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Abstract. Dependence on landmark points or high-order derivatives
when establishing correspondences between geometrical image curves un-
der various subclasses of projective transformation remains a shortcom-
ing of present methods. In the proposed framework, geometric transfor-
mations are treated as smooth functions involving the parameters of the
curves on which the transformation basis points lie. By allowing the basis
points to vary along the curves, hypothesised correspondences are freed
from the restriction to fixed point sets. An optimisation approach to lo-
calising neighbourhood-validated transformation bases is described which
uses the deviation between projected and actual curve neighbourhood to
iteratively improve correspondence estimates along the curves. However
as transformation bases are inherently localisable to different degrees,
the concept of geometric saliency is proposed in order to quantise this
localisability. This measures the sensitivity of the deviation between pro-
jected and actual curve neighbourhood to perturbation of the basis points
along the curves. Statistical analysis is applied to cope with image noise,
and leads to the formulation of a normalised basis likelthood. Geomet-
rically salient, neighbourhood-validated transformation bases represent
hypotheses for the transformations relating image curves, and are further
refined through curve support recovery and geometrically-coupled active
contours. In the thorough application of this theory to the problem of
detecting and grouping affine symmetric contours, good preliminary re-
sults are obtained which demonstrate the independence of this approach
to landmark points.

1 Introduction

Establishing correspondences between points in images or 3D structure models
in databases is often an integral part of solving key problems in computer vision.
The choice of correspondences is largely determined by the localisability of the
points, and methods such as cornerness detectors [7] have been proposed to
extract these interest points from models and images. In cases such as stereo
vision and motion, correspondences between interest points are hypothesised
through the use of intensity correlation techniques [1] with the assumption that
point features in the different images do not differ much.

Methods based solely on the geometry of the contours are certainly more ap-
plicable in problems such as object recognition and pose identification. Various



strategies for identifying salient points and regions on contours have been sug-
gested [10, 5] but they are seldom invariant beyond similarity transformations.
More appropriately, landmark points such as corners and inflection points are
used, eg. to compute algebraic invariants for comparison purposes [15]. Although
less computationally expensive than Hough methods [1] and more stable than
using high-ordered differential invariants [8], the shortfall of this approach lies in
the dependence on the availability and accurate localisation of landmark points.

Similar difficulties are also encountered in the detection of image contours
which are geometrically related by properties such as parallel or skewed symme-
try [11, 9, 6]. The recovery of the geometric transformations in these situations
will facilitate the grouping of geometrically related contours which may be frag-
mented due to occlusion and background clutter. For general classes of objects,
the grouping provided by geometry is an enhancement over traditional methods
of perceptual grouping. Results by West and Rosin [13], Zerroug and Nevatia [14]
and Zisserman et al. [16] for the recovery of the contours of surfaces of revolu-
tion and canal surfaces are promising, although the correspondences are found
only if specific image features are located.

In this paper, a general theory of geometric curve-based correspondence
is proposed. We initially discuss general approaches to establishing curve corre-
spondences, followed by introducing transformation bases as functions of curve
parameters. We further outline a process to localise transformation bases in order
to satisfy the curve neighbourhood at the basis points. The concept of geometric
saliency 1s proposed to evaluate the discriminatory power of different transfor-
mation bases, and statistical analysis is carried out to identify salient bases in
the presence of noise, resulting in the derivation of a normalised basis likelihood.
Finally, the theory is applied to the problem of detecting and grouping affine
symmetric curves.

2 Theory

2.1 Formation and Parameterisation of Transformation Bases

The unique point-to-point correspondence between two sets of image curves re-
lated by up to a 2D projective transformation may be obtained once an initial N
point correspondences in general position have been established together with P
non-invariant contour derivatives at these points, where 2N + P > d and d < 8
is the number of degrees of freedom available in the transformation class. The
collections of minimum number of pairs of corresponding points and associated
derivatives required to fix the free parameters (ie. the equality 2N + P = d
holds) form the bases of the transformation (Fig. 1). See [12] for an in-depth
discussion.

Associated with every transformation basis are matrices which relate corre-
sponding points in the basis. Since in our framework all points lie on curves, we
designate these pairs of corresponding points as (x1;(t1;), ®2;(¢2;)),5 = 1,.., N,
where 1;; is the parameterisation for the curve on which z;; lie. Then

Aqy tmyj(tiy) — ®a5(tay), Jj=1.,N (1)



Fig. 1. The affine transformation bases in (a) and (b) are formed from 3 point corre-
spondences, whereas the basis in (c) is formed from 2 point correspondences and the
associated tangents. However only (b) and (c) correctly defines the relation between
the two image curves.

Agq i ®9j(ta;) — @1 (t1;), Jj=1.,N (2)

where A; is the matrix mapping points @1;(¢1;) to ®2;(t2;) and Agq is the
matrix for the inverse mapping. However, the matrices which transform x1; to
xo; and vice-versa are derwed via these points:

Propositionl. (Transformation as a function of curve parameters)

A transformation matriz A1s which is derwed from a transformation basis com-
prising of N correspondences between two sets of curves and P contour deriva-
tives may be represented by a tensor function M operating on the 2N -dimensional
curve parameter space, ie.

M R¥ _ p2NHP

(t1,12) — Aqa(ty,t9) (3)
where t1 = [t11 t1o ... th]T 1s a vector of curve parameters for the first set of
curves, and to = [ta1 Lo ... tQN]T the vector of curve parameters for the second
set.

The 2N-dimensional space of curve parameters may be considered a generali-
sation of Van Gool et al. ’s [12] 2D Arc-Length Space (used for comparing pairs of
points on curves) to higher dimensions for establishing multiple correspondence
pairs.

Bases for Affine Symmetry. As we previously described in [4], there are
three degrees of freedom in an affine symmetry transformation, more intuitively
expressed as the location of the symmetry axis (2 DOF), and the angle of skew
(1 DOF). We explained how a single point correspondence together with the
tangents at these points form an affine symmetric basis.
A pair of corresponding points @;(t;) = [z;(t;) i (t:)]7, i = 1,2 is related
by:
oy Z2 = Zl (4)

where Z; and Z are matrices containing the symmetry parameters ¢ (the
orientation of the axis of symmetry), C' (the perpendicular distance of the origin
to the axis), and a (the angle of skew). These parameters are functions of the
basis correspondences ®1(t1) and ®2(t2) and hence are functions of the arc-length
curve parameters t; and to. Further details may be found in [3].



2.2 Correspondences Formed with Neighbourhood of Curves

The use of landmark points in establishing transformation bases for curve match-
ing is disadvantageous in that the transformations may be sensitive to errors in
localisation of these points. We propose instead an approach based on matching
regions of curves, in which (i) hypothesised corresponding points (which need
not be restricted to landmark points) are allowed to vary for limited distances
along the contours; (ii) the neighbourhood of curves at these points should not
only be used to verify the validity of the hypothesised transformation (via the
edge-continuity assumption), but also be integrated into an optimisation process
to localise the correspondences; and (iii) the rest of the curves are gradually
incorporated to improve the accuracy should the neighbourhood of the corre-
spondences be well matched after the initial optimisation process, and appear
geometrically salient (defined later in Sect. 2.3).

Localisation of Curve Neighbourhood Correspondences. In order to
have a measure of the differences between two sets of curves, we define the
deviation between curves C7 and Cy:

Definition2. (Deviation)
The Dewiation Dis from curve Ci to curve Cy is defined as the integral of
squared distances from points on C1 perpendicular to Cy, e.

Diy = /c |1 (1) — Co||* dr (5)

where T is the arc-length parameterisation for curve Cy, and z1(7) is the position
vector for the point with parameter T on curve Cy. See Fig. 2(a).

Note that this is not invariant to the interchange of curves, ie. Dis # Doy,
but it is suitable to our analysis as well as for practical purposes.
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Fig. 2. (a) The deviation of C; to Cs is the integral of squared distances from points
on C perpendicular to Cs, as defined by definition 2. (b) A neighbourhood-validated
basis comprising of 2 correspondences is shown.

From (3), it is observed that as basis points slide along the associated curves,
the transformation basis and matrix change accordingly. If the basis defines a
correct hypothesis for the transformation relating the two sets of curves, the
projection of one set of curves via the transformation will match the second set
of curves exactly. Since not all parts of the curves are necessarily available in
the images, bases will have to be classified according to the curve neighbourhood
support available at the basis points:



Definition 3. (Neighbourhood-Validated Basis)

A neighbourhood-validated basis, or NV-basis, is a transformation basis which
satisfies the requirement that the projection of the curve neighbourhood at all ba-
sis points match exactly the curve neighbourhood at their respective corresponding
basis points. This is a necessary but insufficient condition for the basis to repre-
sent the correct transformation between the two sets of curves. See Fig. 2(b).

The goal of localising the correct set of correspondences to define the transfor-
mation between two sets of curves can therefore be formulated as an optimisation
problem on the 2N dimensional domain of curve parameters. However this set
of of correspondences is not unique since any pair of actual corresponding points
between the two curves may be used. We instead reformulate the optimisation
problem:

Proposition4. (Correspondence localisation as a minimisation)
Suppose a transformation basis comprising N correspondences is needed to es-
tablish the transformation relating two sets of curves. Given N points with the
curve parameters t1 on the one set of curves, an NV-basis may be found by re-
covering the corresponding points with curve parameters ts on the opposite set
of curves through solving the minimisation problem

N
min 43" [ Al ta) o1y (7) — Ol (6)
o | iT1 IN{t)

where Ay is as defined in (3), Cj; is the curve on which x;; lies, and N{t;;}
is the curve neighbourhood of arbitrary size about t;;. The N points on the first
set of curves are the fived basis points (or pivot points), whereas the N corre-
sponding points on the second set of curves are the free basis points.

Optimisation Process for the Localisation of Correspondences. We out-
line this correspondence localisation process in terms of a prediction-verification
mechanism as follows:

1. Initially extract from both sets of curves a number of interest points (eg.
points with large cornerness [7]).

2. Hypothesise a transformation basis by assuming correspondences between
N pairs of points on the two sets of curves and using P contour derivatives
at these points,

3. Project the curve neighbourhood at the pivot points via the hypothesised
transformation and compute the total deviation between the projected curve
neighbourhood and the second set curves;

4. Predict the best locations on the second set of curves for the free basis points
by minimising the deviation with an optimisation algorithm operating on the
N dimensional space of curve parameters;



5. Cycle through steps 2 and 4 until a minima in deviation is reached, or if the
estimation diverges.

6. Determine the geometric saliency (Sect. 2.3) and normalised basis likelihood
(Sect. 2.4) of the hypothesised transformation basis to decide if the basis
should be admitted.

Figure 3 demonstrates this optimisation process for an affine symmetry basis.

Fig. 3. (a) An affine symmetric transformation basis representing the initial hypoth-
esis for the transformation relating the pair of image curves; (b) the free basis point
is localised by an optimisation process; (c) the final transformation basis is obtained
which correctly represents the affine symmetry between the two contours.

2.3 Geometric Saliency of Transformation Bases

In [2], Brady discussed the need in vision problems to work from locations of-
fering the tightest constraints (‘seeds’) to locations of decreasing constraint. For
example in point registration, corners are considered first followed by edges. In
the case of geometric curves, curvature is often cited as a measure of its constraint
potential [5]. We show that this is not necessarily so, since the localisability of
correspondences is both dependent on shape as well as the transformation class
and defining parameters, especially in cases when curvature does not undergo a
monotonic mapping.

It may be shown that the localisation of correspondence can be poor even
when there is insignificant deviation of projected and actual curve neighbour-
hood. For an example, consider the case of bilateral symmetry for which a trans-
formation basis comprises of a point-to-point correspondence and no derivatives.
In an attempt to establish the transformation relating the two sets of symmetric
curves in Fig. 4(a), a wide range of incorrect bases which have strong neighbour-
hood support may be formed from a pivot point with a free corresponding point
— it is impossible to localise the correct basis accurately. A more discriminating
transformation basis is shown in Fig. 4(b). Note that the curvatures at the ba-
sis points in Fig. 4(b) are smaller than the curvatures in Fig. 4(a), contrary to
expectations that points with larger curvatures are more salient.

In order to select the transformation bases with greater discriminatory power,
we derive a quantitative definition for the geometric saliency of a correct trans-
formation basis.

Derivation of Geometric Saliency. Consider a NV-basis subjected to pertur-
bation of its free basis points. Since the pivot points are fixed, the transformation
matrix A relating pivot points to free points in (1) will be rewritten as a function
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Fig.4. In (a), it is impossible to localise the correct bilateral symmetric NV-basis. (b)
shows a highly localisable NV-basis which correctly represents the bilateral symmetry.
In (c), when a free basis point in an NV-basis is perturbed by a small error, the resultant
deviation between the projected and actual curve neighbourhood may be expressed in
the form of equation 7.

(c)

of only the curve parameters associated with the free points, ie. A(#;). Addition-
ally, the deviation D5 from (5) is defined as a function of the perturbation, and
written D(€), where € = [ €1 €2 ... en ]T is a vector of the perturbation in #s.
Finally, all curve parameters are assumed to be expressed in terms of arc-length.

For small €, the deviation between the projected curve neighbourhood of
the pivot points and the curve neighbourhood of the free basis points for the
NV-basis may be written as

D(e) = Z /.j r]? dr (7)
r = a];(r) (A(t2) — Atz + €))7 kj(ta, 7) (8)

where b; and a; demarcate the parameter boundaries for the curve neighbour-
hood of pivot point j, and k; are the unit normals to the projected curve neigh-
bourhood of pivot point j. The curve neighbourhood of the free basis points do
not appear in this equation since for a NV-basis they are obtained simply by
projecting the curve neighbourhood of the pivot points. See Fig. 4(c).

Taking derivatives,

VeD(e) = —2 Z /.j r; Ve (mle(r)A(tz + e)TkJ-(tz, T)) dr (9)

Since € = 0 represents the least-squares solution for (7), r; = 0 and hence
VeD(0) = 0. The Hessian matrix H(e) for D at € = 0 is non-zero but has a
simplified, positive semi-definite form:

N b
HO0)=2)Y / G; G| dr (10)
Gj = Ve_(mle(T)A(tZ)Tkj(tZJT)) (11)

where G represents the Jacobian of 7;(€, ¢, 7) at € = 0. Furthermore since H (0)



is positive semi-definite from (10), all its eigenvalues are real. We therefore define
our geometric saliency as follows:

Definition5. (Geometric Saliency)

Given a NV-basis for which H (€) is the Hessian function of the deviation D(e)
as defined in (7), the Geometric Saliency S of this basis is defined as the
smallest eigenvalue of H(0), ie.

S = min(A) (12)

subject to H(0)e = Xe, A>0 (13)

The associated normalised eigenvector of S, denoted by vg, represents the nor-
malised € which causes the minimum increase in the deviation D(e).

We noted that the form of the first derivative matrix ‘M’ used in the Plessey
corner finder [7] is similar to H (0) except that it is specifically two-dimensional
and applied to the image domain.

The D(e€) energy functional surfaces in 2D curve parameter space is graph-
ically illustrated for various bases representing similarity (scaled Euclidean)
transformations in Fig. 5. These bases are formed with two point correspon-
dences and no contour derivatives (four degrees of freedom represented by a
2D translation, a rotation and an isotropic scaling). The eigenvectors associated
with the geometric saliencies are in the directions of the most gradual ascent
at the minimum point. It is seen that the transformation basis in Fig. 5(a) is
preferred to the basis in Fig. 5(b) by virtue of its larger geometric saliency and
hence greater localisability. This is in spite of the fact that they both represent
the correct similarity transformation relating the two curves.

Fig. 5. The similarity (scaled Euclidean) NV-bases shown in (a) and (b) are formed
with two point correspondences, and the deviation functionals are shown respectively
in (c) and (d). The geometric saliencies are related to the directions of the most gradual
ascent.



Geometric Saliency for Affine Symmetry. The Hessian derived in (10) re-
duces to a single value since only one pair of corresponding points is involved,
and 1s therefore equal to the geometric saliency. Complete details of the deriva-
tion may be found in [3]. Figure 6 shows some transformation bases for affine
symmetry. The geometric saliency of the transformation basis in Fig. 6(b) is near
zero because the ellipse formed by the base of the key 1s affinely equivalent to a
circle, which has infinite symmetry axes.

(a) (b) (c) (d)

Fig.6. The affine symmetry bases in (a) and (c) are formed with one pair of point
correspondences. Basis (c) has a near zero geometric saliency since all points on an
ellipse are affine-symmetric to each other.

2.4 Statistical Analysis and Normalised Basis Likelihood

When image noise is present, even NV-bases are expected to contain residual
deviation in the curve neighbourhood. In this section, we therefore consider the
essential task of judging the localisation errors involved when a basis hypothesis
is presented.

In a discrete implementation, the minimisation problem given in (6) may be
expressed as

min < D(tz) = Z Zj: SJTi Sji (14)

t j=1 i=1
where sji = A(ta) ®1j(75i) — ®25(pji) (15)

and where ); is the number of samples used on the curve neighbourhood of
basis point j. p;; is determined such that @4;(p;;) is the nearest point on curve
02]' to :Blj(TjZ').
Tt may be shown (please refer to [3]) that by linearising about the solution
D(tz) = 0 we have
D(ty+€) = D(e) = € H(0)e (16)

In the presence of image noise, errors are introduced into the terms x;;, which
distort the relation between D and D. Solving (14) produces the mazimum-
likelihood (ML) estimate %, for the actual t5. The residual deviation D(f2) arises
from a combination of errors in the measurement of s;;’s and the error in the
estimation of 5. From the relation #5 = #5 + dty, Ity represents the misalign-
ment error. The error dty is dominant along vg, the eigenvector related to the
geometric saliency.



Since the distribution of noise is not known, it is useful to gauge the accu-
racy of t5 by comparing D () with the deviation D(8t) which will arise solely
through a misalignment error. Intuitively, we would expect that NV-bases with
larger geometric saliencies to be better localised despite having a greater amount
of residual deviation. This is easily understood from Figs. 7(a,b), where the de-
viation functionals shown in Figs. 6(b,d) are subjected to independent errors in
the measurement of s;;.

O ST os e n ok i e
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Fig. 7. The deviation functionals in (a) and (b) are possible scenarios in which the
deviation functionals from Fig. 6(b,d) are distorted by errors in the measurement of

the image contours. Figure (c) shows the v/Deviation — Normalised-Basis-Likelihood

plots for geometric saliencies of 1, 5 and 20.

We make the assumption that € = 8¢5 is Gaussian-distributed. Furthermore,
instead of relating € to the probability density distribution of D(€) which is
highly non-trivial, we relate the deviation D(qwvg) to the error q along vg — the
dominant direction of €, ie. assume that e = qvg.

Let

z=q/vL H(0)vs (17)

Then E{D(qvs)} = Var{z} = E{*}
=Var{q} vEH(0)vs = Var{q} S (18)
Since ¢ is assumed to be Gaussian, so is z. Hence
1 22 1 22
z) = exp|l—==%) = ———exp | ——— 19
P(z) o2 p< 20’3) ogV21S p< 2503) (19)
where 0, = Var(z) and o, = Var(q). We can therefore define a normalised basis

likelihood value based on (19):

Definition6. (Normalised Basis Likelihood)

Given a hypothesis for an NV-basis with geometric saliency S and residual de-
viation D, the normalised basis likelihood L is defined from (19) by assigning o,
to be unity and assuming likelthoods to be equal when D = 0:

I = exp <_%) (20)

L lies between 0 and 1, with L = 1 when D = 0. See Fig. 7(c).

From Fig. 7(c) it is apparent that with increasing geometric saliency a greater
amount of residual deviation is allowed without a decrease in the likelihood.



2.5 Constraint Propagation and the Refinement of Correspondences

Further refinement of hypotheses may be achieved through a cyclic constraint
propagation process:

1. Curve Support Recovery. Starting from pivot points, validation checks
are propagated along the pivot curves. The goal is to recover the maximum
interval of curve correspondences which are in consensus with the transfor-
mation hypothesis.

2. Transformation Refinement. The restriction that basis points must lie
on the image curves is lifted. The optimal transformation relating all cor-
responding curve intervals is estimated in a least-squares sense through the
use of pairs of geometrically-coupled active contours'. If the overall devia-
tion between the snakes and the image curves is small, the snakes are used
to substitute for the original intervals of image curves, and the algorithm
returns to the support recovery step.

Figure 8 shows this process in action.

Fig.8. In (a), an NV-basis is hypothesised. The curve support recovery proceeds as
shown in (b). (c) shows the refinement of the transformation estimate via geometrically-
coupled affine-symmetric active contours, with the eventual result obtained in (d). In
practice, the process is repeated a number of times.

3 Implementation of a Grouping Process for Affine
Symmetric Contours

The grouping of skew-symmetric contours are carried out in the following way:

1. Edgel chains are initially extracted via the Canny edge-detector, to which
B-splines are fitted.

2. A number of interest points on curves are extracted and basis hypotheses
are made between these points and the regions around them, and localised
via the process described in Sect. 2.2.

! A pair of geometrically-coupled active contours is treated as a single active contour
operating in a canonical frame together with a set of transformation parameters
mapping the canonical frame to the two image frames. This work will be published
in due course.



3. Basis hypotheses are selected if empirical thresholds for geometric saliency
and normalised basis likelihood are exceeded.

4. The maximum amount of connected curve support is gathered and the trans-
formation parameters iteratively refined as described in Sect. 2.5.

Note that this is a preliminary implementation. No additional grouping of
sets of curves with similar transformation parameters is performed as yet. This
is expected to be implemented in due course.

4 Preliminary Results

The affine-symmetric contour-grouping algorithm is applied to the images shown
in Fig. 9. B-splines have been fitted to the contour chains obtained from the
Canny edge detector, and a number of interest points are selected on these
splines.

Fig.9. A number of test images are shown in the top row, and splines fitted to the
detected edges are shown in the bottom row. The extracted interest points are marked
on the contours with crosses.

Figures 10(a,b,c) show NV-bases which have high normalised basis likeli-
hoods and large geometric saliencies. Further trimming of these ‘seeds’ is pos-
sible by considering the amount of curve support available outside the basis
curve neighbourhood. The initial extent of curve support obtained is shown in
Figs. 10(d,e,f).

After the application of curve-support / transformation-refinement cycle, we
obtain the final results shown in Fig. 11.

5 Conclusions and Future Work

The main aim of this research is to avoid the use of landmark points or high-order
differential invariants when establishing correspondences. In the framework of ge-
ometrical curves, transformations defined by transformation bases are functions
of the curve parameters. Point correspondences are not restricted to matches
between isolated point sets, but formed as initial broad matches between inter-
vals of curves. Transformation bases represent hypotheses for the transformation



(d) (e) (f)

Fig.10. (a,b,c) show the affine-symmetric NV-bases found from the image contours
with have large normalised basis likelihoods and geometric saliencies. Further trimming
is achieved by considering the amount of curve support obtained — The strong bases
and curve support are shown in (d,e,f) together with the symmetry axes and angles of
skew. Different valid hypotheses for the same contours exists in (f).

(c)

Fig. 11. The final results obtained after iterating through curve-support recovery and
transformation refinement cycles. Corresponding points are marked as shown.

relating curves and may be localised through an optimisation process, terminat-
ing in either hypothesis rejection or recovery of neighbourhood-validated bases.
We have shown that NV-bases are localisable to different degrees, giving rise
to the notion of geometric saliency. In the presence of noise, the accuracy of
the estimated correspondences is dependent on the geometric saliency since a
highly salient basis is more robust to misalignment errors — the normalised basis
likelihood formalises this accuracy. A method is proposed to further validate the
hypotheses by recovering additional curve support, and to refine transformation
estimates through the use of geometrically-coupled active contours. Preliminary
results obtained from applying this theory to the grouping of affine symmetric
contours are shown. In the immediate future, further grouping of geometrically-
related sets of curves will be implemented.
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