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Abstract. An accurate estimate of the epipole (direction of camera
translation) is necessary if image motion is to be decomposed into ro-
tational and translational components, which give the camera rotation
and feature depths respectively. In this paper we introduce the Linearised
Subspace Method to find direct constraints on the epipole which are in-
dependent of camera rotation and scene structure. We present methods
to compute reliable constraints and their uncertainties from image mo-
tion. We show how erroneous constraints due to errors in tracking can be
rejected and how the valid constraints should be combined to form accu-
rate estimates of the direction of translation. Experimental results show
these methods lead to improvements in the recovery of camera motion
and that the uncertainty estimates are accurate and useful in detecting
degenerate scene structure or camera motions.

1 Introduction

In the structure from motion problem image motion is used to recover unknown
camera motion and scene structure. The Fundamental Matrix [2] is commonly
used to encode the camera motion (up to a projective transformation) and the
rigidity or epipolar constraint. It is independent of scene structure; can be es-
timated from point correspondences and has successfully been exploited in seg-
mentation and outlier rejection algorithms [14]. In principle the Fundamental
matrix can be decomposed to find the epipole (direction of translation) and
hence the camera motion and scene structure up to a projective transformation.
In practice this is very ill-conditioned and leads to inaccurate estimates of the
epipole.

An accurate estimate of the epipole is, however, an essential component of
the structure-from-motion problem if motion and scene structure is to be recov-
ered. Finding the epipole accurately removes much of the uncertainty from the
calculation of the rotational component of visual motion, and therefore also im-
proves the calculation of the feature depths [6, 13], and the rejection of outliers
caused by spurious or mis-tracked features.

This paper proposes a novel method — the Linearised Subspace Method— of
finding linear constraints on the epipole from small regions of a full perspective
image. Perturbation analysis 1s used to produce estimates of the uncertainty in
these constraints and reliable constraints are combined to produce an accurate
estimate of the epipole even in the presence of outliers and degenerate scene
structure and motion. Experimental results are presented.



2 Constraints on the Epipole

If the parameters of the motion of the camera between frames k — 1 and & (in
the co-ordinate frame of k) are a rotation, R, and a translation, T, then the
motion of each point is given by the rigid body transformation:

X;:R(XZ'—I-T) (1)

where X and X; are the vectors to the stationary feature point, ¢, in the
coordinate frames of the frames & — 1 and k respectively. Points in the images
are represented by the 3-dimensional vectors P; and P;, where X; = r;P; and
r; 18 the unknown scalar depth.

The Subspace method [7] for obtaining a constraint on the position of the
epipole is based on cancelling the rotational component of motion in a simi-
lar way to motion parallax [12]. A discrete time/view version of the Subspace
method can be obtained by rearranging the rigid motion equation (1) into the
product relationship below.

T.(P} x P;) = piT. (P} x (R™'P))) (2)
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Approximating p; = :—’ as a constant, p, which is intrinsic to the continuous
time formulation used originally [7], and taking a weighted sum across a set of
points:

T ei(Pix Pi)m pT. > ci (Pjx (R™'P})) (3)
The weights, ¢;, can be chosen to cancel the second order terms of P} by making
S PP =0 (4)

and then the right hand side of Equation 3 will equal zero, and therefore
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for any camera rotation, R. The linear sum cancels the rotational component of
the visual motion, just as in Affine Motion Parallax [1, 10], giving a constraint
on the direction of translation. The constraint on the weights, ¢;, in Equation 4
can be rewritten as
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where P} = [p),; pi; pl,]", and @ is a 6 x n matrix with columns, ¢; made up of

the 6 independent elements of the matrix P;P;T. Given enough points (n > 6),
a subspace of possible weights, C, can be found.
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This space is invariant to affine deformations of the image [7]. Tt is therefore
possible to write (from Equation 5)

TT"MC = 07 (8)
where the 3 x n matrix M is defined as
M = [(P} x P1) (P, x Py) -] (9)

Since M and C can be computed from measurements in the image, each column
of the matrix MC provides a constraint on the direction of translation and the
epipole. These constraints are in fact equivalent to epipolar lines.

2.1 The Linearised Subspace Method

The accuracy and sensitivity to noise of the Subspace algorithm can be im-
proved by looking at constraints from small regions of the image. If small image
regions are used, then the equation for each weight vector, ¢, (Equation 4) is
approximately linear [11].
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(Small here means in a region of radius less than 0.1 radians approximately,
so that the first order variations from the mean image position are significantly
greater than the second order terms.) Only four points are now needed to extract
a constraint instead of seven using the Heeger and Jepson Subspace method. This
has advantages for outlier rejection (see Section 5). The linearisation may also
improve the stability of the solution to noise on the image motion measurements.

Each region should only produce one constraint because under the weak per-
spective assumption for the small field of view in each neighbourhood the con-
straints will have the same direction. In the original algorithm [7], an arbitrary
weight vector was chosen. Here we choose the constraint with the least uncer-
tainty (as computed below). This takes into account image localisation errors
and degeneracy in the structure being viewed.

Though each constraint, ¢,, (generated from four or more points) must come
from a small region, different constraints can be generated from different small
image regions in a full perspective image and combined to estimate the epipole.
This method is very similar to the Affine Motion Parallax algorithm [10], gen-
eralised for any number of feature points (> 4). It has the same geometric in-
tuitiveness: combine the visual motions of a number of features from a small



image region in a linear sum, dependent on their positions only, to cancel the
rotational component of the motion.

Figure 1(a) shows the image motion from a sequence of views of Trinity Col-
lege. The image displacement vectors were automatically obtained by tracking
“corner” features [5]. The Linearised Subspace method was used to compute
constraints on the epipole by looking at 14 image regions. These are displayed

in 1(b).

3 Uncertainty Analysis

For real, noisy data the epipole constraints will not be exact, and therefore
constraints from more than two image regions will not intersect. A method is
needed that will provide an estimate of the accuracy of each constraint. This will
allow excessively uncertain constraints to be rejected; optimal combination of the
good constraints to provide the least uncertain result possible; degeneracy of the
structure or motion to be detected by measuring the significance of components
quantitatively, and outliers (due to independent motion and incorrect visual
motion measurements) to be detected.

The feature measurement errors on the image plane (which may be an output
of the feature detector, or be considered constant and determined in advance)
will determine the uncertainty in the constraint. The propagation of the image
measurement errors to compute the uncertainty in the constraint is in fact di-
rectly linked to the camera motion and 3D structure of the points being viewed.

The approach to propagating the errors through the calculations is to as-
sume that each vector or scalar (eg. b) has a small additive gaussian uncertainty
which can be represented by a covariance matrix (V[b]) [8]. These error predic-
tions are then propagated through the calculations by linearising around each
result algebraically. Differentiating about each input variable (a) gives the Jaco-
bian (J4(b)) and this shows how the input covariances contribute to the output
covariance.

The constraint vector, Me, will have two elements to its uncertainty: dM ¢
and M dc. The contribution of both can be calculated. However, we would
expect the “velocity component” (6M) to be more uncertain than the component
dependent on image position. We therefore expect the first term, dM e, to be
the more significant. Experiments validate this [11]. We therefore calculate the
variance on the constraint to be:

VIMd] & Y ¢ Vimi] =Y ] V[Pi x Pj] (11)
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where ay is the skew-symmetric matrix that produces the vector product with
a. Figures 1(c) and (d) show two constraints and their respective uncertainties.
The uncertainty on the constraints depends on 3D structure of the points as well
as the image localisation errors. Nearly planar scene structure results in a very
uncertain constraint (Figure 1(d)).
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Fig.1. Subspace constraints and uncertainty estimates:: (a) shows the image
feature displacements measured between two frames. The features were automatically ex-
tracted and matched and approximately 6 are incorrect correspondences. The translation
of the camera was along the path just visible in the bottom right corner, but the image
motion is mostly due to rotation. (b) shows the set of constraints obtained from 14 image
regions by the Linearised Subspace Method. (c) shows the 95% uncertainty band and the
image points contributing to the constraint. (d) shows an excessively uncertain constraint
arising from distant points which are approximately on a plane



4 Constraint Combination

The problem of finding the epipole now becomes finding the direction or image
point which is the best intersection of the set of uncertain constraints. This must
be done after “rogue” measurement or outliers are rejected.

The uncertainty of the epipole estimate can be minimised by weighted least
squares estimation. Generalising the constraints as unit vectors {m;}, we must
minimize:

Z wi(e.ni)z e’ (Z wZnZnZT) e—e Ae (13)

Assuming the statistical independence of the constraints, the weighting should
be proportional to the inverse of the scalar variance [9].

An initial estimate of the epipole (eg. from an unweighted estimate) is needed
so that the scalar weight can be determined only by the significant component of
the uncertainty (parallel to the epipole). Since the constraint uncertainties are
often highly anisotropic, many iterations are often necessary. Alternatively, an
approximate weight can be found by averaging the uncertainty for all possible
epipoles (for example, using the trace of the variance matrix).

An attractive feature of this form of epipole estimation is that the weighted
outer product sum, A,

i i
(where ¢? = el'V[n;] ey is the variance of the constraint normal in the (esti-
mated) direction of the epipole, eg) encodes the estimate of the epipole, e, and
the variance (uncertainty) of the estimate, V[e]. The estimate of the epipole, e,
minimises e’ Ae while V[e] is the pseudo-inverse of A. An example is shown in
Figure 3 (c). Before being able to combine constraints it is important incorrect
meaurement( outliers) of visual motion due to failures in tracking are rejected.

5 Outlier Rejection

There are many reasons why some of the visual motion measurements will be
incorrect and should not be used in the structure-from-motion calculation. In-
correct visual motion measurements arise from poor matching or tracking of
features and independently moving objects. They can be removed by trying to
form a solution from as many measurements as possible without using any that
are not consistent with the solution found.
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Fig.2. Example rejection problem: Because the rejection algorithms considered in
this section are generally applicable, a low-dimensional example problem will be used to
introduce them: find a plane that fits a large number of the 3D points in a set. Each
picture above shows the six inliers (1-6), the three outliers (7-9), and the plane. (a) Poor
initialisation using whole set: Outliers are often of greater magnitude than true mea-
surements, and can therefore greatly influence any initialisation using the whole set (as
shown). In this case, take-one-out cross-validation would also fail because we have three
significant outliers. (b) Good solution from random initialisation set: If the as-
sembling of the plane estimate is initialised by three correct points (eg. 2, 3 and 5 as shown)
then the other points can also be found. An average of four random trials (approximately)
will be needed to find the plane. (c) False solution from degenerate structure:
Solutions can also appear to be found when the verification comes from degenerate struc-
ture. Points 1 and 4 appear to be verifying the plane found from 2, 3 and 9, because they
form a degenerate structure (a line) with all but one of these points. This effect should not
cause trouble when a good solution can be found, as it will receive better verification (as
in (a)). However, when the scene is truly degenerate, this can cause an (often strong) false
positive.



5.1 Approaches to Rejection of Outliers

The aim of every rejection algorithm is to find a self-consistent set of “elements”
with as few outliers as possible. However there are a large number of algorithms
that can be used. Figure 2 presents an example problem of finding a plane of
points in the presence of outliers, which will be used to demonstrate the strengths
and weaknesses of a number of algorithms.

One method for rejecting outliers from any algorithm, is to start with the
complete set of data, and then to reject the subset that does not agree sufficiently
with the estimate formed from the set. This can be iterated until the set is stable.
Though this seems sensible, large outliers can sufficiently bias the initial result so
that they are never removed (see Figure 2a). A better approach, which was used
in earlier papers on Affine Motion Parallax [10], is to disassemble the estimate
using take-one-out cross-validation [15]. Each element is removed in turn and is
checked against an estimate formed by the others. The constraint that agrees
least is removed and the process repeated, until all constraints agree sufficiently.
Though this performs better, the computational cost is high, and a few outliers
can sufficiently bias the initial result so that removing one is still not sufficient
(see Figure 2a).

A different method is to assemble the estimate, starting from an estimate
from a minimal set, and combining only those constraints that agree. If too
few constraints agree then a new initial estimate is needed. RANSAC [3] is a
popular method that generalises this approach (see Figure 2b). Generally, this
will be more efficient than the Hough methods. The problem here comes when
the initial estimate 1s uncertain. If the uncertainty of the initial solution is great,
then it 1s probably best to find a new initialisation, rather than build from this
one. Even if the uncertainty is reasonable, there are probably still a number of
erroneous elements that could be included, and different results may be found
depending on how many of the agreeing elements are combined at once.

Each of the above methods can be iterated or two or more may be cascaded.
Here we use a minimal basis to provide an initial candidate set free from gross
outliers, which is then depleted by iteratively removing those elements that do
not agree with a combined estimate.

5.2 Alternative Stages of Rejection

Most structure-from-motion algorithms that use outlier rejection, attempt to
form a full projective egomotion solution and then use the epipolar constraint
to remove outliers [14]. However, if the egomotion determination is broken into
stages, as it has been in the algorithms presented here (finding the constraints
and then the epipole before the egomotion), then the rejection can also be split
into stages. Here, in addition to checking if the individual feature motions comply
with the projective egomotion found for the set, we can also test if the individual
features in small regions agree with the constraint found from that region, and
if the constraints agree with one another. In this section we analyse and then
test each stage in turn, in an attempt to determine if any advantage is gained
from this approach.



Fig.3. The outlier rejection constraints: This figure gives a limited demonstration
of the Consistency constraint and excessive error rejection for the features in Figure 1. (a)
shows all the constraints found, (b) shows those with a reasonably small uncertainty and
(c) shows all but one being accepted as agreeing with an epipole estimate, which is also
shown as its 95% certainty ellipse. (d) shows the epipole ellipse given by the Fundamental
Matrix calculated with the inliers and constrained to the epipole from (c).



The Affinity Constraint The Linearised Subspace method constraints (amongst
others) are formed using the assumption that each comes from a region which
was deforming affinely. This assumption constrains the feature motions — this
can be seen more easily by considering the Affine Fundamental Matrix. It is
therefore possible to test whether all of the features in the region comply with
this assumption, and to reject those which do not. This could in fact be used as
a perceptual grouping stage for any set of feature motions detected, regardless
of the structure-from-motion algorithm that will use them, so long as the small
motion approximation applies.

Though the algorithm initially seems simple to formulate, care must be taken
to ensure that a few outliers are not masking a degenerate situation. Using the
analogy of finding a plane of points in 3-space, the degenerate case is when there
is a line of points plus outliers. Using RANSAC, we might select two points from
the line and one outlier, and then validate this selection with the other points
from the line (see Figure 2c). Though we could accept this erroneous set (in the
hope of finding inconsistencies later) it is better to ensure that all planes found
are contain at least four points with no three collinear.

The Consistency Constraint The second rejection stage that can be used
1s when the epipole constraints are combined: the constraint vectors should be
coplanar if they are accurate, and the problem becomes finding the epipole esti-
mate which is normal to the most constraint estimates. This is simpler than the
Affinity Constraint, because degeneracy is more obvious, but is complicated by
the tendency with all these constraint algorithms for correct and erroneous line
constraints to pass through the image. This produces a bias in the solution but it
also produces more candidate epipole estimates (intersections). For this reason,
it 1s highly beneficial if the rejection methods discussed in the sections above
and below are efficient. Another problem with this stage is that the relationship
with the individual features has been lost.

The Epipolar Line Constraint Once the epipole has been estimated, then
the projective “rotation” matrix can be found, and the rotational component of
image motion predicted for each feature. The remaining image motion should be
the translational component which will be towards (or away from) the epipole
but have unknown magnitude (due to unknown feature depth). Any remainder
not in this direction is evidence of an incompatibility. The effect should be similar
to the Affinity Constraint above.

This is the rejection method most commonly used as the Fundamental Matrix
finds the epipolar lines directly [14]. Here we must ensure that the Fundamental
Matrix complies with the epipole found. It should therefore be formed from
only the inliers from the previous stages, and should then be forced to have the
same epipole. This is achieved by projecting the Fundamental matrix and the
constraints on the Fundamental matrix into the subspace compatible with the
epipole found. The matrix obtained can also be decomposed to give the camera
motion estimate.



The Positive Depth Constraint The previous stages all effectively used the
epipolar constraint, each time updating the epipolar line to include more evi-
dence. Another useful though often ignored constraint is that all objects must
be in front of the camera, and therefore all have translational motions in the
same sense: either all towards or all away from the epipole. This can be applied
in this scheme with the Epipolar Line Constraint. However, an egomotion esti-
mate is needed to determine the rotational component of the visual motion, and
therefore the Fundamental Matrix alone is not sufficient.

5.3 Using Uncertainty Estimates in Rejection

Uncertainty estimates can be used to provide intelligent bounds on the rejection
or acceptance in the algorithms above: the x? test on the Mahalanobis distance
provides a threshold value, the confidence bound of which can be set [4]. This is
the strictest use we have for the uncertainty estimates, as we are now accepting
or rejecting on their absolute values, and not just weighting according to their
relative values. If the uncertainty estimates are considered inaccurate then a
“safety factor” can be used to reduce either false positives or negatives. However
this does not detract from the advantages of having a threshold value that reflects
the uncertainty in the element and the proposed solution.

6 Conclusions

Figures 4 and 5 show two contrasting situations. In the first, the epipole is
approximate in the centre of the image. Most existing algorithms would have
little difficulty in localising this epipole. There are a number of incorrect feature
motion measurements, but both the (linear, non-iterative) Fundamental Matrix
and the Linearised Subspace methods give good results. In the second however,
the epipole 1s well right of the image. Here the Fundamental Matrix estimate is
wrong, again placing the epipole in the image. The Linearised Subspace method
gives an accurate result though, demonstrating our belief that epipole constraints
can be both more accurate and more robust. The uncertainty predicted for the
epipole estimate is high, but in both cases, applying this constraint to the Fun-
damental Matrix will ensure that the decomposition i1s correct. Another benefits
of our approach is the uncertainty estimages are accurate.

Future work will concentrate on how best to select the small regions to give
good coverage without excessive computation, and whether rigorous optimal
combination i1s computationally viable. We conclude that the Fundamental Ma-
trix benefits considerably from more direct estimates of the epipole. We have
presented a novel epipole constraint algorithm and shown how to combine the
constraints. We have also shown that outlier rejection is more reliable if it is
performed at each stage of the calculation.
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