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Abstract
Despite the longtime research aimed at retrieving geometrical information of an object from polarimetric imaging, physical
limitations in the polarisation phenomena constrain current approaches to provide ambiguous depth estimation. As an addi-
tional constraint, polarimetric imaging formulation differs when light is reflected off the object specularly or diffusively. This
introduces another source of ambiguity that current formulations cannot overcome. With the aim of deriving a formulation
capable of dealing with as many heterogeneous effects as possible, we propose a differential formulation of the Shape from
Polarisation problem that depends only on polarimetric images. This allows the direct geometrical characterisation of the
level-set of the object keeping consistent mathematical formulation for diffuse and specular reflection. We show via synthetic
and real-world experiments that diffuse and specular reflection can be easily distinguished in order to extract meaningful geo-
metrical features from just polarimetric imaging. The inherent ambiguity of the Shape from Polarization problem becomes
evident through the impossibility of reconstructing the whole surface with this differential approach. To overcome this lim-
itation, we consider shading information elegantly embedding this new formulation into a two-light calibrated photometric
stereo approach.

Keywords Shape from polarisation · Linear PDEs · Photometric stereo · Quasi-linear PDEs · Specular reflection · Diffuse
reflection · Variational method

1 Introduction

Retrieving 3D shape features frompolarisation cues acquired
from a single point of view is a concept introduced by
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Koshikawa (1979) to constrain the surface normals of objects
made out of dielectricmaterials. Together with the increasing
impact of the Computer Vision for 3D scanning techniques,
the so-called Shape from Polarisation problem (SfP) became
one of the most physically based approaches in the Shape
fromX family. It is based on the physical property that unpo-
larised light becomes partially polarized once it reflects off
an object. The acquisition process consists of taking images
of a static object under the same illumination conditions,
using a linear polariser in front of a camera. Each image dif-
fers from any other by the fact that the polariser has been
rotated by a known angle from its initial position. What
makes the SfP approach very interesting, at least in theory,
is that polarised image formation is both albedo and lighting
independent. However, despite the theoretical and practical
progress achieved over almost 40 years of research, the SfP
still provides limited constraints of the surface preventing
the shape recovery (due to the periodicity of the polarisation
information). Indeed, most of the existing SfP approaches
usually combine other cues coming from multi-view (Atkin-
son and Hancock 2006a, 2007a; Rahmann and Canterakis
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2001), shading (Ngo et al. 2015; Drbohlav and Sara 2001;
Morel et al. 2006; Huynh et al. 2013; Atkinson and Hancock
2007b; Smith et al. 2016) and recently RGBD data (Kadambi
et al. 2015) in order to increase the information of the 3D
shape and fully reconstruct the surface under observation.

Furthermore, another important limitation of the SfP is its
mathematical formulation. Instead of being expressed within
a single framework, it is fragmented into several steps derived
from physical models that describe the behaviour of light
when it propagates between media of differing refractive
indices (Martinez-Herrero et al. 2009). This makes the SfP
less straightforward to understand and less practical to solve
than other Shape from X approaches.

Contribution In this work, we extend the differential formu-
lation presented in Mecca et al. (2017) where a linear PDE
was derived for retrieving isocontour from the object under
observation for specific polarisation angles. Specifically, our
contribution consists of:

– deriving amore general formulation of thePDEpresented
in Mecca et al. (2017) for general polarisation angles

– characterizing the novel PDEs for diffuse and specular
reflection

– computing the level-set of an object having mixture of
diffuse and specular reflections

– merging the new formulation with two-light Photometric
Stereo data for 3D shape reconstruction.

2 PreviousWorks

Polarimetric cues have been used in Computer Vision for
a number of different tasks mostly related to the difficulty
of dealing with specular highlights. In addition to using
polarised image formation to separate diffuse from specu-
lar reflection (Nayar et al. 1993; Umeyama and Godin 2004;
Wang et al. 2016; Wolff and Boult 1991), the potential of
polarimetric approaches has been demonstrated by its use
in determining the normal orientation of glossy surfaces
(Koshikawa 1979; Wolff and Boult 1991; Wolff 1994a, b;
Taamazyan et al. 2016). For the same reason, particular atten-
tion has been given to the SfP problem attempting to recover
the shape of transparent objects (Miyazaki and Ikeuchi 2005;
Saito et al. 1999; Miyazaki et al. 2004, 2003; Miyazaki and
Ikeuchi 2007; Chen et al. 2007). However, polarimetric anal-
ysis provides geometrical information for dielectric surfaces,
which has allowed the SfP to be adopted to reconstruct sur-
faces reflecting light diffusively too (Atkinson and Hancock
2006).

In any case, the features of the surface provided by the
polarization reflectance model are limited and this results
to ambiguous shape recovery. To disambiguate polarisation

normals,most of the approaches enhance theSfPwith supple-
mentary cues to make the overall methodology well-posed.
Several works use multiple views of the object together with
polarisation imaging (Atkinson andHancock2005;Miyazaki
et al. 2012). Other approaches are more related to what we
propose here, where shading cues are merged with polar-
isation imaging. For example, Drbohlav and Sara (2001)
employed polarisation imaging to recover the zenith angle of
the surface normal adding integrability constraints to reduce
the ambiguity of the uncalibrated photometric stereo to con-
cave and convex case. Morel et al. (2006) used a lighting
system in a diffuse dome composed of a ring with numerous
LEDs. This provides a uniform and unpolarized light onto
the object to be digitalized. The object is placed inside the
dome and the light reflected by its surface is analysed by the
camera and the liquid crystal polariser. The ring of LEDs
is split into four parts that can be independently electrically
controlled. Huynh et al. (2013) proposed an iterative method
where diffuse polarisation modelling is considered together
with two additional constraints of the problem, including
the surface integrability and the material dispersion equation
using a hyperspectral imaging system. They adopted a pre-
liminary disambiguation proposed by Zhu and Shi (2006)
extended by the use of fast marching and patch stitching.
Atkinson and Hancock (2007b) disambiguated the polarisa-
tion normal using the shading information from three distant
light sources, which are placed in a strategic position, such
that the angles subtended by the camera and the light sources
from the object are equal and also that the distances between
the object and the light sources are equal too. Ngo et al.
(2015) proposed a very interesting approach based on the
ratio of both lambertian irradiance equations (with uniform
light direction) and polarisation image formation equations
to compute the surface orientation and the refractive index
using at least 3 light sources. By increasing the number of
input images (i.e. light sources), they eventually extended the
approach to the uncalibrated case, also computing the light
directions.

Lastly, Smith et al. (2016) proposed a SfP approach aided
by shading information which is provided by a distant light
sourcewith orthographic viewing geometry. Besides estimat-
ing the shape up to a global concave/convex ambiguity, an
important limitation for real applications is the assumption
of uniform albedo.

The differential formulation for the Shape from Polari-
sation problem presented in Mecca et al. (2017) has been
the first to exploit the monocular feature of this technique
where polarimetric images of a static object are taken from
a stationary point of view. The non-linear redundant spatial
information has been simplified by considering image ratio
leading to homogeneous linear PDEs that describe the geom-
etry of the object via its level-set. After that, other approaches
based on image ratio have been presented (Tozza et al. 2017;
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Yu et al. 2017) assuming diffuse reflection only and con-
sidering two-light uncalibrated photometric stereo data and
smoothness/convexity priors respectively, for computing the
3D shape.

In this work, we extend (Mecca et al. 2017) by describ-
ing the SfP through a differential formulation, where a simple
mathematical formulation is capable of describing the geom-
etry of the object through its level-set in the same fashion for
both diffuse and specular reflections. This brings a twofold
advantage: to conceive the expected ambiguity of the SfP
problem by extracting the level-set of the surface, and to
embed such PDE into a differential formulation, modelling
the Photometric Stereo problem using image ratios (Mecca
et al. 2016; Mecca and Falcone 2013; Smith and Fang 2016;
Chandraker et al. 2013).

Indeed, our approach considers shading information com-
ing from a minimum of two point light sources of known
position. The ratio of the respective irradiance equations
leads to an albedo invariant PDE that ambiguously describes
the surface (Mecca et al. 2014). The combination of those
two into a differential system makes the problem solvable.

Experimental validation is provided for synthetic and real-
world tests. In particular, real tests have been performedusing
very general lighting setup (e.g. light desk, light bulb) and,
most importantly, taking into account challenging materials
(such as glass) to prove the robustness of our differential
approach.

3 Shape from Polarization: A Differential
Approach

In this section, we describe the mathematical derivation of a
novel framework for the SfP problem resulting to a homo-
geneous linear partial differential equation. To do so, before
recalling the theoretical principles for polarised imaging, we
firstly consider an important aspect of the surface normal
parameterisation as a function of the depth.

3.1 Camera Parameterisation

The pinhole camera modeling is an important aspect to con-
sider while carefully taking into account image based shape
reconstruction algorithms. When perspective viewing geom-
etry comes into play, there have been severalworks proposing
different parameterisations (Bruckstein 1988; Tankus et al.
2003; Prados and Faugeras 2005; Papadhimitri and Favaro
2013). However, to mathematically describe the SfP, we do
not use any specific parameterisation of the camera since
we only consider a general aspect occurring when surface
normal deforms due to perspective viewing geometry. For
this purpose, let us call as χ(x) ∈ Σ , z(x) and ∇z(x) =
(zx (x), zy(x)) the point belonging to the surface, the depth

and the gradient of the surface at pixel x = (x, y). Then,
the first two components of the non-unit normal vector to
the surface n(x) = (n1(x), n2(x), n3(x)) are proportional to
∇z(x) up to a factor depending on the focal length f .

Thismeans that, ifwe take the unit surface normaln = n
‖n‖

into account, we have

n1(x) = g( f )
zx (x)
‖n‖ and n2(x) = g( f )

zy(x)
‖n‖ . (1)

For completeness, let us mention that for the orthographic
viewing geometry, (1) is still preserved as g( f ) = 1. In
the following part, we use this fact to derive our new model
independently from the camera viewing geometry.

3.2 Polarization Imaging

When a linear polariser filter is imposed in front of the cam-
era, the intensity of the light acquired by the sensor depends
on the rotation angle of the polariser θpol and on the material
of the object. With the aim of considering mixed polarisation
from diffuse and specular material, we take into account a
linear combination of both type of polarisation. In particu-
lar, since the specular polarisation differs of a π

2 −phase shift
from the diffuse one, we consider the following image for-
mation

I (θpol ) = αdi f f

(
Imax + Imin

2
+ Imax − Imin

2
cos(2θpol − 2θ)

)

+ αspec

(
Imax + Imin

2

+ Imax − Imin

2
cos

(
2θpol − 2

(
θ + π

2

)))
(2)

that after some algebra simplifies as

I (θpol) = (αdi f f + αspec)
Imax + Imin

2

+ (αdi f f − αspec)
Imax − Imin

2
cos(2θpol − 2θ)

(3)

where αdi f f and αspec are the percentage of diffuse and spec-
ular polarisation respectively and θ is the phase angle. It is the
angle that the linear polariser has to have in order to obtain
the highest intensity Imax = I (θpol = θ). Instead, Imin is
the minimum intensity value obtainable while rotating the
polariser. To simplify the notation, in the following we refer
as I+ = Imax+Imin

2 and I− = Imax−Imin
2 .

To give an overview of our method, it is important to men-
tion that the idea of considering mixed polarisation (i.e both
diffuse and specular polarisation) comes from the fact that
our formulation based on level-set is particularly suitable for
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identifying regions on the objects having different type of
polarisation. In fact, the π

2 -phase shift between the diffuse
and specular polarisation transfers to the level-sets charac-
terisation. We will show how the level-sets of diffuse and
specular polarised pixels are orthogonal allowing to visual
recognition of the different polarisation effects (see Fig. 7).

In order to derive the mathematical model based on level-
set, without loss of generality we firstly consider the purely
diffuse polarisation image formation model (i.e αspec = 0).
After that, the specular case will be easily extended and
experimental tests will be showed to prove the concept.

Now, to introduce the depth parameter z(x) in the polari-
sation image formation (3), we consider the parameterisation
with spherical coordinates for the normalised version of the
surface normal as

n(x) = n(x)
‖n(x)‖ = (cos(θ) sin(φ), sin(θ) sin(φ), cos(φ))

(4)

where θ ∈ [0, 2π ] is the azimuth angle and φ ∈ [
0, π

2

]
is

the zenith angle. Let us recall that the phase angle θ in (3)
contains geometrical information regarding the shape since
θ = θ or θ = θ + π that resumes the ambiguity of the SfP
problem.

With the aim of deriving a differential formulation of the
SfP, we introduce the depth parameters zx (x) and zy(x) in
the image formation (3) by substituting (1) in the first two
coordinates of (4), so we can get respectively the following
equalities

cos(θ) = g( f )
zx

‖n(x)‖ sin(φ)
(5)

and

sin(θ) = g( f )
zy

‖n(x)‖ sin(φ)
. (6)

3.3 The Differential Model for the Shape from
Polarisation

Let us rearrange the image formation model (3) for diffuse
polarisation (i.eαspec = 0) using the following trigonometric
formula

cos(2θpol − 2θ) = cos(2θpol) cos(2θ) + sin(2θpol) sin(2θ)

(7)

and the duplication formulas which lead to the following
equality

cos(2θpol − 2θ) = cos(2θpol)
(
2 cos2(θ) − 1

)
+ 2 sin(2θpol) sin(θ) cos(θ).

(8)

By substituting (8) into the image formation (3) we get

I (θpol) = I+ + I−
(
cos(2θpol)

(
2 cos2(θ) − 1

)

+ 2 sin(2θpol) sin(θ) cos(θ)
)
.

(9)

The key step to describe the previous polarisation image
formation as a partial differential equation is to consider
the consistency of shape information from the angle θ with
respect to the surface normal. In other terms, after substi-
tuting (5) and (6) in (9), we obtain the following partial
differential equation

I (θpol ) = I+ + I−
(
cos(2θpol )

(
2g2( f )

z2x
‖n(x)‖2 sin2(φ)

− 1

)

+ 2 sin(2θpol )g
2( f )

zx zy
‖n(x)‖2 sin2(φ)

) (10)

that after some algebra becomes

I (θpol) − I+ + I− cos(2θpol)

= I−
(
cos(2θpol)zx + sin(2θpol)zy

) 2g2( f )zx
‖n(x)‖2 sin2(φ)

.

(11)

With the aim of simplifying the non-linear part depending
on the focal length f , the zenith angle φ and the normalized
normal vector ‖n(x)‖, we consider the ratio of the previous
equations obtained with two polariser angles θpol1 and θpol2 ,
we get

I (θpol1) − I+ + I− cos(2θpol1)

I (θpol2) − I+ + I− cos(2θpol2)

= cos(2θpol1)zx + sin(2θpol1)zy
cos(2θpol2)zx + sin(2θpol2)zy

(12)

that leads to the following homogeneous linear PDE

((
I (θpol1) − I+ + I− cos(2θpol1)

)
cos(2θpol2)

−(
I (θpol2) − I+ + I− cos(2θpol2)

)
cos(2θpol1)

)
zx

+
((

I (θpol1) − I+ + I− cos(2θpol1)
)
sin(2θpol2)

−(
I (θpol2) − I+ + I− cos(2θpol2)

)
sin(2θpol1)

)
zy = 0

(13)

that we refer in the following as

bpol(x) · ∇z(x) = 0, (14)
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where the components of the bi-dimensional vector field
bpol(x) = (b1pol(x), b

2
pol(x)) are

b1pol = (
I (θpol1) − I+ + I− cos(2θpol1)

)
cos(2θpol2)

−(
I (θpol2) − I+ + I− cos(2θpol2)

)
cos(2θpol1) (15)

and

b2pol = (
I (θpol1) − I+ + I− cos(2θpol1)

)
sin(2θpol2)

−(
I (θpol2) − I+ + I− cos(2θpol2)

)
sin(2θpol1). (16)

Let us point out that the previous equation can be substan-
tially simplified by taking θpol1 = 0 and θpol2 = π

4 yielding
to the following equation

( − I π
4

+ I+
)
zx + (

I0 − I+ + I−
)
zy = 0. (17)

As a first remark, we notice that (14) is invariant with
respect to lighting and albedo. Most importantly, it describes
the geometry of the surface through its isocontours circum-
venting the ambiguity of the SfP problem.

In the next section we show how the new differential
approach (13) extends also to specular reflection with mini-
mal changes due to shift of the phase angle.

3.4 Specular polarisation

As mentioned before, for specular polarisation a shift of
the phase angle of π

2 has to be taken into account. This is
another reason why the level-set approach we present here
is very suitable for parameterising the shape from polarisa-
tion problem. Indeed, since the phase angle θ represents the
azimuth angle under a certain π -periodic ambiguity, the bi-
dimensional vector field describing the level-set at a specular
pixel xspec has orthogonal direction to those in (14), that is

bspecpol (xspec) = b⊥
pol(x

spec) ∝ (−b2pol(x
spec), b1pol(x

spec)).

(18)

This means that the linear PDE describing the level-set in
the specular regions is as follows

−
((

I (θpol1) − I+ + I− cos(2θpol1)
)
sin(2θpol2)

+(
I (θpol2) − I+ + I− cos(2θpol2)

)
sin(2θpol1)

)
zx

+
((

I (θpol1) − I+ + I− cos(2θpol1)
)
cos(2θpol2)

−(
I (θpol2)− I++ I− cos(2θpol2)

)
cos(2θpol1)

)
zy = 0.

(19)

Fig. 1 Real data photometric stereo pairs

From the experimental perspective, the proposed level-set
approach can be even more appreciated since it can be easily
used to distinguish diffuse regions from specular ones, see
Fig. 6.

Note that the π
2 phase difference between diffuse and spec-

ular polarisation translates to the two sinusoids being exactly
out of phase (the sinusoid has a factor of 2). Hence, even if
a part of the surface is simultaneously partially diffuse and
specular, the overall reflected light will have a phase that is
exactly equal to the diffuse or the specular (expect of the
corner case of the two components exactly canceling out at
some point and so this point exhibits zero polarisation). Thus,
it is valid to partition objects in diffuse and specular zones
and this is verified experimentally, see Fig. 6. Note however
that the degree of polarisation ρ will be smaller than what
predicted by assuming purely diffuse or specular due to the
partial canceling out of the two sines. Our approach directly
circumvents this issue in contrast methods that aim to use ρ

directly (e.g Taamazyan et al. 2016). Finally, note that even
objects that are traditionally thought as highly specular (e.g.
glass) can have “diffuse polarisation regions”. These regions
correspond to viewing vectors much different than the half
vector, and thus the specularly reflected light simply does not
reach the camera (Blinn 1977) (Fig.1).

In the next section we describe how (17) elegantly fits into
a well-posed differential system of hyperbolic PDEs when
additional shading information is provided to reconstruct the
3D shape.
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4 Enhancing SfP with Two-Lights
Photometric Stereo

In this section we describe how to exploit the new differential
formulation for the SfP (17) into a single framework where
shading information is provided.

In order to take advantage of the fact that SfP is albedo
independent, we consider a fully calibrated Photometric
Stereo (SfPS) approach having the same specific feature by
basing the derivation on the irradiance equations ratio (Davis
and Soderblom 1984). Unlike polarisation theory, in order to
parametrize the SfPS approach, we require some additional
information to be known: the camera parameters, the lighting
and the type of reflection (i.e. diffuse or specular).

Let us consider the approach proposed by Mecca et al.
(2014)whichuses the cameramodeling introducedbyPapad-
himitri and Favaro (2013) where the outgoing normal to the
surface n is parametrised as follows

n(x) = 1

f

(
f ∇z(x),− f −z(x) − x·∇z(x)

)
(20)

where z is the surface depth, f is the focal length. The irra-
diance equation takes in to account the normalised normal
vector n as follows

Ii (x) = ρ(x)ai (x, z) (n(x) · hi (li (x, z), v(x, z)))
1

c(x) (21)

where i = 1, 2.
Although (21) is not physically based, it describes the

mixture of reflections in a single equation instead of consid-
ering the linear combination of diffuse and specular reflection
(Torrance and Sparrow 1967). Indeed, the single reflection
lobe changes size dynamically, depending on the shininess
parameter c(x) and the half vector between the light li (x, z)
and the viewer direction v(x, z) defined as follows

hi (x, z) = (h1i (x, z), h
2
i (x, z), h

3
i (x, z))

= li (x, z) + min

{
1,

|1 − c(x)|
ε

}
v(x, z)

(22)

where ε (assumed equal to 0.01 for the experiments) defines a
transition phase that averages diffuse and specular reflection.

We assume that the light spreads according to the point
light source parameterisation at point Pi (x) and attenuation
ai (x, z) as follows

li (x, z) = χ(x) − Pi (x) (23)

and

ai (x, y, z) = φi (li (x, z) · pi )ν
|li (x, y, z)|2

(24)

where pi is themain direction of illumination that we assume
equal to (0, 0, 1), ν is the coefficient of radial attenuation
and φi is the intensity of the i th point light source. For our
experiments, we consider a fully calibrated setup, so all these
quantities as known.

Finally, the unknown albedo ρ(x) cancels out by consider-
ing the ratio I1(x)

I2(x)
that yields the following quasi-linear PDE

bps(x, z) · ∇z(x) = sps(x, z) (25)

where, by dropping the dependency on x and z, we have

bps =
(

(φ1a2 I1)
c
(
f h12 − xh32

)
−(φ1a1 I2)

c
(
f h11 − xh31

)
,

(φ2a2 I1)
c
(
f h22−yh32

)
−(φ1a1 I2)

c
(
f h21−yh31

))
(26)

sps = ( f +z)
(

(φ2a2 I1)
c h32−(φ1a1 I2)

c h31

)
. (27)

In the next part we show that the system of PDEs consist-
ing of (13) and (25) elegantly written as follows

{
bp(x) · ∇z(x) = 0

bps(x, z) · ∇z(x) = sps(x, z)
(28)

counts theminimum amount of equations to have the SfP and
SfPS problem unified under a single differential framework.

4.1 Numerical Approach to the Shape from
Polarisation and Photometric Stereo

For computing the sinusoid given by the parameters (I+, I−,
θ ), we avoid the standard procedure taking only the images
I0, I π

4
and I π

2
(Wolff 1994a) since it performs poorly in

practice, as differences between different polarisation images
are very small and hence sensitive to noise.

With the aim to maximise robustness to noise, we capture
several images I1 . . . In at polarisation angles θ1 . . . θn . By
re-arranging (3) as

I (θpol) = I++I− cos(2θpol) cos(2θ)+I− sin(2θpol) sin(2θ),

(29)

we obtain the following (over-constrained) linear system

⎡
⎢⎣
1 cos(2θ1) sin(2θ1)
...

1 cos(2θn) sin(2θn)

⎤
⎥⎦X =

⎡
⎢⎣
I (θ1)

...

I (θn)

⎤
⎥⎦ . (30)

WithX = [X1, X2, X3]t = [I+, I− cos(2θ), I− sin(2θ)]t .
We solve (30) using L1 relaxation (Candès et al. 2008) and
calculate I− = ‖(X2 + X3)‖2 and θ = atan2(X2, X3).
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Fig. 2 Photometric stereo pair images. Up Lambertian, downCook and
Torrance Specular

Finally, I0, and I π
4
are recalculated using (3)with the robustly

estimated sinusoidal parameters and used to find the level-set
with (17).

The polarisation equation (17) is stacked along Eq. (25)
giving the following variational problem

min
z

∥∥∥∥
[
bps

bpol

]
· ∇z −

[
sps
0

]∥∥∥∥
L2

+ λ ‖z − z0‖L2 (31)

where λ = 10−5 in the experiments.
Note that the term λ ‖z − z0‖L2 is a zero-order Tikhonov

regularizer that constraints the mean depth and ensures that
the differential problem has a unique solution.

Equation (31) is discretized with finite differences and
solved with simple least squares. Furthermore, since bps and
sps (but not bpol ) implicitly depend on z, the solution of
Eq. (31) is embedded in an iterative process that calculates
all relevant quantities (a, h, bps and sps) by using the current
estimates of the depth values in a similar manner withMecca
et al. (2016). The optimisation is initialised with a flat plane
at the mean distance.

5 Experimental Results

The proposed approach was evaluated with a range of syn-
thetic and real data sets. In addition, we calculated the level
set of the head dataset from Kadambi et al. (2015). The algo-
rithm was implemented in matlab with a total running time

Fig. 3 Top row: Bimba level sets for diffuse (left) and specular (right). The ground truth is shown in green, the calculated in red. Bottom row:
respective errormaps and reconstructions. The mean errors are 8.7◦ and 2.4◦ for the diffuse and specular cases respectively (Color figure online)
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Fig. 4 Upper line: real data degree of polarisation ρ. The scale is black
is ρ = 0, white is ρ > 0.25 for all datasets expect the elephant, which
is more specular hence exhibits higher polarisation, thus has ρ = 1 for
white. Note that the owl statue and face statues gets a very minimal
polarisation compared to the specular cup, the ball and the elephant.

In addition, note that ρ is higher at object boundaries where the zenith
angle φ is higher. On the bottom line: real data level-sets overlaid on
I0. It is assumed that the ball, cup and elephant are purely specular and
the owl and head are purely diffuse

of about twominutes (for the 7x3MPixel images) on a laptop
with a quad, core-i7, 2.6GHz CPU.

It is worth mentioning that this experimental section is
conceived to validate the theoretical concepts of Sect. 3,
where isocontours of the surface have been described through
the proposed differentialmodel (17). Furthermore, 3D recon-
struction using SfP and SfPS as described in Sect. 4 are
provided as proof of concept using the minimal amount of
data, i.e. without aiming at reconstructing highly accurate
shapes. In fact, any outliers to the photometric stereo assump-
tion (mostly shadows and saturated pixels) are expected to
cause artifacts to propagate in a region around them.

5.1 Synthetic Data

First of all, we generated 800×600 pixel synthetic data using
the “bimba” from the AIM@Shape Repository. The data
were rendered with realistic effects including non-uniform
albedo, perspective viewing geometry, and near point light
sources. We generated a Lambertian and a specular dataset,
the latter rendered with the Cook & Torrance BRDF (see
Fig. 2).

We rendered the minimum required polarisation images
I0, I π

4
and I π

2
generated from (3) and assuming index of

refractionμ = 1.6. Finally, tomake the experiments realistic,
we limited the precision of the data to 3 decimal digits1 and
added 0.5% Gaussian noise.

1 Standard cameras offer 10bit precision raw data.

Fig. 5 Several views of the reconstructions obtained by fusing the pho-
tometric stereo pairs of Fig. 1 and the isocontours of Fig. 4
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Fig. 6 Soup plate (up) and billiard ball (down). These two objects have
known geometry and thus serve as quantitative benchmarks for esti-
mating the level-set accuracy. The central part of the plate is relatively
flat and hence it is (manually) segmented out in order to just keep the
comparison with perfectly circular contours

The level sets obtained are evaluated quantitatively by
calculating the angle at each pixel with the level set com-
puted from the ground truth. The mean angular error (MAE)
is used as an overall metric for comparing datasets. For
reconstructing the specular dataset, we used c = 0.25
(see (21)). The results are shown in Fig. 3. We note that
the specular dataset outperforms the diffuse one, due to
the much higher polarisation effects for specular materi-
als.

It has to be noted that these kind of synthetic data do
not model a lot of interesting effects arising in real data
such as self-reflections and semi-transparency (e.g. Fig. 13)
and so their usefulness lies on understanding robustness
to noise for diffuse versus specular reflection as well as
overall geometry. Thus, as diffuse regions with low ele-
vation angle (i.e. almost flat) are quite inaccurate even on
synthetic data, these kind of regions are not expected to per-
form well in real data either (see Fig. 12 where the diffuse,
almost flat region has a very minimal polarisation sine-
wave).

Fig. 7 Level-sets for the two objects of Fig. 6 assuming diffuse polari-
sation. Note how the contours follow concentric circles expect from the
regions where specular reflection dominates: those include the specu-
lar highlights of the plate and the regions of the reflection of the light
sources at left top and bottom and right top of the ball. This transition
from diffuse to specular can be easily understood at a phase plot (Fig. 8)

5.2 Real Data

The setup we used for acquiring data suitable for SfP and
SfPS consists of a FLIR camera FL3-U3-32S2C-CS having
maximum resolution 2080 × 1552 mounting a TECHSPEC
8mm UC series fixed focal length lens, OSRAM Plat-
inum Dragon high power LEDs white and a linear polariser
mounted on a rotary mount with post. We captured images
at polariser angles [−90, −60, −30, 0, 30, 60, 90◦]◦ which
is well above the minimum requirement of three images. To
test the robustness of our approach, experiments with 3 and 5
images are discussed in Sect. 5.2.1. The obtained isocontorus
and reconstructions are shown in Figs. 4 and 5 respectively.
We note that real data experiments confirm the fact that the
level sets aremore accurately calculated on specular than dif-
fuse materials which is a clear advantage of the SfP approach
compared to SfPS.

In addition, we present quantitative evaluation of the
level-set accuracy by using two objects of known geometry;
namely a soup plate and a billiard ball (Fig. 6).
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Fig. 8 Normalised orientation plot for the plate (top) and ball (bottom)
experiments of Fig. 6. We plot cos(θ)+1

2 so as to get an 1 to 1 mapping
between θ ∈ [−π, π) (the orientation of the level-set which encapsu-
lates the two way ambiguity of the azimuth of the normal) and (0, 1]
that is also continues with respect of the circular nature of θ . The dis-
continues phase changes corresponding to transitions between diffuse
and specular regions are clearly visible and the automatic segmentation
using Dollár and Zitnick (2013), Arbelaez et al. (2009) is indicated in
green. Note that the center of the ball is badly lit and “nearly flat” hence
experiencing minimal polarisation with a not so meaningful associated
phase. Finally, note that the number of regions that need to be manually
labeled as diffuse or specular is quite low (5 for the ball,10 for the plate)
compared to doing the classification on a pixel basis, which would be
completely impractical

We segment diffuse from specular regions using the read-
ily available structured Forests edge detector (Dollár and
Zitnick 2013) and hierarchical segmentation of Arbelaez
et al. (2009) with default parameters2 on the normalised
polarisation orientation image (see. Fig. 8). The 180◦ phase
difference between diffuse and specular ensures that the
regions are easily automatically segmented as even for
nearby points on the 2 sides of the boundary of the two
regions, the polarisation sinewaves are significantly different
(see Fig. 12). Finally, one single region manual labelling is
required and the rest are propagated using the segmentation
boundaries.

2 Using code from https://github.com/pdollar/edges.

Fig. 9 Corrected contours with MAE for the plate 5.2◦ and 2.8◦ for the
ball,(by comparing to perfect circles aligned with the ball)

The complete pipeline is then presented from “raw” con-
tours assuming uniform diffuse reflection (Eq. (17)) in Fig. 7,
to phase map segmentation in Fig. 8 to final level-set correc-
tion for specular regions and quantitative evaluation using
the mean angular error (MAE) in Fig. 9.

Finally, another two datasets containing a marble statue, a
glass bottle and a glass bowl are presented in Fig. 13. Most
of the inaccuracies are at the badly illuminated regions like
the top of the bottle. Notice that the strong reflection in the
middle of the bowl does not reduce the quality of the level-
sets. That is because the level-set equation is invariant to type
of illumination; any kind of specular reflection exhibits the
same polarisation phase.

5.2.1 Polarization Angle Uncertainty

In this section we consider the effect of error of the polarisa-
tion angles to the orientation of the level sets. In addition, we
also examine the effect of using different number of polari-
sation images. The experiments are performed using the real
datasets of the plate and billiard ball (see Fig. 6) so as to
be able to get a quantitative evaluation. We note two dis-
tinct cases namely systematic shift of the angles (Fig. 10) and
random“noise” (Fig. 11). The first case corresponds to uncer-
tainty of the zero point of the polariser (something that has
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Fig. 10 Inaccurate polarisation angles experiment(1): a systematic 10◦
shift is introduced to the polarisation angles and this causes a respective
rotation the contours by a similar amount. As expected, the MAE also
exhibits a similar increase reaching 14.1◦ and 14.4◦ respectively (from
5.2◦ and 2.8◦, see Fig. 9)

to be calibrated) and leads to a systematic shift of the phases
and thus rotations of the contours. The second case models
inaccurate rotation of the polariser by simply adding ran-
dom Gaussian noise to the polarisation angles. The level-set
orientation is pretty robust to low levels of angular uncer-
tainty and performs poorly only under unreasonable levels
of noise (as it is unreasonable to expect 20◦ error on the
polarisation angles). Another more surprising conclusion is
the fact that more polarisation images can lead to reduced
quality under high angular uncertainty; this means that the
additional images act as outliers and cause a systematic error
to the level set calculation (Figs.12, 13).

6 Conclusion and Perspective

In this work we present a new differential approach to Shape
from Polarisation leading to a linear PDE that describes
the level-set of the object under observation. By combin-
ing surface depth related parameters into the polarisation
image formation, we derived an homogeneous linear PDE

Fig. 11 Inaccurate polarisation angles experiment(2) : random noise
is introduced to the polarisation angles to model uncertainty of the
rotation of the polariser. We consider 6 datasets namely the billiard ball
and the plate with 3 (minimum possible), 5 and 7 polarisation angles.
We also consider 4 Gaussian noise levels i.e. 0◦, 5◦, 10◦ and 20◦ of
standard deviation for polarisation angle error. Not surprisingly, the
higher the uncertainty of the angles, the higher the error expect for the
3 angles plate experiment which essentially fails with any noise level.
An interesting observation is the fact that for the ball experiment, the
5 angles case performs better than the 7 angles one under heavy noise
levels. This signifies that the additional redundancy of the additional
images is only useful if the polariser is calibrated properly, otherwise
it acts as an outlier and reduces performance. Of course, in reality the
polarisation angles will have uncertainties closer to around 5◦, and this
does not seem to cause significant performance drops

that describes the geometry of the surface through its iso-
contours.

This approach allows to have equivalent formulations for
diffuse and specular light reflection since the shift of the
phase corresponds to the same shift of the vector field describ-
ing the level-set. From the experimental point of view, this
newmodel permits to distinguish diffuse regions from specu-
lar region very easily and then characterise the shape through
its level-set entirely. The fully automatic procedure for sep-
arating diffuse from the specular reflection is an interesting
future work. This could be accomplished with some sort of
global consistency optimisation (such as graph-cut) which
can also take into account the fact that pixelswith high degree
of polarisation are necessarily specular; for diffuse polarisa-
tion, ρ peaks around 0.4 (Atkinson and Hancock 2005).

With the aim of providing full 3D shape recovery, we
added shading cues using accurate Photometric Stereomodel
describing sharing information from a point light source with
perspective deformation and diffuse/ specular reflection. We
showed that the new Shape from Polarisation differential for-
mulation merges very elegantly into a system of hyperbolic
PDEs which is albedo independent and well-posed by con-
sidering two lights sources at least.
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Fig. 12 Detailed examination of the polarisation sequence sine-waves
for 2 points on the transition between diffuse and specular regions dif-
fuse (middle) versus specular (bottom). Notice that the 180◦ sine phase
change corresponds to 90◦ rotation of the contours. In addition, ρ is
significantly higher in the specular region

Fig. 13 On the top for each pair one of the input polarised images. On
the bottom the level-sets of the objects
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By introducing this level-set characterisation for theShape
from Polarisation problem, there could be several extension
formerging this problemwith others likemulti-vieworShape
from Defocusing.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

Arbelaez, P., Maire, M., Fowlkes, C., & Malik, J. (2009). From con-
tours to regions: An empirical evaluation. In IEEE Conference on
computer vision and pattern recognition, 2009 (CVPR 2009) (pp.
2294–2301). IEEE.

Atkinson, G. A., & Hancock, E. R. (2005). Multi-view surface recon-
struction using polarization. In International conference on com-
puter vision (ICCV) (pp. 309–316).

Atkinson, G. A., & Hancock, E. R. (2006). Polarization-based surface
reconstruction via patch matching. In Conference on computer
vision and pattern recognition (CVPR) (pp. 495–502).

Atkinson, G. A., & Hancock, E. R. (2006). Recovery of surface ori-
entation from diffuse polarization. IEEE Transactions on Image
Processing, 15(6), 1653–1664.

Atkinson, G. A., & Hancock, E. R. (2007). Shape estimation using
polarization and shading from two views. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), 29(11), 2001–
2017.

Atkinson, G. A., & Hancock, E. R. (2007). Surface reconstruction
using polarization and photometric stereo. In Computer analysis
of images and patterns (CAIP) (pp. 466–473).

Blinn, J. F. (1977). Models of light reflection for computer synthesized
pictures. InConference on computer graphics and interactive tech-
niques (SIGGRAPH).

Bruckstein, A. M. (1988). On shape from shading. Computer Vision,
Graphic, and Image Processing, 44(2), 139–154.

Candès, E. J., Wakin, M. B., & Boyd, S. P. (2008). Enhancing sparsity
by reweighted l1 minimization. Journal of Fourier Analysis and
Applications, 14(5), 877–905.

Chandraker, M., Bai, J., & Ramamoorthi, R. (2013). On differen-
tial photometric reconstruction for unknown, isotropic BRDFs.
IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 35(12), 2941–2955.

Chen, T., Lensch, H. P. A., Fuchs, C., & Seidel, H. P. (2007). Polariza-
tion and phase-shifting for 3d scanning of translucent objects. In
Conference on computer vision and pattern recognition (CVPR)
(pp. 1–8).

Davis, P. A., & Soderblom, L. A. (1984). Modeling crater topography
and albedo from monoscopic viking orbiter images: 1. Method-
ology. Journal of Geophysical Research: Solid Earth, 89(B11),
9449–9457.

Dollár, P., & Zitnick, C. L. (2013). Structured forests for fast edge
detection. In ICCV.

Drbohlav, O., & Sara, R. (2001). Unambiguous determination of shape
from photometric stereo with unknown light sources. In Interna-
tional conference on computer vision (ICCV) (pp. 581–586).

Huynh, C. P., Robles-Kelly, A., & Hancock, E. R. (2013). Shape and
refractive index from single-view spectro-polarimetric images.
International Journal of Computer Vision (IJCV), 101(1), 64–94.

Kadambi,A., Taamazyan,V., Shi, B.,&Raskar, R. (2015). Polarized 3d:
High-quality depth sensingwith polarization cues. In International
conference on computer vision (ICCV) (pp. 3370–3378).

Koshikawa, K. (1979). A polarimetric approach to shape understanding
of glossy objects. In International Joint conference on artificial
intelligence (IJCAI) (pp. 493–495).

Martinez-Herrero, R., Mejias, P. M., & Piquero, G. (2009). Character-
ization of partially polarized light fields. Berlin: Springer.

Mecca, R., & Falcone, M. (2013). Uniqueness and approximation of a
photometric shape-from-shading model. SIAM Journal on Imag-
ing Sciences, 6(1), 616–659.

Mecca, R., Logothetis, F., & Cipolla, R. (2017). A differential approach
to shape from polarization. In British machine vision conference
(BMVC)

Mecca, R., Quéau, Y., Logothetis, F., & Cipolla, R. (2016). A sin-
gle lobe photometric stereo approach for heterogeneous material.
SIAM Journal on Imaging Sciences., 9, 1858–188.

Mecca, R., Wetzler, A., Bruckstein, A., & Kimmel, R. (2014). Near
field photometric stereo with point light sources. SIAM Journal on
Imaging Sciences, 7(4), 2732–2770.

Miyazaki, D., & Ikeuchi, K. (2005). Inverse polarization raytracing:
estimating surface shapes of transparent objects. In Conference on
computer vision and pattern recognition (CVPR) (pp. 910–917).

Miyazaki, D., & Ikeuchi, K. (2007). Shape estimation of transparent
objects by using inverse polarization ray tracing. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (PAMI),
29(11), 2018–2030.

Miyazaki, D., Kagesawa, M., & Ikeuchi, K. (2003). Polarization-based
transparent surfacemodeling from twoviews. In International con-
ference on computer vision (ICCV) (pp. 1381–1386).

Miyazaki, D., Kagesawa,M., & Ikeuchi, K. (2004). Transparent surface
modeling fromapair of polarization images. IEEETransactions on
Pattern Analysis and Machine Intelligence (PAMI), 26(1), 73–82.

Miyazaki, D., Shigetomi, T., Baba, M., Furukawa, R., Hiura, S., &
Asada, N. (2012). Polarization-based surface normal estimation
of black specular objects from multiple viewpoints. In Conference
on 3D imaging, modeling, processing, visualization transmission
(3DIMPVT) (pp. 104–111).

Morel, O., Ferraton, M., Stolz, C., & Gorria, P. (2006). Active lighting
applied to shape from polarization. In International conference on
image processing (ICIP) (pp. 2181–2184).

Nayar, S. K., Fang, X. S., & Boult, T. (1993). Removal of specularities
using color and polarization. In Conference on computer vision
and pattern recognition (CVPR) (pp. 583–590).

Ngo, T. T., Nagahara, H., & Taniguchi, R. I. (2015). Shape and light
directions from shading and polarization. In Conference on com-
puter vision and pattern recognition (CVPR) (pp. 2310–2318).

Papadhimitri, T.,&Favaro, P. (2013).Anewperspective on uncalibrated
photometric stereo. In Conference on computer vision and pattern
recognition (CVPR).

Prados, E., & Faugeras, O. D. (2005). Shape from shading: A well-
posed problem? In: Conference on computer vision and pattern
recognition (CVPR).

Rahmann, S., & Canterakis, N. (2001). Reconstruction of specular
surfaces using polarization imaging. In Conference on computer
vision and pattern recognition (CVPR) (pp. 149–155).

Saito, M., Sato, Y., Ikeuchi, K., & Kashiwagi, H. (1999). Measurement
of surface orientations of transparent objects using polarization in
highlight. In Conference on computer vision and pattern recogni-
tion (CVPR) (p. 386).

Smith, W. A. P., & Fang, F. (2016). Height from photometric ratio with
model-based light source selection. Computer Vision and Image
Understanding, 145, 128–138.

Smith, W. A. P., Ramamoorthi, R., & Tozza, S. (2016). Linear depth
estimation from an uncalibrated, monocular polarisation image. In
European conference on computer vision (ECCV) (pp. 109–125).

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


International Journal of Computer Vision

Taamazyan, V., Kadambi, A., & Raskar, R. (2016). Shape from mixed
polarization. arXiv preprint arXiv:1605.02066.

Tankus, A., Sochen, N. A., & Yeshurun, Y. (2003). A new perspective
[on] shape-from-shading. In International conference on computer
vision (ICCV) (pp. 862–869).

Torrance,K.E.,&Sparrow,E.M. (1967). Theory for off-specular reflec-
tion from roughened surfaces. The Journal of the Optical Society
of America, 57(9), 1105–1114.

Tozza, S., Smith, W. A. P., Zhu, D., Ramamoorthi, R., & Hancock, E.
R. (2017). Linear differential constraints for photo-polarimetric
height estimation. In International conference on computer vision
(ICCV).

Umeyama, S., & Godin, G. (2004). Separation of diffuse and specular
components of surface reflection by use of polarization and statis-
tical analysis of images. IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), 26(5), 639–647.

Wang, F.,Ainouz, S., Petitjean,C.,&Bensrhair,A. (2016). Polarization-
based specularity removal method with global energy minimiza-
tion. In International conference on image processing (ICIP) (pp.
1983–1987).

Wolff, L. B. (1994). Polarization camera for computer vision with a
beam splitter. Journal of the Optical Society of America A, 11,
2935–2945.

Wolff, L. B. (1994). Scene understanding from propagation and
consistency of polarization-based constraints. In Conference on
computer vision and pattern recognition (CVPR) (pp. 1000–1005).

Wolff, L. B., & Boult, T. E. (1991). Constraining object features using
a polarization reflectance model. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 13(7), 635–657.

Yu, Y., Zhu, D., & Smith, W. A. P. (2017). Shape-from-polarisation: A
nonlinear least squares approach. In International conference on
computer vision workshops (ICCV).

Zhu, Q., & Shi, J. (2006). Shape from shading: Recognizing the moun-
tains through a global view. InConference on computer vision and
pattern recognition (CVPR) (pp. 1839–1846).

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1605.02066

	A Differential Approach to Shape from Polarisation: A Level-Set Characterisation
	Abstract
	1 Introduction
	2 Previous Works
	3 Shape from Polarization: A Differential Approach
	3.1 Camera Parameterisation
	3.2 Polarization Imaging
	3.3 The Differential Model for the Shape from Polarisation
	3.4 Specular polarisation

	4 Enhancing SfP with Two-Lights Photometric Stereo
	4.1 Numerical Approach to the Shape from Polarisation and Photometric Stereo

	5 Experimental Results
	5.1 Synthetic Data
	5.2 Real Data
	5.2.1 Polarization Angle Uncertainty


	6 Conclusion and Perspective
	References




