. 1-9, 2008.

[13] C. Hernández and G. Vogiatzis, “Self-Calibrating a Real-Time
Monocular 3D Facial Capture System,” Proc. Int’l Symp. 3DPVT,
2010.

[14] C. Hernández, G. Vogiatzis, G.J. Brostow, B. Stenger, and R.
Cipolla, “Non-Rigid Photometric Stereo with Colored Lights,”
Proc. 11th IEEE Int’l Conf. Computer Vision, 2007.

[15] D. Pritchard and W. Heidrich, “Cloth Motion Capture,” Computer
Graphics Forum, vol. 22, no. 3, pp. 263-272, 2003.

[16] R. Woodham, “Photometric Method for Determining Surface
Orientation from Multiple Images,” Optical Eng., vol. 19, no. 1,
pp. 139-144, 1980.

[17] J. Lim, J. Ho, M.-H. Yang, and D. Kriegman, “Passive Photometric
Stereo from Motion,” Proc. 10th IEEE Int’l Conf. Computer Vision,
pp. 1635-1642, 2005.

[18] D.B. Goldman, B. Curless, A. Hertzmann, and S.M. Seitz, “Shape
and Spatially-Varying BRDFs from Photometric Stereo,” ICCV ’05:
Proc. 10th IEEE Int’l Conf. Computer Vision, vol. 1, pp. 341-348, 2005.

[19] A. Hertzmann and S. Seitz, “Shape Reconstruction with General,
Varying BRDFs,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 27, no. 8, pp. 1254-1264, Aug. 2005.

[20] W.-C. Ma, T. Hawkins, P. Peers, C.-F. Chabert, M. Weiss, and
P. Debevec, “Rapid Acquisition of Specular and Diffuse
Normal Maps from Polarized Spherical Gradient Illumination,”
Proc. Eurographics Symp. Rendering, 2007.

[21] D. Vlasic, P. Peers, I. Baran, P. Debevec, J. Popovi�c, S.
Rusinkiewicz, and W. Matusik, “Dynamic Shape Capture Using
Multi-View Photometric Stereo,” ACM Trans. Graphics, vol. 28,
no. 5, pp. 1-11, 2009.

[22] W.-C. Ma, A. Jones, J.-Y. Chiang, T. Hawkins, S. Frederiksen, P.
Peers, M. Vukovic, M. Ouhyoung, and P. Debevec, “Facial
Performance Synthesis Using Deformation-Driven Polynomial
Displacement Maps,” ACM Trans. Graphics, vol. 27, no. 5, pp. 1-
10, 2008.

[23] C.A. Wilson, A. Ghosh, P. Peers, J.-Y. Chiang, J. Busch, and P.
Debevec, “Temporal Upsampling of Performance Geometry Using
Photometric Alignment,” ACM Trans. Graphics, vol. 29, no. 2,
pp. 1-11, 2010.

[24] A. Petrov, “Light, Color and Shape,” Proc. Cognitive Processes and
Their Simulation, pp. 350-358, 1987.

[25] L. Kontsevich, A. Petrov, and I. Vergelskaya, “Reconstruction of
Shape from Shading in Color Images,” J. Optical Soc. of Am. A,
vol. 11, no. 3, pp. 1047-1052, 1994.

[26] M.S. Drew and L.L. Kontsevich, “Closed-Form Attitude Determi-
nation Under Spectrally Varying Illumination,” Proc. IEEE CS
Conf. Computer Vision and Pattern Recognition, pp. 985-990, 1994.

[27] R.J. Woodham, “Gradient and Curvature from the Photometric-
Stereo Method, Including Local Confidence Estimation,” J. Optical
Soc. of Am. A, vol. 11, no. 11, pp. 3050-3068, 1994.

[28] M.K. Johnson and E.H. Adelson, “Retrographic Sensing for the
Measurement of Surface Texture and Shape,” Proc. Computer
Vision and Pattern Recognition, pp. 1070-1077, 2009.

[29] K.S. Bhat, C.D. Twigg, J.K. Hodgins, P.K. Khosla, Z. Popovi�c, and
S.M. Seitz, “Estimating Cloth Simulation Parameters from Video,”
Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation,
pp. 37-51, 2003.

[30] X. Gu, S. Zhang, P. Huang, L. Zhang, S.-T. Yau, and R. Martin,
“Holoimages,” Proc. ACM Symp. Solid and Physical Modeling,
pp. 129-138, 2006.

[31] T. Weise, B. Leibe, and L.V. Gool, “Fast 3D Scanning with
Automatic Motion Compensation,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2007.

[32] L. Zhang, N. Snavely, B. Curless, and S.M. Seitz, “Spacetime Faces:
High-Resolution Capture for Modeling and Animation,” Proc.
ACM Ann. Conf. Computer Graphics, pp. 548-558, 2004.

[33] P. Sand, L. McMillan, and J. Popovi�c, “Continuous Capture of
Skin Deformation,” ACM Trans. Graphics, vol. 22, no. 3, pp. 578-
586, 2003.

[34] H. Li, B. Adams, L.J. Guibas, and M. Pauly, “Robust Single-View
Geometry and Motion Reconstruction,” ACM Trans. Graphics,
vol. 28, no. 5, p. 175:1-175:10, 2009.

[35] D. Bradley, T. Popa, A. Sheffer, W. Heidrich, and T. Boubekeur,
“Markerless Garment Capture,” ACM Trans. Graphics, vol. 27,
no. 3, pp. 1-9, 2008.

[36] J. Starck and A. Hilton, “Surface Capture for Performance-Based
Animation,” IEEE Computer Graphics and Applications, vol. 27,
no. 3, pp. 21-31, May/June 2007.

[37] N. Ahmed, C. Theobalt, P. Dobre, H.-P. Seidel, and S. Thrun,
“Robust Fusion of Dynamic Shape and Normal Capture for High-
Quality Reconstruction of Time-Varying Geometry,” Proc. IEEE
Conf. Computer Vision and Pattern Recognition, pp. 1-8, 2008.

[38] Y. Pekelny and C. Gotsman, “Articulated Object Reconstruction
and Markerless Motion Capture from Depth Video,” Computer
Graphics Forum, vol. 27, no. 2, pp. 399-408, Apr. 2008.

[39] W. Chang and M. Zwicker, “Automatic Registration for Articu-
lated Shapes,” Computer Graphics Forum, vol. 27, no. 5, pp. 1459-
1468, 2008.

[40] A. Johnson and M. Hebert, “Using Spin Images for Efficient Object
Recognition in Cluttered 3D Scenes,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 21, no. 5, pp. 433-449, May 1999.

[41] A. Tagliasacchi, H. Zhang, and D. Cohen-Or, “Curve Skeleton
Extraction from Incomplete Point Cloud,” ACM Trans. Graphics,
vol. 28, no. 3, 2009.

[42] Q. Zheng, A. Sharf, A. Tagliasacchi, B. Chen, H. Zhang, A. Sheffer,
and D. Cohen-Or, “Consensus Skeleton for Non-Rigid Space-Time
Registration,” Computer Graphcis Forum, Special Issue of Euro-
graphics, vol. 29, no. 2, pp. 635-644, 2010.

[43] A. Sharf, D.A. Alcantara, T. Lewiner, C. Greif, A. Sheffer, N.
Amenta, and D. Cohen-Or, “Space-Time Surface Reconstruction
Using Incompressible Flow,” ACM Trans. Graphics, vol. 27, no. 5,
pp. 1-10, 2008.

[44] N.J. Mitra, S. Flory, M. Ovsjanikov, N. Gelfand, L. Guibas, and
H. Pottmann, “Dynamic Geometry Registration,” Proc. Fifth
Eurographics Symp. Geometry Processing Computer Graphics
Forum, pp. 173-182, 2007.

[45] J. Süßmuth, M. Winter, and G. Greiner, “Reconstructing Animated
Meshes from Time-Varying Point Clouds,” Computer Graphics
Forum, vol. 27, no. 5, pp. 1469-1476, 2008.

[46] M. Wand, B. Adams, M. Ovsjanikov, A. Berner, M. Bokeloh,
P. Jenke, L. Guibas, H.-P. Seidel, and A. Schilling, “Efficient
Reconstruction of Nonrigid Shape and Motion from Real-Time
3D Scanner Data,” ACM Trans. Graphics, vol. 28, no. 2, p. 15,
Apr. 2009.

[47] M.S. Drew, “Direct Solution of Orientation-from-Color Problem
Using a Modification of Pentland’s Light Source Direction
Estimator,” Computer Vision and Image Understanding, vol. 64,
no. 2, pp. 286-299, 1996.

[48] J.A. Paterson, D. Claus, and A.W. Fitzgibbon, “BRDF and
Geometry Capture from Extended Inhomogeneous Samples Using
Flash Photography,” Computer Graphics Forum, special Euro-
graphics issue, vol. 24, no. 3, pp. 383-391, 2005.

[49] T. Simchony, R. Chellappa, and M. Shao, “Direct Analytical
Methods for Solving Poisson Equations in Computer Vision
Problems,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 12, no. 5, pp. 435-446, May 1990.

[50] T. Beeler, B. Bickel, P. Beardsley, B. Sumner, and M. Gross, “High-
Quality Single-Shot Capture of Facial Geometry,” ACM Trans.
Graphics, vol. 29, no. 3, 2010.

[51] Y. Furukawa and J. Ponce, “Dense 3D Motion Capture for Human
Faces,” Proc. IEEE Conf. Computer Vision and Pattern Recognition,
pp. 1-8, 2009.

[52] D. Bradley, W. Heidrich, T. Popa, and A. Sheffer, “High
Resolution Passive Facial Performance Capture,” ACM Trans.
Graphics, vol. 29, no. 3, 2010.

[53] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge Univ. Press, 2004.

BROSTOW ET AL.: VIDEO NORMALS FROM COLORED LIGHTS 2113



[54] Boujou, 2d3 Ltd., http://www.2d3.com, 2009.
[55] S.N. Sinha, M. Pollefeys, and L. McMillan, “Camera Network

Calibration from Dynamic Silhouettes,” Proc. IEEE CS Conf.
Computer Vision and Pattern Recognition, pp. 195-202, 2004.

[56] C. Hernández, F. Schmitt, and R. Cipolla, “Silhouette Coherence
for Camera Calibration under Circular Motion,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 29, no. 2, pp. 343-349,
Feb. 2007.

[57] C. Hernández and F. Schmitt, “Silhouette and Stereo Fusion for 3D
Object Modeling,” Computer Vision and Image Understanding,
special issue on model-based and image-based 3D scene rRepre-
sentation for interactive visualization, vol. 96, no. 3, pp. 367-392,
2004.

[58] G. Vogiatzis, C. Hernández, P.H.S. Torr, and R. Cipolla, “Multi-
view Stereo via Volumetric Graph-Cuts and Occlusion Robust
Photo-Consistency,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 29, no. 12, pp. 2241-2246, Dec. 2007.

[59] Y. Furukawa and J. Ponce, “Accurate, Dense, and Robust Multi-
View Stereopsis,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, pp. 1-8, 2007.

[60] C. Hernández, G. Vogiatzis, and R. Cipolla, “Shadows in Three-
Source Photometric Stereo,” Proc. 10th European Conf. Computer
Vision, pp. 290-303, 2008.

[61] B. Allen, B. Curless, and Z. Popovi�c, “Articulated Body Deforma-
tion from Range Scan Data,” Proc. ACM SIGGRAPH, pp. 612-619,
2002.

[62] M. Black and P. Anandan, “The Robust Estimation of Multiple
Motions: Parametric and Piecewise Smooth Flow Fields,” Compu-
ter Vision and Image Understanding, vol. 63, no. 1, pp. 75-104, 1996.

[63] N. Ahmed, C. Theobalt, C. Rossl, S. Thrun, and H. Seidel, “Dense
Correspondence Finding for Parametrization-Free Animation
Reconstruction from Video,” Proc. IEEE Conf. Computer Vision
and Pattern Recognition, pp. 1-8, 2008.

[64] M. Botsch and O. Sorkine, “On Linear Variational Surface
Deformation Methods,” IEEE Trans. Visualization and Computer
Graphics, vol. 14, no. 1, pp. 213-230, Jan./Feb. 2008.

[65] P. Sinha and E.H. Adelson, “Recovering Reflectance and
Illumination in a World of Painted Polyhedra,” Proc. Fourth Int’l
Conf. Computer Vision, pp. 156-163, 1993.

[66] R. Onn and A. Bruckstein, “Integrability Disambiguates Surface
Recovery in Two-Image Photometric Stereo,” Int’l J. Computer
Vision, vol. 5, no. 1, pp. 105-113, 1990.

[67] R.T. Frankot and R. Chellappa, “A Method for Enforcing
Integrability in Shape from Shading Algorithms,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 10, no. 4, pp. 439-451,
July 1988.

[68] J.P. Lewis, M. Cordner, and N. Fong, “Pose Space Deformation: A
Unified Approach to Shape Interpolation and Skeleton-Driven
Deformation,” Proc. ACM SIGGRAPH, pp. 165-172, 2000.

[69] X.C. Wang and C. Phillips, “Multi-Weight Enveloping: Least-
Squares Approximation Techniques for Skin Animation,” SCA ’02:
Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation,
pp. 129-138, 2002.

[70] “CMU Graphics Lab Motion Capture Database,” http://
mocap.cs.cmu.edu, 2011.

[71] O. Mac Aodha, G.J. Brostow, and M. Pollefeys, “Segmenting
Video into Classes of Algorithm-Suitability,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 2010.

[72] T. Popa, I. South-Dickinson, D. Bradley, A. Sheffer, and W.
Heidrich, “Globally Consistent Space-Time Reconstruction,” Proc.
Eurographics Symp. Geometry Processing, 2010.

Gabriel Brostow received the BS degree in
electrical engineering from the University of
Texas at Austin in 1996 and the MS and PhD
degrees in computer science from the Georgia
Institute of Technology in 2004. He was a
Marshall Sherfield Fellow and postdoctoral
researcher at the University of Cambridge until
2007 and a research scientist at ETH Zurich until
2009. In 2008, he joined the Computer Science
Department at University College London as an

assistant professor. His research focus is “smart capture” of visual data.
He is a member of the IEEE.

Carlos Hernández received the MS degree in
applied mathematics from the l’Ecole Normale
Supérieure de Cachan in 2000 and received the
PhD degree in 2004 from the Ecole Nationale
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