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Abstract—We present a novel patch-based probabilistic graphical model for semi-supervised video segmentation. At the heart
of our model is a temporal tree structure which links patches in adjacent frames through the video sequence. This permits exact
inference of pixel labels without resorting to traditional short time-window based video processing or instantaneous decision
making. The input to our algorithm are labelled key frame(s) of a video sequence and the output is pixel-wise labels along with
their confidences. We propose an efficient inference scheme that performs exact inference over the temporal tree, and optionally
a per frame label smoothing step using loopy BP, to estimate pixel-wise labels and their posteriors. These posteriors are used
to learn pixel unaries by training a Random Decision Forest in a semi-supervised manner. These unaries are used in a second
iteration of label inference to improve the segmentation quality. We demonstrate the efficacy of our proposed algorithm using
several qualitative and quantitative tests on both foreground/background and multi-class video segmentation problems using
publicly available and our own datasets.

Index Terms—Semi-Supervised Video Segmentation, Label Propagation, Mixture of Trees Graphical Model, Tree-structured
Video Models, Structured Variational Inference.
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INTRODUCTION

this uncertainty, each super-pixel is usually connected to

Semi-supervised video segmentation has a number
of interesting applications, including video editing,
harvesting labelled video data for training classifiers
and learning shape, actions [1] as well as developing
priors for unsupervised video segmentation [2]. In the
past, several heuristic systems for semi-automatic video
segmentation have been proposed [3], [4] which process
a few frames at each step. But, unlike semi-supervised
image segmentation [5], [6], rigorous video modelling
and inference for semi-supervised video segmentation
have not received much attention. This can perhaps be
attributed to high cost of inference. In this work, we
propose a probabilistic graphical model and an efficient
inference method dedicated to semi-supervised video
segmentation.

In recent times, unsupervised video segmentation
has gained a lot of attention [7], [8], [9], especially as
extensions of image super-pixellization to space-time
super-pixels. The aim of these methods is to group pixels
which are photometrically and motion wise consistent.
In simple cases, where there is a clear distinction
between foreground and the background, the grouping
may appear to be semantically meaningful. However,
in more complex videos, the result in general is an
over-segmentation, and requires additional knowledge
(through user interaction for example) to achieve any
object level segmentation. When using unsupervised
segmentation as a pre-processing step for class-specific
segmentation, has to deal with issues like selecting
super-pixels at the right scale for a class. To account for
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several others in adjacent frames [10]. This leads to loopy
models which require approximate inference schemes
which are inefficient over 3D volumes. In contrast, we
propose tree structured video models built using patch
cross-correlation and which are quite robust, efficient
for the task of label propagation. The tree structure
automatically permits exact inference of pixel posteriors
as opposed to approximate MAP inference.

Another distinction of our algorithm is that robust
unaries can be learnt in a semi-supervised manner
using only one or two frames of user labelled data
and the inferred posteriors of the unlabelled pixels
from the tree-structured model. These unaries aid in
selecting regions of the right scale for a specific task and
improve the quality of the segmentation. In contrast, with
unsupervised methods, there is a need for additional
mechanisms to select super-pixels at the right scale for
each task separately.

One or two notable instances [11], [12] which have tried
to extend their image segmentation algorithms directly
for n-D sequences/videos have met with only limited
success. A few others [13], [10] have tackled the problem
of joint tracking and segmentation using unaries learnt at
the start frame. We demonstrate via quantitative studies
on such problems that our algorithm can achieve better
or comparative results without using heuristics such as
fixing the labels at each frame successively.

In this work, the semantic objects of interest are defined
by the user labelled key frame(s) of a video sequence (see
Fig.1). It is also possible to input only a few user mouse
strokes in some frames (see supplementary material for
an example). Our proposed segmentation algorithm uses
this input to label each pixel in the video data into one
of the user defined categories and infers their confidence



c) Our result

Fig. 1. Anillustration of results of our proposed multi-class video segmentation approach. The image sequence and labels
of frames 1,85 were used as input to our algorithm. The inferred MAP estimate of the pixel labels are shown in the bottom
row. Notice the fairly clean label propagation even with frequent occlusions of the road/road markings by the moving cars.
The ground truth labelling in the top row took about 30-45 minutes per frame, while the inferred labels takes only about 11

seconds per frame. Zoom-in and view in colour for best results.

estimates (posteriors). These posteriors (soft labels) can
be used for learning pixel unaries using a Randomized
Decision Forest [14] in a semi-supervised manner to
further improve the segmentation.

As we perform probabilistic inference of pixel labels,
a family of labellings at various confidence levels are
available to the user as output. The user can then select
one of these labellings at one or more frames, fix or
clamp them, and re-infer the labelling over the whole
video. This is similar to the self-training approach used in
semi-supervised learning [10]. Probabilistic inference is
also an important component for active learning methods
[15], [16], [17], [10].

To summarise, we make the following contributions in
this paper:

1) A patch-based probabilistic graphical model
for semi-supervised video segmentation, which
employs a novel temporal tree structure to link
patches between frames.

2) An efficient structured variational inference scheme
which infers pixel-wise labels and their confidences.

The remainder of this paper is organised as follows.

We present a detailed literature review in Sec. 2. Our
proposed video model is explained in detail in Sec. 3.
The inference strategy we propose for segmentation is
elaborated in Sec. 3.2. A toy simulation of the algorithm
and a step wise illustration of the algorithm on real data
is presented. The process of semi-supervised learning
of unaries using a Random Decision Forest classifier is
explained. We then discuss our experiments and their
results in Sec. 4. We bring out the advantages and the
advantages and drawbacks of our approach in Sec. 5. We
conclude in Sec. 6 with pointers to future work.

2 LITERATURE REVIEW

We review some of the relevant state of the art in
unsupervised, classification based, semi-supervised and
work flow based video segmentation.

2.1 Unsupervised Video Segmentation

The rectangular patch-based Epitome model [18], [19] and
the pixel based Jigsaw model [20] learn a compact latent
representation of an image or sequence of images. For a
video sequence, this translates to learning correlations
between pixels in both successive and non-successive
frames. However, there is a model selection step (number
of clusters, size of Epitome or Jigsaw) which is usually
hand-crafted. In our proposed algorithm, we employ an
epitomic model to learn correlations between successive
frames which helps in tackling the aperture problem to
an extent (see Fig. 4). However, we avoid costly learning
of compact latent representations to establish correlations
between non-successive frames and instead, choose a
simpler alternative in the form of a Random Forest [21]
to achieve the same goal.

Video super-pixellization methods such as [7], [8], [9],
[22], [23] rely on grouping pixels in space and time using
appearance and motion cues. The result is frequently
over fragmented and their aim to understand the results
by measures such as object covering, over segmentation
is somewhat counter-intuitive because the performance
statistics can vary depending on the task. Importantly,
the results of unsupervised clustering are not easily
interpreted as semantic clusters. However, consistent
video super-pixellization can reduce the input dimension
for structured discriminative models.

When using unsupervised segmentation as a pre-
processing step for class-specific segmentation, it is
necessary to deal with issues like selecting super-
pixels/segments at the right scale for a class. To
circumvent this issue, each super-pixel is connected to
several others in adjacent frames [10]. This leads to loopy
models which require approximate inference schemes
which are inefficient over 3D volumes. Our approach
uses simple patch cross-correlation to develop tree
structured models for a video and which by construction
permits efficient, exact inference. The results of exact
inference are used to train a Random Forest which then
helps select regions of the right scale for class specific



segmentation.

2.2 Classification based Segmentation

We broadly divide methods in this category into
unstructured and structured classification methods.

Unstructured Classification

Unstructured  classifiers  predict class  labels
independently for each pixel without incorporating
any neighbourhood constraints. Randomized Decision
Forests [21], an example of unstructured classifiers,
have recently gained popularity in image and video
segmentation [24], [14], [25]. In this work, we train a
Random Decision Forest in a semi-supervised manner to
learn pixel unaries and demonstrate that this learning can
often help improve the quality of video segmentation.

Structured Classification

Structured  classifiers  incorporate  neighbourhood
constraints, such as spatial or temporal smoothness, to
perform pixel class prediction. Conditional random field
(CRF) models [11] are an example of widely applied
structured classifiers which have lead the way in image
segmentation problems. In practice, their main attraction
arises from the ability to perform global optimisation or
in finding a strong local minima of a particular class (sub-
modular class) of CRF’s at interactive speeds [11], [26].
There are one or two notable instances which have tried
to extend their image segmentation algorithms directly
for videos by propagating MAP estimates sequentially
[12] or for N-D sequences [11]. As pointed out by [3],
performing MAP inference on large 3D volumes can
result in undesired changes in response to user input at
another far away location in time. Finally, multi label
MAP inference on the full video volume is extremely
expensive [13].

2.3 Semi-Supervised Video Segmentation

The label propagation method of Badrinarayanan et. al.
[27] jointly models appearance and semantic labels using
a coupled-HMM model. The key idea is to influence
the learning of frame to frame patch correlations as
a function of both appearance and class labels. This
method was extended to include correlations between
non-successive frames using a Decision Forest classifier
by Budvytis et. al. [24]. In this work, we follow these in
jointly modelling appearance and semantic labels. The
significant difference being that we use an undirected
model which lends itself more naturally to fusion of
classifiers and temporal modelling. In contrast, their
directed models introduce competition (explaining away
effect [28]) between classifiers and temporal models,
which is not always desirable.

Tsai et. al [13] jointly optimize for temporal motion and
semantic labels in an energy minimization framework. In
this interesting framework, a sliding window approach
is used to process overlapping n-frame grids for the
sake of reducing computational burden. The result of
one n-frame grid is employed as a hard constraint in

the next grid and so on. Such an approach is also used
in [29]. In contrast, we treat the whole video volume
at once, inferring both temporal correlations and label
uncertainties. Fathi et. al [10] use semi-supervised
and active learning for video segmentation. Each
unlabelled pixel is provided a confidence measure
based on its distance to a labelled point, computed on
a neighbourhood graph. These confidences are used to
recommend frames in which more interaction is desired.
In our approach, inference directly leads to confidences
and active learning can also be pursued.

2.4 Work flow based Video Segmentation

The VideoSnapCut algorithm of [3] is an example of
a work flow based system which relies on a heuristic
combination of low level cues for video segmentation.
Their main motivation is that methods based on global
optimisation [4] can have unpredictable temporally non-
local changes to user input. To avoid this, they employ
spatially local classifiers and propagate their predictions
over time using optical flow. However, the drawbacks are
the heuristic nature of cue integration, use of unreliable
flow and short time-window processing.

3 PRoPOSED VIDEO MODEL FOR SEMI-
SUPERVISED SEGMENTATION

We introduce a patch-based undirected graphical
model for semi-supervised video segmentation which
jointly models both the observed sequence of images
(appearance layer) and their corresponding labels (label
layer) . See Fig. 2(d) for an illustration. The model
construction and label inference scheme are described
below.

3.1 Model Construction

Fig. 2 illustrates a step by step construction of our model.
We begin with the image epitome e [18], a compact
version of the image and which has no spatial structure,
as shown in Fig. 2(a). In this image generative model, the
original frame/image I}, is assumed to be given as a set
of patches Z;, = {Z;, ; }le, each containing pixels from a
subset of image coordinates S, ;. The patches are taken to
be square in shape and it is assumed that their coordinate
sets can overlap. For each patch, a latent variable T, ;
maps coordinates S, ; to coordinates in the epitome e. A
square patch is mapped to a square patch in the epitome
through T}, ;. At pixel coordinate n in the epitome, a mean
and variance i, ¢n is stored. Given e = (p, ¢), the patch
Zy,; is obtained by copying the epitome mean and adding
Gaussian noise to a level prescribed by the variance map:

p(Zy,jle, Ty ;) = H N(Zk,j,zﬁMTk,j(i)ﬁTk,j(i))- 1)

iESk,j

Note that coordinate i is defined on the input image I
and zy ;; is the intensity or color of pixel i in patch j.
Therefore, if pixel 7 is in two patches Z, ; and Zj, ,,, then
Zkji = Zkm, = Ii;- In practice, the number of possible
mappings T} ; is taken to be equal to the number of
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Fig. 2. Step wise build up of our proposed video model for semi-supervised video segmentation. (a) shows the underlying
graphical model for the epitomic generative model of a frame I;. In (b) we replace the epitome of frame I, by the previous
frame in the image sequence. This avoids computationally expensive learning of the epitome. (c) extends (b) to jointly model
both frame appearance and corresponding labels. (d) shows the full generative model for the video sequence obtained by
repeating the basic model in (c) over time. For a single sample of the mapping variables Ti.,,, we obtain a temporal tree
structure as shown in (e). * The term tree structure is used to denote the undirected acyclic graphical model. The tree is
rarely a spanning tree and often is a forest of sub-trees as shown in (e). For clarity links for all the nodes in (e) are not shown.

coordinates in the epitome. defined using patch averaging as follows.
Treating the patches to be independent, the generative

model for the set of patches is as follows. P 1
f fp p(Ik,i| {Zk,j}j:1> =N ]k,zﬁﬁ Z 2k i Wk |

€Sk
P P ®)
b ({Zk’j}jzl o {Ths }jzl) =r(e) H P (Ths) % where Ny ; is the number of patches which overlap pixel
J=L:P 7. Therefoi‘e, the entire epitome model is;
1T~ (Zlc,j,i§ HTy, 5 (i) ¢Tk,j(¢)) :

p (Ik7 {Zk‘,j7Tk,j }le 7e> =p <{Zk,j7Tk,j}f:1 )e) X

[Ir (il {2e},) - @

iGSk,j

2)

So far in this model, the patches {Zk,j}f have been
treated independently, even though their coordinates

p (Ty,;) is assumed uniform over the possibilities. From
this patch generative model, the image generative model is



overlap. Therefore, during inference of the latent patches,
the solution space is constrained to those in which
overlapping coordinates share the same intensity.
This is ensured by estimating a single point posterior
distribution at each coordinate (see Sec. 3.2).

Learning an epitome is computationally expensive and
the quality of the generated image depends strongly on
the size of the epitome. These problems are more severe
with video epitomes [19]. Therefore, we avoid learning
epitomes and substitute frame Ij,_; as an epitome for I},
(see Fig. 2(b)). The similarity between frames I}, and Ij,_;
makes Ij;_; a natural source of patches used to generate
Ij,. With these changes, (2) is transformed to,

P P
p ({Z’f’j }j:1 -1, {Th }jzl) =

1) I p(Thy) [1I N(le,i%kaLTk,j(i)vqﬁTk,j(i))~

j=1:P i€k,

Q)

Latent variable Z; in the label layer is the counterpart
of latent variable Z; in the appearance layer (see Fig.
2(c)). Z¢ = {7} ; }le is seen as a set of labelled patches,
each containing labelled pixels from a subset of image
coordinates Sy, ;. The common mapping variable T}, ;
maps coordinates Sy, ; to coordinates of patches in Z}}_;.
The clique potential, used to encourage label smoothness
over subsequent frames, is then defined as:

v (Zz?,j’ZIZ—LTm);A) =] v (Zz?,j,i’Zl?—LTk(j,i)%A)’
1€Sk,;
(6)
where,

N if, I =m,
1 — ), otherwise,

)

where I,m € L, with L denoting the label set. X is a
tunable parameter which controls the desirable amount
of label smoothness. Notice that in this layer again we
have avoided the issue of overlapping coordinates as
in the appearance layer for sake of tractable inference.
However, unlike the appearance layer, we do not
explicitly enforce overlapping coordinates to share
the same label by computing a single point posterior.
This is because we wish to evaluate the full posterior
distribution to estimate label confidences at each image
coordinate. Therefore, we average the marginal posteriors
of the latent variables which share the same coordinate
(see Sec.3.2) and consider this average distribution as the
label posterior at that coordinate.

The entire time-series model for the video sequence is
now obtained by extending the basic model in Fig. 2(c).
This is shown in Fig. 2(d). In this model, for any single
state of the mapping variables T}, = {7}, ; }le, the label
layer patches are connected in a tree structure as shown in
Fig. 2(e). Therefore, the time-series model is a mixture of
trees graphical model. In this paper, we approximate this
mixture by its most probable component to arrive at a tree
structured graphical model for video sequences (see 3.2).

v (Z,‘jyj’i — 1,20y ) = m;,\) _ {

The full probabilistic joint appearance and label model
for video sequences is as given below.

p (IO:m Z1:n, Z(()l:na Tin |9, ¢, )‘) =

1
= 11 » @l Zis ) p (Zk| T, Ii—1; 6) %
k=1:n

U (25, Zi1,m5 N) Y (25) W (26) 2 (T1) . (8)

with (3), (5), (6) defining the first three terms of the right
hand side and Z the proportionality constant. The unary
terms are defined as follows.

Uy (Z3) = H H Vo (25 i) - )

j=1:Pi€S

The prior on the mapping variable p(T} ;) is set to a
uniform distribution within a rectangular window in
frame k — 1 around the center coordinate of patch Zj, ;.
The model in [24] had a redundant clique potential
(the fusion clique) which was used to fuse an external
classifier prediction with the bottom time-series chain.
Our model in (8) discards this potential without affecting
performance. Another latent variable representing the
classifier prediction in [24] is also discarded and instead
classifier predictions are set as unaries(see Sec. 3.3)
without change in performance.

3.2 Inference

It is clear from (8) that the proportionality constant
Z cannot be computed due to the combinatorial sum
involved on the right hand side. Therefore, we resort
to approximate inference. The log probability of the
observed data V (images, labelled start and end frames)
can be lower bounded as follows [30]:

p(V, H|E)

q(H) (10)

logp(VIE = {¢), 4, A}) > /Hq(H) log

where ¢(H) is a variational posterior over the latent
variables in the model. We choose,

q(H) = q1(T)q2(0), (11)
where © = {Z1.n, Z{,,_1}, T = Tin, and,
n Q
a2 ] I o))
k=1j=1
n Q
@20) 2 [T [T11%7 ., Znj6)@©\2,.). (12
k=1j=14€j

The form of ¢(H) is chosen as a compromise between
performing tractable inference and retaining as much
structure as possible in the posterior. Notice from the
above equation that the variational posterior does not
factorise into independent terms (over the latent variables
©) as in a mean-field approximation [30]. Therefore, our
approximation is a structured variational posterior, which
leads to better performance [31]. Secondly, notice the
single point posterior approximation over the latent
variables Z.,,. This ensures that overlapped coordinates
have the same value.



We now apply the calculus of variations [30] to
maximise the lower bound w.r.t q1, g2 and arrive at,

0 (Tiy) cexpq [ B2 L, ) ¥
Zy 5.2

I(:Tj’Z;cL—l,Tk“?
log [W(ZL5, i 1y O)W(ZE 5, 21 i V)| | 2 (Th)
(13)
32(O\z,.,,) = eXP/ 01(T)1og (O z,.,, |V, T5 E). (14)
T

The second of the above fixed point equations is
computationally intensive as it involves marginalising
over all the mapping variables. For this reason, we
approximate it by,

B(O\z,.) ~ exp [r 57+ (T)10gp(©\ 7, IV, T;5),

=p(O\z,,|V,T5E) (15)

where 7% = argmaxy q1(7). A second motivation for
this approximation is that p(©\ z,, |V, 7™; E) is temporally
tree structured. From a variational inference viewpoint,
T™ represents the best (MAP) tree structured component
of the mixture model. We exploit this temporal tree
structure to perform efficient and exact inference of the
latent variables in the set ©\ ;. Notice that ¢2(©\ z, ) is
a joint distribution over the MAP tree and thus the exact
marginal posteriors are easily computed using standard
sum-product belief propagation [30].

We also emphasize that the tree structure need not
be a spanning tree. Indeed, we employ the term tree
structured to mean an undirected acyclic graph on which
exact inference can be performed. In practice, there
can be several disjoint trees in the model or a forest of
non-spanning trees (see Fig. 2).

3.2.1 From Patches to Pixel Posteriors

So far in the inference, we have exploited the best tree
structure to compute the marginal posteriors of variables
z; j.i» Where i is the image coordinate. As mentioned in
Sec. 3.1, since patches share coordinates (overlap), we
average the marginal posteriors of all latent variables

which share the same coordinate. For example,
Rt~ = D B0,

7 §i€Sk,;

(16)

where §2(z; ;) is the averaged posterior. Notice that the
patch index is now removed on the left hand side.

3.2.2 Forward and Backward Trees

From Fig. 2(e), we see that the tree has its root in the
start frame and leaves at the end frame. We denote this
as the forward tree. This directionality in the temporal
structure can sometimes lead to a labelling bias. For
example, the user provided root frame labels can have
a stronger influence than the leaf (end) frame labels on
the remaining latent variables. To correct for this bias, we
compute the best tree in the reverse direction (a backward
tree with root at the end frame) and perform inference
on it. Finally, we average the label posteriors from the

Algorithm 1: Semi-supervised Video Segmentation
using Tree Structured Graphical Models.

Input: Io., (video), hand labelled key frame(s) or user
mouse strokes.
Output: Pixel label probabilities.
Intialisation
Set Z§, Z; to user provided labels and
Zy = Ik, ke€el:n.
Set the initial values of A, 1, ¢ to ones given in Sec. 4.
Set unaries to uniform distributions.
Set p (T%) ,k € 1 : n to uniform distributions.
Inference
1. Compute the forward and backward trees using (13).
2. For each tree separately
a. Use sum-product algorithm [30] to obtain pixel
marginals.
b. Obtain the coordinate wise approximate
marginals by averaging (Sec. 3.2.3).
3. Optionally smooth the pixel labels in each frame
using loopy BP (Sec. 3.2.3).
4. Average the posteriors at each coordinate from both
the trees.
Learning Unaries
5. Learn unaries using the soft label Random Forest
trained with the label posteriors (Sec. 3.3).
Bootstrapped Inference
6. Repeat steps 1-4 using the learnt unaries. An
example of step-wise results is shown in Fig.3.

two trees at each coordinate to obtain the approximate
posterior at each pixel.

It can be argued that since our model is undirected
(no temporal directionality is intended), the forward
and backward tree could be combined into a single
undirected model. However, this model would have a
loopy temporal structure and undesirably would not
permit efficient and exact inference of pixel labels.

3.2.3 Intra-frame Smoothing of Pixel Labels

We can optionally obtain a smooth, yet edge sensitive,
labelling in each frame by using the pixel posteriors
computed thus far as pixel unaries and applying loopy BP
[30] on a standard 8-neighbourhood grid. We use contrast
sensitive edge potentials as in [5] and 50 iterations of
message passing. The resulting marginals provide us
with label confidences (see Fig. 3(c)). The drawback of
performing smoothing is that the marginals tend to be
over confident (see Fig. 3(d)). This is undesirable, for
example, in long sequences new objects tend to appear
and inference should ideally assign low confidence to
them in order to reduce false positive labelling. Therefore,
we avoid smoothing in long sequences.

3.3 Learning Pixel Unaries

In the first iteration of inference, we set the unaries to
uniform distributions and use our proposed inference
technique to estimate the pixel label posteriors. We
then train a Random Decision Forest [21] using these
posteriors as soft pixel labels, i.e each pixel has a vector
label instead of a scalar class label. We term this sermi-
supervised Random Forest the soft label Random Forest



c) Inference —
iteration 1
confidence map
before smoothing

d) Inference -
iteration 1
confidence map
after smoothing
using loopy BP

e) Inference -
iteration 1
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Fig. 3. The first two rows show the image sequence (moving camera) and ground truth from the SegTrack dataset [13]. The
segmentation algorithm in this sequence has to cope with fast shape changes, motion blur and overlap between foreground
and background appearance models. Inferred marginals of Z¢.,_; before smoothing are shown in row (c). Note how the
confidence decreases from the labelled first frame. The marginals after smoothing are shown in row (d). Observe the
increased confidence due to smoothing. The MAP estimates of these marginals are shown in row (e). Note that some part
of the girl's hands and leg are missing. The unaries learnt using the marginals in row (c) are shown in row (f); and its MAP
estimate is shown in row (g). We see from (h) that the legs and hands are labelled correctly along with some false positive
background labels. Bootstrapping this prediction and performing inference once again results in the confidences shown in
row (g). The corresponding MAP estimate in row (i) shows almost no background false positives, and the missing legs and
hand in row(d) are recovered. The cut-out in row (j) has sharp edges and is clean. Zoom-in and view in color for best results.
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Fig. 4. This figure demonstrates the adverse effect of using occlusion unaware optic flow to establish inter-frame correlations.
The dis-occluded background parts get linked to foreground parts causing a drag effect. Occlusion aware optic flow is better,
but there still remains mislabelling. Our patch cross correlation based method handles dis-occlusions robustly by linking
similar textured patches in the background. Zoom-in and view in color for best results.

(sIRF). We use simple but computationally efficient pixel
intensity difference features at each split node as in [14].
Our semi-supervised training of the Random Forest
is conceptually different from the transductive forest
described in [32]. In the transductive forests, labelled
and unlabelled data are treated separately and a new
information gain criterion is introduced to combine label
and appearance based entropies. In contrast, we first
assign each unlabelled data point a soft label obtained
from the earlier label inference step. At training time,
we compute a histogram of soft labels at each node by
element wise addition of the vector labels and use the
criterion of [14] to evaluate the split function.

We use the predictions from the sIRF as pixel unaries
in the second interation of inference. These unaries,
learnt in a semi-supervised manner can help improve
segmentation accuracy, as shown in Fig. 3(g,h). Unlike
traditional tracking algorithms were unaries are learnt
using the first frame labels, we use the entire video data
and their inferred labels to learn unaries.

In Fathi et al. [10], labels are propagated to the adjacent
frame and their MAP estimate is used to update the
unary. This can be sub-optimal as all the frames are not
used to update the unary (especially if the background
is changing). In contrast, our efficient inference method
permits us to use all the frames to learn the unaries.

4 EXPERIMENTS AND RESULTS

We perform three experiments to bring out the pros and
cons of our approach. In all the experiments, each colour
channel in all the images is scaled to lie between [0.0, 1.0].
We use patches of size 7 x 7 centred on each pixel. In our
tree model, we set A to 0.9.

4.1 Patch Mappings versus Optical Flow for Label
Propagation

In this experiment, we compare the performance of our
patch-based model against a pixel based model where
inter-frame mappings are estimated using a state of
the art occlusion aware optical flow module [33]. This

algorithm produces an occlusion probability at each pixel
and all vectors below a probability of 0.2 are ignored. To
incorporate this flow module into our framework, we
replace the inferred MAP estimates of the patch mapping
variables ((15)) by the rounded-off flow vectors. Note that
we still obtain a tree structured model by using the flow
vectors to link frames. The inference is then performed as
described in Alg. 1 without updating the unaries.

Dataset: We use a challenging dataset consisting of
three outdoor driving video sequences (VGA resolution)
captured using a camera placed on a car. The ground
truths are available for 70 frames for Seq 3 & Seql, and
98 frames of Seq 2. 15 different classes are hand labelled
which cost about 45-60 minutes per frame.

Results and Discussion: Badrinarayanan et al. [27],
Chuang et al. [34] have earlier brought to notice the
problems associated with using optical flow for label
propagation. Particularly, when using forward flow, their
remains unlabelled pixels (holes) after a disocclusion (as
there is no correspondence found). When using reverse
flow, the label dragging effect happens after a disocclusion,
because newly appearing pixels are forced into a wrong
match in the previous frame (see Fig. 4). In contrast, our
un-regularised patch mappings aid label transfer from
frame to frame using an in-painting like step. As the
reappearing patches (disocclusion) are constructed using
a combination of patches from the previous frame they
help fill in the correct labels. Secondly, unlike flow based
methods we do not attempt to compute pixel accurate
motion, but instead we use overlapping patches at each
pixel to correct for mismatches in greedy patch matching
across subsequent frames. For example, if a patch size of
7x7 is used then each pixel is overlapped by 49 patches
provided the patch centers are a pixel apart. If atleast
50% of the overlapping patches match to the correct class
then our method delivers sharp class boundaries. These
subtle but key differences are the merits of our proposed
segmentation approach. We note that some effort has
been made to correct the problems associated with optic
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Fig. 5. Comparison of multi-class segmentation using our patch-based temporal linkage and an off the shelf occlusion
aware optic flow based linkage [33], within our framework. This Toyota driving dataset was manually labelled each frame and
will be made available upon request. Unlike optic flow, the patch-based linkage is unregularised (patch mapping variables
are assumed independent) and handles occlusions/disocclusions better. However, optic flow performs marginally better on
smaller classes which are below patch resolution. See Fig. 6 for corresponding quantitative results. Zoom-in and view in color

for best results.
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Fig. 6. Quantitative comparison of our patch-based temporal linkage versus optic flow based linkage over 15 classes. In
all three sequences, the global average accuracy (total percentage of correctly labelled pixels) exceeds the optic flow based
linkage. Except in Seg2 the class average (average of per class accuracy) is higher. Note that void class corresponds to

unlabelled parts of the first and last frame. We also improve on the results reported in [27].

Patch size 3x3 7x7 11x11
Window size Global average Class average Global average Class average |Global average Class average
27x20 94.06 60.57 93.72 59.06 93.52 58.55
40x30 93.85 58.80 93.64 57.72 93.70 57.09
53x40 93.41 57.60 93.48 56.86 93.68 57.47
67x50 93.11 55.28 93.32 54.55 93.60 57.22
80x60 92.87 53.84 93.16 53.43 93.53 56.12

Fig. 7. Change in accuracy as a function of patch size (columns) and window size (rows) for Seq 1. Observe the smooth
decrease in both accuracies as window size increases relative to any patch size. This is caused due to small sized classes
being mislabelled and hence the global accuracy decreases less than the class average accuracy.

flow by computing heuristic reliability measures for flow
and incorporating an external object appearance model
to correct for the dragging effect (see [35]). However, this
was not the goal of this experiment.

The results of our quantitative study are reported in
Fig. 6 and some image samples are shown in Fig. 5. Our
proposed patch-based method outperforms the flow
based approach in terms of the overall correctly classified
pixels (global average) and, except for one sequence,
it is also better in terms of average of class accuracies.
However, our method is not consistently better than the
flow based method over all classes. For instance, classes
smaller than or about the same as the patch resolution
(sign/symbol, traffic lights) are poorly labelled. A hybrid
of the two methods can potentially tackle this issue.

We used Seql to study the effect of patch and search
window size on accuracy. From Fig. 7, it can be seen that
for any patch size, there is a gradual drop in accuracy
as the window size increases, although for smaller patch
sizes the drop is steeper. The global accuracy is more
stable than class average accuracies as small sized classes
are mislabelled with larger window sizes.

4.2 Label Uncertainty Propagation
Instantaneous Decision Propagation

versus

In our approach, we propagate label uncertainties over
time by performing inference on the tree structured
graphical model. Here we compare this with serial
propagation of instantaneous (per frame) label decisions
as in the approach of [37] ([35], [12] are similar in

principle). This experiment brings out the inadequacies
of instantaneous decision making and demonstrates
the need to propagate label uncertainties. These label
uncertainties are useful not only to avoid false positive
labelling but also for bootstrapped learning of the sIRF.
We choose the 1! stage Random Forest (RF) classifier [14]
with 16 trees, each of depth 10. Input LAB space patches
of 21 x 21 are extracted around every 5'" pixel on both
axis. We leave out border pixels in a 12 pixel band to fit
all the rectangular patches. We use the same kind and
number of features as in [14]. The key difference is that
we use the inferred soft labels to train the sIRF (see Sec.
3.3). We compute the split function information gain and
the leaf node distributions by treating the data point label
as a vector whose elements sum to unity.

Dataset: Our test sequences are taken from the CamVid
road scene dataset [36]. Each sequence in CamVid is 750
frames in length, but we down sample to every 5" frame
to have a length of 150 frames. Ground-truth is available
every 30 frames. We study 9 static classes like sky, road,
etc. and treat moving objects such as cars, pedestrians as
outliers, as they are not permanent in a road scene. We
assign a “uniform” distribution to these outlier classes
in the labelled frames and examine their false positive
rate to gain insight into outlier rejection performance. As
the sequences are lengthy, we avoid label smoothing for
reasons discussed in Sec. 3.2.3.

Results and Discussion: Qualitatively, the main
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Fig. 8. Seq05VD from the CamVid dataset with ground-truth [36]. Black “outlier” labels at the ends have uniform distributions.
We encourage the reader to view the labels along with the confidence map in row (f) to see that our approach reduces false

positive labelling. Zoom-in and view in color for best results.
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Fig. 9. Quantitative comparison on complex and lengthy (750 frames) video sequences from CamVid [36] dataset. Unlike
our method, the Hybrid Label Propagation method of [37] uses manual unary monitoring to avoid false positive labelling.

advantage of propagating label uncertainties is the
reduction in false positives and better occlusion
awareness (see Fig. 8). In the model of [37], if the
MAP estimate of temporal predictions and the
unary predictions disagree then the label is set to
“unknown”. This is because their directed model induces
a competition between the two kinds of predictions
[28]. This necessitates manual filtering of the classifier
predictions to reduce false positives. The results in Fig.
9 demonstrate better accuracy over large static classes
(road, sky, building, pavements) for a similar label
density (varying thresholds over confidence produces
different label density). The false positive rate is also
lower than that of [37]. However, accuracy decreases over

smaller classes comparable in size to the patch resolution.

4.3 Joint Tracking and Segmentation

We evaluated the performance of our approach in a joint
tracking and segmentation challenge using the SegTrack
[38],[13] dataset. This ground truthed dataset consists of 6
sequences, captured with a moving camera, with clutter,
self-occlusion, small sized objects and deformable shape
(see Fig. 10). The first frame of each sequence is user
labelled into a foreground and background category. For
this experiment, we used a patch size of 3 x 3 in the
temporal tree structured model and sIRF was of depth 8.



Fig. 10. Qualitative results on the SegTrack dataset [13]. In all these experiments only the start frame of the video sequence
is user labelled. Notice how our algorithm is able to cope with motion blur (a), large displacement (d,j), small sized objects
(f). The main failure case is (h) due to severe overlap in appearance between the foreground and background. Note that we
applied label smoothing for this dataset. Zoom-in and view in color for best results.
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Chockalingham et Our method
Sequence Tsai et al. [12] Fathi et al. [13] Inference with learnt
al. [38] Inference Learnt unary
unary
Parachute 502 235 251 405 1294 258
Girl 1755 1304 1206 1232 2236 820
Monkey-dog 683 563 598 387 2304 589
Penguin 6627 1705 1367 1212 4285 21141
Bird-fall 454 252 342 374 2900 259
Cheetah 1217 1142 711 1088 1225 923

Fig. 11. Quantitative evaluation on the SegTrack tracking and segmentation dataset [13]. In all these experiments only the
start frame of the video sequence is user labelled. We used a single set of model parameters to obtain these results. The
score is the average label mismatch per frame. Our score is better or marginally worse off in five out of the six sequences
as compared to the state of the art methods. Note how the score improves after each stage of our method. In the Penguin
sequence, inference without unaries outperfoms the other methods. However, poor unary accuracy results in performance

degradation after bootstrapping the learnt unary for a second round of inference. See Fig.10 for qualitative results.

In Fig. 11 we report our score along with some of the
recent state of the art methods. In five out of the six
sequences we perform better or are marginally worse off
than the competitors. In the remaining case (Penguin),
inference without the learnt unaries outperforms the state
of the art. The unaries in this case are very poor due
to severe overlap between foreground and background.
Fathi et al. [10] design an adaptive weighting scheme to
adapt the contribution of the unaries. Such an approach
can also be incorporated into our framework in the future.

5 ADVANTAGES AND DRAWBACKS

The key advantages of our proposed approach are:

1) Our temporal tree structured model permits exact
and efficient inference of pixel labels.

2) We avoid sequential propagation of erroneous
instantaneous decisions and therefore reduce false
positives (see [24] for quantitative arguments).

3) We avoid the use of short time-window based
processing which are currently used in several
video segmentation approaches [13], quite often
due to computational inefficiency.

4) We can learn unaries in a semi-supervised
manner using the results of inference to improve
segmentation accuracy.

Our approach suffers from the following drawbacks:

1) We are currently restricted to segment classes which
have sizes above the patch resolution of 7 x 7.
Using higher resolution images should alleviate this
problem to a large extent.

2) Our method cannot handle motion larger than half
the search window size.

3) The uncertainty in the pixel marginal posteriors is
based on the number of pairwise cliques a patch is
part of (its neighbourhood connectivity), and does
not include the uncertainty with which the clique
was formed in the tree model. In future, this should
be included to improve performance

4) The method is currently not real-time (See Fig.
12). It take upto 1.8GB per frame for an image
resolution of 640 x 480 and a 15 class problem using
our unoptimised C++ implementation. This entails
several disk read-write operations.

6 CONCLUSIONS

We presented a novel tree structured graphical model
for multi-class semi-supervised video segmentation.
In this model, the video time-series is modelled as a
temporal tree which links patches from the first frame
to the last frame. The tree structure permits efficient and
exact inference of pixel labels and their confidences. We
demonstrated that in several cases robust pixel unaries
can be learnt directly from pixel marginal posteriors
and help improve segmentation. One of the other key
benefits is the ability to propagate label uncertainties
over time using exact inference. This is in contrast to
most existing approaches which use short time-window
based processing and sub-optimal instantaneous decision
making. As part of our future work, we would like to
address the issues surrounding small sized classes and
ease the computational burden of the algorithm.
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