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Abstract

It is known that the deformations of the appar-
ent contours of a surface under perspective projection
and viewer motion enable the recovery of the geome-
try of the surface, for example by utilising the epipolar
parametrization. These methods break down with ap-
parent contours that are singular i.e. with cusps. In
this paper we study this situation in detail and show
how, nevertheless, the surface geometry (including the
Gauss curvature and mean curvature of the surface)
can be recovered by following the cusps. Indeed the for-
mulae are much simpler in this case and require lower
spatio-temporal derivatives than in the general case of
nonsingular apparent contours. We give a simulated
example, and also show that following cusps does not
by itself provide us with information on ego-motion.

1 Introduction

For smooth curved surfaces an important image fea-
ture is the profile or apparent contour. This is the
projection of the locus of points on the surface which
separates the visible and occluded parts. Under per-
spective projection this locus — the critical set or con-
tour generator, ¥ — can be constructed as the set of
points on the surface where rays through the projec-
tion centre c are tangent to the surface. Each view-
point will generate a different contour generator with
the contour generators ‘slipping’ over the visible sur-
face under viewer motion. If we want to associate a
contour generator with a particular projection centre
c(t) at time ¢, then we can write it as X(t).

The contour generators give rise to visible ‘appar-
ent contours’ or ‘profiles’ in the image. Giblin and
Weiss [8] showed how, under orthogonal projection
and with a special class of motions, these apparent
contours determine the surface, and hence all its geom-
etry. Cipolla and Blake [4] generalised this to perspec-
tive projection and arbitrary, but known, motion. In
order to simplify the analysis, they used the epipolar
parametrization: the correspondence between points
of apparent contours on successive snapshots is set up
by matching along epipolar lines. The parametriza-
tion is especially suited to the recovery of surface ge-
ometry by an active explorer making deliberate viewer
motions around an object of interest and it has been
successfully implemented in various systems [4, 14].

There are however several cases in which this
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parametrization is degenerate and so can not be used
to recover the local surface geometry. One case of
degeneracy occurs at a point of a contour generator
where the ray through the projection centre is tangent
not only to the surface but also to the contour gener-
ator. Close to such a point, the epipolar parametriza-
tion becomes ill-conditioned, and it is impossible to
use contour generators and epipolar curves as a local
coordinate grid on the surface. The geometrical condi-
tion for this degeneracy to occur is that we are viewing
a hyperbolic surface patch along an asymptotic direc-
tion [12, pp.422,437]. For a transparent surface the
effect on the apparent contour is to generate a cusp.
For opaque surfaces, however, only one branch of the
cusp is visible and the contour ends abruptly [10, 11],
[12, p.422]. We call such a surface point a cusp gener-
ator point and the corresponding image point simply
a cusp point. Under viewer motion the locus of the
cusp generator points on the surface defines the cusp
generator curve, while in the image the locus of cusp
points defines the cusp locus.

Cusp points are extremely visible in the images of
transparent objects and in X-ray imaging. Inspection
of machine components such as turbine blades and bio-
logical organs increasingly exploits 3D reconstruction
from X-ray images [13]. The corresponding contour
endings for opaque objects are more difficult to de-
tect, but Figure 1 shows real images obtained from
a sculpture by Henry Moore in the Yorkshire Sculp-
ture Park in England. A smooth profile (top) deforms
through a ‘swallowtail transition’ into two cusps. In
the lower two pictures the visible contour ending has
been marked; the other branch and cusp is occluded
by the opaque surface.

An entirely different degeneracy of the epipolar
p]aramterization occurs at ‘frontier points’. See [1, 6,
9].

In this paper we show that, despite the failure of
the epipolar parametrization along the cusp generator
curve, the special geometry of cusps can be used to
advantage to produce an alternative parametrization
using the cusp generator curve itself. This leads to a
simplified formula for Gauss curvature, involving only
first-order temporal derivatives in place of the second-
order temporal and spatial derivatives required in the
non-cusp case [4, §4]. Giblin and Soares [7] presented
a first attempt to relate local surface geometry (Gauss



Figure 1: Sequence of real images with the lower two
showing a moving contour ending

and mean curvatures and principal directions) to the
image motion of cusps under orthographic projection
and planar viewer motion. We extend this here to
arbitrary nonplanar, curvilinear viewer motion under
perspective projection. We give a simulated example,
where it is possible to calculate the true Gauss curva-
ture and compare with that measured from the cusp
locus in the image. We also investigate the problems
and ambiguities in attempting to recover egomotion
from the image motion of cusp points.

2 The cusp generator and locus of

cusps

As our camera centre c(¢) moves in space, the con-
tour generator ¥ on the surface M and the appar-
ent contour in the image sphere will change. In this
paper, we are concerned with the case where the ap-
parent contours all have cusps, which means that, for

Figure 2: The case considered in this paper: the cusp
generator curve L is nonsingular and transverse to the
contour generators . Also the cusp locus in the image
sphere (not shown) is nonsingular.

each ¢, some viewline from c(t) to the surface is not
merely tangent at the corresponding point r € M but
is asymptotic there.

Each t then gives rise to one or more points r of
M where an asymptotic ray passes through c(t); these
points r make up what we call the cusp generator curve
L on M. In the image sphere there is a corresponding
locus of points (unit vectors) p which we call the locus
of cusps C. As in [4] we can also rotate the camera rel-
ative to the world frame by a rotation R(¢) depending
on t. Then we have new ‘rotated’ coordinates q where

p = Rq (in [4] p, q appear as Q, Q respectively).

In what follows we consider only a generic mo-
tion ¢. The nature of the two curves L,C depends
on the disposition of ¢ relative to certain surfaces in
space, namely the ruled (developable) surface of ‘cylin-
der axes’ ([12, p.298]) and the ruled surface of ‘flec-
nodal rays’ ([12, p.282]). When the motion ¢ crosses
one of these surfaces the apparent contours undergo
‘lips/beaks’ or ‘swallowtail’ transitions [12, p.458]. For
the remainder of this paper we assume that our mo-
tion avoids these two surfaces. A typical picture of
contour generators, cusp generator curve L and mo-
tion c is shown in Figure 2. A crucial feature is that
the cusp generator curve L is smooth and transverse
(non-tangential) to the smooth contour generators ¥
on the surface M. Also the locus of cusps C in the
image is smooth.



3 Using the cusp locus to obtain geo-

metric information on the surface

In this section we show that by ‘following cusps’ we
can obtain the Gauss curvature of the surface M wus-
ing only first order derivatives of the motion and cusp
locus. This is in sharp contrast with the general situa-
tion [4] where we need to use second-order derivatives
both in time and space. We also compare the motion
of the cusp with the motion of a ‘feature’ attached to
the surface and show that their relative speed gives
us a constraint on the motion. Note that L, being
transverse to the (smooth) contour generators ¥, is
parametrized by t, that is, L can be written as a set of
points r(t) on M. (When c crosses the special surfaces
mentioned in §2 above, this fails.)
3.1 Parametrization using the cusp gener-

ator curve L

There is an important consequence of the transver-
sality of L and the contour generators X(¢) on the
surface M. Namely, M can be parametrized (locally)
as r(t,u) where ¢ is time and u is another parameter,
in such a way that r(¢,0) is the cusp generator curve
L. This parametrization can be regarded as replacing
the epipolar parametrization when the latter becomes
degenerate, as it does along L. The image consists of
points (unit vectors) p(¢,u), where as usual

r(t,u) = c(t) + Ap(t,u).

For fixed t p(t,u) gives the apparent contour and for
u = 0 and a given ¢ it gives the cusp on that apparent
contour. In this situation p,(¢,0) = 0 for every ¢, since
the cusp is a singular point of the parametrization of
the apparent contour.

The normal to M is parallel to the limiting normal
to the apparent contour at p(¢,u) as u — 0, that is,
the limit as a apparent contour point approaches the
cusp. Thus the surface normal n remains detectable
from the image; in fact

n is parallel to p A pyy for ordinary cusps. (1)
See the Appendix. The depth formula [4, Eqn.(32)]
A= —c;.n/pi.n (2)

remains unchanged for this situation, but the for-
mula for Gauss curvature K [loc. cit., §4.3.4], is
based on Koenderink’s famous relationship [12, p.433]
K = kPk!/)\, where kP is the (geodesic) curvature of
the apparent contour in the image sphere and x! is
the ‘transverse’ curvature of M in the direction of the
viewline. In our situation this takes the form oo x 0
and so is invalid.

3.2 New formulae for depth and curvature

In what follows we shall parametrize the cusp locus
L on M by t, writing it as simply r(t), which cor-
responds to r(¢,0) in §3.1 above. In fact, our main
result here concerns any curve r(¢) on M which is
parametrized by t¢; the main application is certainly
to the case where, as above, this is the cusp generator
curve L. The curve on M has an image p(t) (and a

corresponding image q(¢) in rotated coordinates). We
suppose that, at ¢ = 0, the point p(0) is a singular
apparent contour point (a cusp), i.e. that r(0) € L.
Thus we assume that r(0) is on L, but, for deduc-
ing the results below, it does not matter whether r(t)
continues to be a point of L.

We write A for the depth, that is the distance from
¢(0) to r(0), K for Gauss curvature at r(0), n for the
surface normal there, which is parallel to the (limiting)
normal to the apparent contour at the cusp, and t =
n A p, which is parallel to the cuspidal tangent. A
sketch of the proof of the following proposition is given
in the Appendix. (See also [5].)

Proposition 3.1 In the above setup,

(c¢m)t

[pvctvpt]2 = _Wv (3)
(Pt-n)4
K = ———| 4
[p,Ct,pt]2 ( )
c;.n c;.t

pit = Eﬁ—%, (5)

ci.n
pt.n = _tTa (6)

where all quantities are evaluated att = 0 and € is £1,
given by the sign of the triple scalar product [p, ct, pt)-
(Note in passing that with the epipolar parametrization
p(t,u), p, p: and c; are coplanar, so this triple scalar
product is zero.)

Notes on the Proposition

1. The remarkable thing about the formula for K is
that it involves only first derivatives in time, and
no derivatives in space. This is in contrast with
the formula in [4, §4], where second derivatives in
both space and time are required.

2. There is a similar formula [5] for the mean cur-
vature H. In fact, the whole second fundamen-
tal form can be derived, knowing K, H and an
asymptotic direction (along the viewline r — c).

3. If p(t) is the image of a fized point of M (i.e.
r = c(t) + M(t)p(t) for a constant r), then the
image velocity is

p, = AP AP _ plerp) —
! A ) '
Let us take the scalar product with the normal n
and the tangent t, both of which are perpendic-
ular to p, and compare with (5), (6). We deduce
that the image of a fixed point and the image of

a surface curve (for example, the cusp generator
curve L) have relative velocity of magnitude

C¢.11
A2/ -K

along the cuspidal tangent. This should be com-
pared with the calculations in [4, §5], where it



is the derivative of parallax which has a nonzero
value. Note that this moving of the image of the
cusp away from the epipolar direction followed
by the fixed feature gives a way of distinguishing
cusps from fixed features. Compare [3].

4 An example and a simulated experi-
ment

4.1 A general calculation

When the surface M is given by an equation
z = h(xz,y), and the camera motion is given by
a vector-valued function c(t) = (c1(t),ca(t),cs(t)),
then it is easy to write down the conditions which
must be satisfied by the cusp generator curve r(t) =
(z(t),y(t), h(z(t),y(t))) on M. There are two condi-
tions, both of which are obtained in the same way, as
follows. Consider, for a fixed ¢, the line joining r(¢) to
c(t). This line consists of points (omitting the variable

£)
r4p(r—e) = (@+p(@—c), y+uly—c), z4+nz—cy)),

where p is an arbitrary real number, taking the value
0 at r(¢). This line meets the surface where

z+p(z—c3) =h(z+pe—c)y+ply—c)). (7)

This equation for p naturally has p = 0 as a solution;
we want to impose the conditions that u = 0 is a triple
solution, since this means that the line has contact
3 with the surface, i.e., that it is in an asymptotic
direction. Thus we want the equations obtained by
differentiating (7) once and twice with respect to p
to hold. With a little manipulation these come to
(writing X for ¢ —¢; and Y for y — ¢2)

(X:Y:h(x:y) _03)'(_hz:_hy>1) = 0, (8)
hoeX? 4 2hey XY + by, Y2 = 0. (9)

Here, h and its derivatives are evaluated at (z(t), y(t)).
Of course, (8) says merely that r — c is perpendicular
to the normal to M, which is the contour generator
condition.

4.2 A special example

Let us apply the above to the surface M with equa-

tion 1

z=h(z,y) = —zy + §(w3 + 7).

Let us further consider the straight line motion c(t) =
(c1(t),ca(t), ca(t)) = (1 +¢,2t,3t). See Figure 3. We
show how to use the formula (4) above to obtain the
Gauss curvature of M at the origin. Note that this
curvature is actually —1 from the equation of the sur-
face. In the next subsection we present a simulated
experiment based on the same surface.

First we use (8), (9) to find out about the cusp
generator curve on M close to the origin. Consider a
curve in the z, y parameter plane, passing through the
origin:

r=atFaat’ 4+, y=yit+ytt ..

Figure 3: Graph of h(x,y) = —xy+(1/3)(23+y?) and
c(t) = (1 +1,2t,3t)

We substitute these into (8). Comparing coefficients
of t gives y; = —3 and comparing coefficients of ¢
gives y» = x? — 8r + 3. That is, y; is fixed but we
can choose z; and then deduce y,. If we use (9) as
well, then the curve on M is determined uniquely; the
expansion of (z,y) starts off

(5t + 3262 + ..., =3t —12t>+..)).

But to use the formula (4) for K (and the correspond-
ing formula for the mean curvature) we do not need no
know any more than y1, which comes from the condi-
tion that r(t) lies on the contour generator X(t).

In fact, the image p(t) of the curve r(¢) comes to
=3t+...),

(=14+..., =5t+...,

where in each case ... stands for terms of degree 2
or higher. This uses only y; = —3, not the extra
conditions obtained from (9). Therefore, at t = 0,
where we have the surface normal n equal to (0,0, 1),
we have p;.n = —3. Also ¢; = (1,2, 3) (for any ¢ in our
example), and p(O) = (_17070)7 S0 [pvctapt] = -9
and (4) gives K = —(-3)*/(-9)? = —1.

In the general argument of the Appendix, we sim-
plify the calculation a little by using, instead of the
image sphere, an image plane tangent to this sphere
at (—1,0,0), but the principle of the calculation is
identical to that in the example just given.

4.3 A simulated experiment

We now present an example in the form of a sim-
ulated experiment. This has the advantage that we
know the Gauss curvature and depth of the test sur-
face M, so can check on the accuracy of the results



Time | Measured | Actual | Measured | Actual
t K K A A
0.00 -1.08 -1.00 0.99 1.00
-.02 -1.00 -1.00 1.10 1.08
-.04 -1.03 -0.99 1.14 1.16
-0.06 -1.09 -0.98 1.25 1.25

Table 1: Values of K and X calculated from the data
and compared with exact values (2 d.p’s).

obtained by using the depth formula (2) and the for-
mula (4) for K above. In these formulae we will es-
timate the derivative p; by taking values at discrete
time intervals.

We use a simple difference algorithm to estimate the
derivative. In fact we take five consecutive positions
on the image curve p(t), given by ¢t = to — 2h,ty —
h,to,to + h,to + 2h, approximate the image curve C'
by a polynomial curve C’ of degree 4, and use the
derivative of C" at t = 0 as our approximation. This
gives the approximate formula for p¢(tp):

P(to — 2h) —8p(to — h) + 8p(to + 1) — p(to + 2h)
12h

where h is the time difference between observed cusp
points.

We use the same example as in §3, namely M is the
graph of the function h(z,y) = —zy + (1/3)(z* + y?)
and the camera motion we take is the straight line
trajectory, c(t) = (1 + ¢, 2t,3t) (Figure 3). Thus c¢; is
the constant vector (1,2,3

Table 1 shows the results of our calculations for
some different times, and gives the exact analytically
calculated values.

5 General motion constraint

Here, we show that in a certain precise sense there
is no general constraint on the motion obtainable from
following cusps (see the remark at the end of this sec-
tion). In fact we show that, using the locus of cusps
as a parametrized curve q(t) (using rotated coordi-
nates) in the sphere, and using also the normal lines
to the cusps, there cannot be any constraint on the
motion. Explicitly, we claim the following, where ¢
is a real number lying in some (small) open interval
t1 <t<ts.

Theorem: Suppose that q(t),n(t) are given smooth
families of orthogonal unit vectors, that R(t) is a
smooth family of 3-dimensional Totations, and that
c(t) is a smooth space curve. Then we can find a
smooth surface M in 3-space for which q(t) is the lo-
cus of cusps of apparent contours arising from camera
centres c(t), with rotated coordinates q (p = R(q) in
the usual notation) and R(t)(n(t)) is the normal to
the apparent contour at the cusp point.

Proof Let p(t) = R(t)q(t) and replace also n by its
unrotated form R(t)n(t) (we shall continue to use n).
We then seek a surface M with the following proper-
ties:

e for each ¢, there is a point r(t) = c(t) + A(t)p(t)
on M for some A(t),

e the normal to M at r(t) is n(t),

e for each t, the vector p(¢) is in an asymptotic
direction at r(t) (this ensures that the apparent
contour at ‘time’ ¢ has a cusp at the apparent
contour point ¢(t) + p(t)).

There is no choice for the function A, since we
require (using subscripts to denote differentiation as
usual) r; = ¢+ Ap:+A¢p, and since n(¢) is required to
be normal to the surface, we deduce the usual formula
A(t) = —c¢.n/pi.n, noting here that p is a function of
one variable t, since it gives the position of the cusp
(in unrotated p coordinates).

We now have a space curve r(t), and, along that
curve, we shall require our surface M to have normal
n(t) (for this is parallel to the apparent contour nor-
mal in the unrotated coordinates). This gives us a
‘surface strip’ in the language of Koenderink [12].

The final requirement on M is that, at each point
r(t), an asymptotic direction is in the specified direc-
tion p(¢). This amounts to saying that, in the direc-
tion p(¢), the sectional curvature of M is zero, that is
the section of M by the plane through r(¢) contain-
ing p(t) and n(¢) has an (ordinary) inflexion at r(¢).
There is no difficulty in constructing an M with this
property, so long as the asymptotic direction does not
actually coincide with the tangent to the curve r(t).
But in that case it is easy to check that the locus of
cusps p(t) in the image sphere would be singular.
Remark The last two formulae in Proposition 3.1 de-
scribe the relative motion between (i) the image of a
fixed surface marking and (ii) the locus of cusps, or
indeed the image of any other locus on the surface
provided this is parametrised by ¢t and starts at a cusp
point in the image. We can use these formulae, and
the others in Proposition 3.1 to derive a constraint on
motion. See [5].

A Appendix:Sketch of Proof of Equa-
tion (1) and Proposition 3.1

First, we prove (1). At nonsingular points of the
apparent contour the tangent direction is that of py,
or of the unit vector p, = pu/ || Pu || - Note that
at an ordinary cusp the limit of this does exist. By
I’Hopital’s rule, the limit coincides with the limit of
Puu/Pu-Puu, the denominator here being the deriva-
tive of || py ||- Now at an ordinary cusp, by definition,
the second and third derivatives pyu, Puwu are inde-
pendent (compare [2, p.155]), and in particular py,, is
non-zero. Thus the limit of the above expression has
direction that of py,, i-e., the limiting tangent has the
latter direction. Hence the limiting normal is in the
direction p A puu-



Results like Proposition 3.1 can be readily proved
by setting up the surface in ‘Monge form’, that is as a
graph z = h(z,y) with the tangent plane at the origin
coinciding with the z,y plane, i.e. h = h, = h, =0 at
x =y = 0. (Compare Figure 3.) We can in the present
case also assume that the z-axis is along an asymptotic
direction at the origin, and that our camera centre is
initially situated on the z-axis, at (1,0, 0) say, so that
the apparent contour does have a cusp at time zero.
This amounts to saying that the surface can be taken
to have the form

z = h(z,y) = byxy + boy® + higher order terms.

In particular the Gauss curvature K at the origin is
—b?. The camera centres c(t) = (¢ (t), c2(t), c3(t)) can
be taken as
()\() +C11t+...,621t+...,631t+...).

Because coordinates in the image sphere are diffi-
cult to work with, it is advantageous to project the
sphere of radius 1 centred at the origin, outwards
from the centre, on to the plane x = —1, by the map
(z,y,2) = (—y/xz,—z/x). For t = 0 our vector p will
be in the direction r — ¢, which is —¢c = (=X, 0,0).
Hence the initial value of the unit vector p is (—1,0,0).
Taking any curve p(t) = (pi(t),p=(t),ps(t)) on the
sphere, passing through (—1,0,0) when ¢ = 0, we can
project this outwards on to the plane x = —1. Fur-
thermore, it is easy to check that the first two deriva-
tives of p at ¢ = 0 are precisely the same as the first
two derivatives at 0 of the planar curve. Note that if
we start with a curve r(t) = (z(t),y(t), h(z(t),y(t))
on M, find the corresponding image curve p(t) =
(r(t)—c(t))/||x(t)—c(t)]| and then project outwards to
the plane, the resulting plane curve has the reasonably
simple form

(r:z(t) —y(t) cs(t) —h((z(t), y(t))>
) —er(t)” x(t) —ea(t) '

When we take a curve z(t) = z1t+...,y(t) = yit+
...,z = h(z,y) on the surface M, we can write down
the condition that the point r(¢) of this curve with
parameter ¢ lies on the contour generator of the motion
at time ¢, i.e. that (r(¢t) — c(t)).n(t) = 0 where n =
(—=hg,—hy,1) is a normal vector to M. Comparing
coefficients of powers of ¢ this gives rise to a sequence
of equations which express the coefficients 1, ¥, - . . of
the curve in terms of surface and motion coefficients.
These equations begin with y1 = ¢31/(Xob1), and in
fact this is the only one needed here. The normal n
and tangent t at ¢ = 0 can be taken as (0,0,1) and
(0,—1,0) respectively. The derivative of the image
curve at ¢ = 0 comes to

031 021 —C31
—_ - — . 1

Furthermore [p,ct, pi] at ¢ = 0 comes to ¢3, /(A3b1),
and using K = —b} gives (3). Note that [p,c, py]

has the sign of b;. The usual depth formula A =
—c;.n/py.n gives (4). Interpreting the terms of (10)
gives the other two formulae (5) and (6).
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