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Abstract. In this paper we describe an efficient method to impose the
constraints existing between the collineations which can be computed
from a sequence of views of a planar structure. These constraints are
usually not taken into account by multi-view techniques in order not to
increase the computational complexity of the algorithms. However, im-
posing the constraints is very useful since it allows a reduction in the
geometric errors in the reprojected features and provides a consistent
set of collineations which can be used for several applications such as
mosaicing, reconstruction and self-calibration. In order to show the va-
lidity of our approach, this paper focus on self-calibration from unknown
planar structures proposing a new method exploiting the consistent set
of collineations. Our method can deal with an arbitrary number of views
and an arbitrary number of planes and varying camera internal param-
eters. However, for simplicity this paper will only discuss the case with
constant camera internal parameters. The results obtained with synthetic
and real data are very accurate and stable even when using only a few
images.
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1 Introduction

The particular geometry of features lying on planes is often the reason for the
inaccuracy of many computer vision applications (structure from motion, self-
calibration) if it is not taken explicitly into account in the algorithms. Intro-
ducing some knowledge about the coplanarity of the features and about their
structure (metric or topological) can improve the quality of the estimates [12].
However, the only prior geometric knowledge on the features that will be used
here is their coplanarity. Two views of a plane are related by a collineation.
Using multiple views of a plane we obtain a set of collineations which are not
independent. If there are multiple planes in the scene there will be a set of
collineations for each plane and again some constraints between the different



sets. In order to avoid solving non-linear optimisation problems, the constraints
existing within a set of collineation and between sets have often been neglected.
However, these multi-view constraints can be used to improve the estimation of
the collineations matrices as in [15], where multiple planes (> 2) are supposed
to be viewed in the images. In this paper we analyse the constraints existing
between a set of collineations induced by a simple plane in the image but it is
very easy to extend our analysis to the case of multiple planes. Imposing the
constraint is useful since it allows the reduction of the geometric error in the
reprojected features and provides a consistent set of collineations which can be
used for several applications as mosaicing, reconstruction and self-calibration.

In this paper we will focus on camera self-calibration. Camera self-calibration
from views of a generic scene has been widely investigated and the two main ap-
proaches are based on the properties absolute conics [13] [10] or on some algebraic
error [7] [4]. Depending on the a priori information provided the self-calibration
algorithms can be classified as follows. Algorithms that use some knowledge of
the observed scene: identifiable targets of known shape [8], metric structure of
planes [11]. Algorithms that exploit particular camera motions: translating cam-
era or rotating camera [5]. Algorithms that suppose known some of the camera
parameters: some fixed camera parameters (i.e. skew zero, unit ratio ...), vary-
ing camera parameters [10] [9]. Camera self-calibration from planar scenes with
known metric structure has been investigated in several papers. However, it is
interesting to develop flexible techniques which do not need any a priori knowl-
edge about the camera motion as in [5] or metric knowledge of the planar scene.
A method for self-calibrating a camera from views of planar scenes without
knowing their metric structure was proposed in [14]. Triggs developed a self-
calibration technique based on some constraints involving the absolute quadric
and the scene-plane to image-plane collineations. However, in practice it is not
possible to estimate these collineations without knowing the metric structure of
the plane. Only the collineations with respect to a reference view (a key im-
age) can be used to self-calibrate a camera with constant internal parameters.
As noticed by Triggs, inaccurate measurements or poor conditioning in the key
image contribute to all the collineations reducing the numerical accuracy or the
stability of the method. The aim of this paper is to investigate how to improve
the self-calibration from planar scenes with unknown metric structure. We will
not use any key image but all the images of the sequence are treated equally
averaging the uncertainty over all of them.

This paper is organised as follows. In Section 2 we review the relation-
ship existing between two views of coplanar features and some properties of
the collineation matrices. In Section 3 we generalise the two-view geometry to
multiple views introducing the super-collineation matrix to describe a set of
collineations. Then, we describe a simple algorithm to impose the constraints
existing between the collineation of the set. Finally, we describe some constraints
on the camera internal parameters which can be used for self-calibration. In Sec-
tion 4 we give the results obtained with both synthetic and real data.



2 Two-view geometry of a plane

In this section we describe the relationship between two views of a planar struc-
ture. Each camera performs a perspective projection of a point x € P? (with

homogeneous coordinates x = [X Y Z l]T) to an image point p € P? (with

homogeneous coordinates p = [u v I]T) measured in pixels: p x K [Rt] x,
where R and t represent the displacement between the frame F attached to the
camera and an absolute coordinate frame Fo, and K is a non-singular (3 x 3)
matrix containing the intrinsic parameters of the camera:

fku —fky cot(0) uo
K=| 0 fky/sin(0) vo (1)
0 0 1

where g and v are the coordinates of principal point (in pixels), f is the focal
length (in metres), k, and k, are the magnifications respectively in the @ and
¥ direction (in pixels/metres) and @ is the angle between these axes.

2.1 The collineation matrix in projective space

Let F; and F; be two frames attached respectively to the image 7; and Z;. The
two views of a planar object are related by a collineation matrix in projective
space. Indeed, the image coordinates p;; of the point P}, in the image Z; can be
obtained from the image coordinates p; of the point Py in the image Z;:

Pit X GijPjk (2)

where the collineation matrix G;; is a (3 x 3) matrix defined up to scalar factor
which can be written as:

where H;; is the corresponding homography matrix in the Euclidean space.
Homography and collineation are generally used to indicate the same projective
transformation from P” to P™ (in our case n = 2). In this paper we will use the
term “homography” to indicate a collineation expressed in Euclidean space.

A relationship similar to equation (2) exists between the projections 1;; and
Lz in the two images Z; and Z; of a 3D line Ly:

Lix o GJ; "L (4)
The estimation of the collineation matrix is possible both from equation (2)

and/or equation (4). However, for simplicity we will analyse only the case of
points since the same results can be applied for lines.



2.2 The homography matrix in Euclidean space

The homography matrix can be written as a function of the camera displacement
and the normal to the plane [2]:

—
t;; n;

T )

where R;; and t;; are respectively the rotation and the translation between the
frames F; and F;, n; is the normal to the plane 7 expressed in the frame F;
and d; is the distance of the plane 7 from the origin of the frame F;. From (3),
H,; can be estimated from G;; if we know the camera internal parameters of
the two cameras:

H;; o K;'GijK; (6)
Three important properties of the homography matrix will be extended to the
multi-view geometry in the next section:

1. the Euclidean homography matrix is not defined up to a scale factor. If
the homography is multiplied by a scalar v (H = yH), this scalar can be
easily recovered. If svd(H') = [0y 03 03] are the singular values of H' in
decreasing order, o1 > o2 > o3 > 0, then v is the median singular value of
H': v = median(svd(H')) = 5. Indeed, the matrix H has a unit singular
value [16] and this property can be used to normalise the homography matrix.

2. from equation (5) it is easy to show that the homography matrix satisfies the
following equation Yk > 0 (where [n;], and [n;], are the skew symmetric
matrices associated with vectors n; and n; which represent the normal to
the plane expressed respectively in the image frame F; and F;):

(] Hf; = Hj; [n,]} (7)

This equation provides useful constraints. If £ = 1, the matrix [n;], H}; =
[n;], Rj; has similar properties to the essential matrix (i.e. E = [t], R).
Indeed, this matrix has two equal singular values and one equal to zero.
This means two constraints each homography on the camera internal pa-
rameters [6] which can be used for the self-calibration as in [9]. If k = 2,
knowing that [n]” = nnT — I, equation (7) can be written:

n,anHﬁ — Hijnjnf = H;T; — H,’j (8)

and provides equations that will be used to compute n; and n;.
3. a very important relation can be obtained from equation (7) (with £k = 1)
and will be used to compute n; and n;:

[n;], = Hy; [n;] H 9)
Indeed, since det(M)M [v], M” = [M~ "v]_ then:
n; = Q;;n; (10)

where:
Q;; = det(Hi]’) Hi_j_r (11)



3 Multi-view geometry of a plane

In this section we describe the relationships between several views of a planar
structure. We will point out that a super matrix of 2D collineations among m
views has rank 3 and we will show how to enforce the rank property in an iterative
procedure. The properties of the corresponding super matrix of 2D homographies
provide the necessary constraint for the self-calibration of the camera internal
parameters. In what follows we will describe the case when only one planar
structure is used but the extension to more than one plane is straightforward.

3.1 The super-collineation matrix

If m images of an unknown planar structure are available, it is possible to com-
pute m(m — 1) collineations (m collineations are always equal to the identity
matrix). Let us define the super-collineation matrix as follows:

G - Gim
G=| : - : (12)
Gml"'Gmm

with dim(G) = (3m, 3m) and rank(G) = 3. The rank of G can not be less than
three since Gi; = I3 ¢ € {1,2,3,...,m}, and cannot be more than three since
each row of the matrix can be obtained from a linear combination of three others
rows:

Gij = Gikaj Vi,j,k S {1,2,3,...,m} (13)
This is a very strong constraint which is generally never imposed. Indeed, it
would require a complex nonlinear minimisation algorithm over all the images.
The constraints (13) can be summarised by the following equation:

G’=mG (14)

Then, matrix G has 3 nonzero equal eigenvalues \; = Ay = A3 = m and 3(m—1)
null eigenvalues Ay = A5 = ... = A3, = 0. If we can impose the constraint
G? = m G (with G; = I3 i = 1,2,3,...,m) then this is in fact equivalent to
imposing the constraints G;; = Gy, Gy;.

Imposing the constraints In order to impose the constraint, we exploit
the properties of the super-collineation matrix. Let p;; be the j-th point (j =
{1,2,3,...,n}) of the i-th image (: = {1,2,3,...,m}). The j-th point in all the
images can be represented by the vector of dimension (3m, 1) (which we will call
a super-point): pJ = [p{; P3; - - Pr,; | Generalising equation (2) we obtain:

I'jp; = Gp; (15)

where I'; = diag(v1,1s, 72,13, ..., Ym;I3) is a diagonal matrix relative to the set
of points j. Then, multiplying both sides of equation (15) by G we have:

GI'jpj = G2pj = mGpj = mI'jpj (16)



The vector p; = I'jp; (representing the homogeneous coordinates of the point
j in all the images) is an eigenvector of G corresponding to the eigenvalue m:

Gf)j = mf)j (].7)

As a consequence any super-point can be obtained as a linear combination of
the eigenvectors of G corresponding to the eigenvalue A = m:

Pj = 01X1 + a2Xs + 03X3 (18)

The matrix G can always be diagonalised and thus three linearly indepen-
dent eigenvectors always exist, i.e., 3X : X"1GX = diag(\1, A2, ..., A3m)- The
columns of the matrix X are in fact eigenvectors of G. Since X is nonsingular,
the eigenvectors of G are linearly independent and span the space R®™. That
means that an initial estimation p € R3™ of the super-point p can be written
as P = a;X; + asX2 + a3X3 + ... + a3 X3m. The real super-point p is an eigen-
vector of G corresponding to the largest eigenvalue A\ = m. We can thus use a
well-known algorithm to find an eigenvector of G starting from p. Lets multiply
our vector by LG

~ 1 . 1
pl = EGP = E(alle + a2Gxs + a3Gx3 + ... + 03, GX31) (19)
and then replace each Gxj with its corresponding A;xj. Factoring out A; we
have:

~1_ A m
pl = El <a1X1 + i—jOQXQ + i—jasms + ...+ /\)\3—1043mx3m> (20)

In a similar way, iterating the procedure k times we obtain:

D A2\ As)* Asm \ *
p =k ;X + N Q2Xp + N azxz + ... + Yl A3mX3m

This algorithm will converge to the eigenvector of G corresponding to the highest
eigenvalue since all the fractions A;/\; that are less than unit in magnitude
become smaller as we raise to higher powers. In our case, if we knew exactly the
super-collineation matrix, the algorithm would converge after only one iteration
since we have \y = Aa = A3 = m and \; = 0V 3 < k£ < 3m and the new
estimated super-point will satisfy the constraint of being an eigenvector of G
which means that the noise has been reduced.

In practice, the real super-collineation matrix G is unknown and we must use
an approximation G estimated from the noisy points in the images. The algo-
rithm used is the following. We start with a set of n points p; (j =1,2,3,...,n)
and compute the super-collineation matrix G solving independently the linear
problem of estimating each block G;; from equation (2). It is not necessary that
all the points are visible in all the images. Then, we compute a new set of super-
points trying to impose the constraint. The better the estimate of G we obtain
the faster the algorithm will converge and the more accurate will be the results.
At iteration k the algorithm is:



(i) estimate the super-collineation matrix
pi(k) = G(k) (22)

(ii) compute the new super-point
~ 15~
pij(k+1) = EG(k)pj(k) (23)

This algorithm treats all the images with the same priority without using any
key image and forces the rank 3 constraint on G. We now show some simulation
results which demonstrate the validity of our approach (we will describe in the
next section 3.2 how to use the consistent set of collineation matrix in order to
perform the self-calibration of the camera).
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Fig.1. Geometric noise reduction obtained imposing the rank 3 constraint on
the super-collineation matrix.

Simulation results The algorithm was tested on a simulated planar grid of 64
points. It converges after 1 or 2 iterations imposing the constraint on the rank
of the matrix G. The error between the theoretical position of the points (which
is never used in the algorithm but only for its evaluation) and the transformed
coordinates is greatly reduced. Figure 1 shows the results obtained from random
views with a random axis of rotation and a 30 degrees angle of rotation with
respect to a fixed position. On the horizontal axis are given the number of



images used and on the vertical axis the corresponding rate of noise reduction.
The continuous line gives us an upper bound of the reduction rate that could be
possible if the super-collineation was known exactly. This reduction is practically
independent of the level of noise and all continuous lines are superposed in
Figure 1. The dashed dotted lines represent the results obtained estimating the
super-collineation matrix with differents level of noise (0.1 < ¢2 < 1000). The
rate of noise reduction does not vary significantly with the amplitude of the noise.
However, when the level of noise increases the reduction rate decreases since the
estimation of the super-collineation matrix becomes less accurate. Finally, we
obtain only a small improvement when increasing the number of the images
from 50 to 100. In the simulation results described in section 4.1 we obtain very
similar results varying the camera internal parameters and the angle of rotation
between the images.

3.2 The super-homography matrix

Let us define the super-homography matrix in the Euclidean space as:
Hy --- Hypy

H=| @ - (24)
H,:--H,n.
with dim(H) = (3m, 3m) and rank(H) = 3. The super-homography matrix can
be obtained from the super-collineation matrix and the camera parameters:

H=K 'GK (25)
where (dim(K) = (3m, 3m) and rank(K) = 3m):
K,--- 0
K=|: - (26)
0 ---K,

is the matrix containing the internal parameters of all the cameras. It should
be noticed that if the constraint G2 = mG was imposed, then the constraint
H? = mH is automatically imposed which means that the following constraints
are satisfied:

Hz'j = Hz'kaj (27)
Unlike the super-collineation matrix, the super-homography matrix is not defined
up to a diagonal similarity. Indeed, if o;; denotes the median singular value of the
matrix H;; we can build the following matrix which contain all the coefficients of
normalisation: D = diag(o1113, 01213, ..., 01,,I3). The super homography matrix
is thus normalised as follows:

H=DHD! (28)

From this equation we can easily see that the constraint H?> = mH holds. In
the presence of noise, normalising H with equation (28) will conserve the rank
constraint of the matrix since it is a similarity transformation.



3.3 Super-homography decomposition

After normalisation, the homography matrix can be decomposed as:

H=R+TN” (29)
where:
tia tim
... == n 0---0
Ri: --- Rin, dy dm 0ny - 0
R = Do ,T = Do , N = . (30)
le"'Rmm tll...—tmm : : .
4 i 0 0 ---n,,

with dim(R) = (3m,3m), rank(R) = 3, dim(T) = (3m,m) and dim(N) =
(3m,m). Matrix R is a symmetric matrix, R = RT and R? = mR. As a con-
sequence not only are the three largest eigenvalues \; = A2 = A3 = m but also
the three larg est singular values are oy = 03 = 03 = m. In [2] and [16] are
presented two different methods for decomposing the homography matrix, com-
puted from two views of a planar structure, following equation (5). In general,
there are two possible solutions but the ambiguity can be resolved by adding
more images. Here we present a method to decompose any set of homography
matrices. Equation (10) can be generalised as follow:

Qi1 -+ Qum
Q=| : .. : |=wH'W! (31)
le ot Qmm
where W = diag(1, det(Ha;), ..., det(H,,1)) and dim(Q) = (3m, 3m) and rank(Q) =
3. Matrix Q has similar properties to the matrix H, for example, it has an

eigenvalue A\ = m of multiplicity three. The vector n is an eigenvector of Q
corresponding to the eigenvalue A = m:

Qn =mn (32)

where n = [nfnT...nT]7. The vector can be written as a linear combination of

the eigenvectors n = z vy +y vo + 2 v3 = Vx, wherex = [z y z]T is a vector
containing three unknowns and V = [vy v v3] is a known matrix. Imposing
the constraint ||ng|| = 1 and the constraints given by equation (8) we obtain:

VixxTVfHﬁ - HijijxTV;'F = Hfl —H;; (33)

from which is possible to compute the unknown matrix xx” and then, by singular
values decomposition, the original unknown which is x. Once find x, the normals
to the plane are extracted from H and knowing that RN = NO,,, we find:

T = HN - 0;,,N (34)
R = H(NN” —I5,,) + N7 03, N (35)



3.4 Camera self-calibration

The super-homography can of course be used in many applications. In this sec-
tion we use the properties of the set of homography matrices to self-calibrate the
cameras. It should be noticed that we avoid the use of a bundle adjustment tech-
nique to impose the rank 3 constraint on the super-homography (as explained
in section 3) and thus we considerably simplify the algorithm. In this case, the
only unknowns are the camera internal parameters. Each independent homogra-
phy will provide us two constraints on the parameters according to equation (7).
Indeed, if of; and o/ are the two non-zero singular values of [n;], HJ; our self-
calibration method is based on the minimisation of the following cost function

[4][9]:

m

™ gl ol
c=Y Z i Ufj% (36)

i=1 j=1

A minimum of 3 independent homography matrices (4 images) is sufficient to
recover the focal length and the principal point supposing r = 1 and 6 = 7/2
and a minimum of 4 independent homography matrices (5 images) is sufficient
to recover all the parameters.

4 Experiments

The self-calibration algorithm has been tested on synthetic and real images.
The results obtained with a calibration grid were compared with the standard
Faugeras-Toscani method [3]. Our self-calibration algorithm is the following:

1. Match corresponding points in m images of a planar structure;

2. Compute the super-collineation imposing the rank 3 constraint using the
algorithm described in Section 3.1;

3. Using an initial guess of the camera parameters compute the normalised
super-homography matrix as described in Section 3.2;

4. Decompose the super-homography matrix and find the normal to the plane
as described in Section 3.3;

5. Compute a new set of camera parameters which minimise the cost function
given in Section 3.4 and go to step 3.

4.1 Simulations of a planar grid

The planar grid used for the simulations in section 3 was used to test the self-
calibration algorithm. The experimental setup is as close as possible to the one
proposed by Triggs [14]. The cameras roughly fixate a point on the plane from
randomly generated orientations varying £30° in each of the three axes. The
nominal camera calibration is f = 1000, » = 1, 8 = 90°, u = 250 and v = 250.
The plane contains 64 points projected into a 500 x 500 image. The camera
calibration varies randomly about the nominal values of oy = +30%, o, = £10%,
o¢ = 0.5° and o, = 0, = £75 pixels (o; and o, are standard deviations of log-
normal distributions while og, ¢, and o, of normal ones).
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Fig. 2. Simulations results of camera self-calibration using a planar grid. The
graphs (a), (b), (c), (d) and (e) show the mean of the errors on the camera
internal parameters (respectively f,6,r,u,v) obtained with the self-calibration
algorithm. Graph (f) shows the failure rate of the algorithm. Finally, the graphs
(g), (h) and (i) show the mean of the errors on the camera internal parameters
(respectively f,u,v) obtained supposing § = 90° and r = 1.

In Figure 2 we give the results obtained using 6 (lines marked with a square),
8 (lines marked with a triangle) and 10 (lines marked with a circle) images and
supposing all the camera parameters unknowns. The figure represents the mean
error computed on 100 trials with different parameters and different camera
positions for each level of noise (the standard deviation of the Gaussian noise
added to the coordinates of the points is increased from 0 to 5). The error on
the principal point is given as a percentage of the focal length. The errors on



the camera parameters increase with the noise and decrease with the number of
images used for self calibration. Using six images the results are still satisfactory
even if the failure rate of the method increases rapidly (a failure of the method
occurs when the obtained focal length is less than 100 pixels). This can be
explained since it is known that with few images there is the risk of degenerate
configurations [11]. The results obtained compare very favourably to the results
obtained by Triggs in [14], especially considering the failure rate of the method.
For example, using 10 images we obtain a mean error more than 50 % smaller
than the error obtained by Triggs. Finally, in Figure 2(g), (h) and (i) we give
the results of our method when r and 8 are fixed to their nominal values. The
error on the focal length is practically the same. On the other hand, the error
on the location of the principal point is reduced since the non-linear search is
now done in a three-dimensional space reducing the risk of local minima.

4.2 Self-calibration from images of a grid and comparison with the
standard Faugeras-Toscani calibration method

A sequence (26 images of dimension (640 x 480)) of a calibration grid was taken
using a Fuji MX700 camera with a 7mm lens. Figure 3 shows three images of
the sequence. The corners of the black squares are used to compute the super-
collineation matrix in order to self-calibrate the camera with our method.

Fig. 3. Three images of the sequence taken with a digital camera. The calibra-
tion grid allows the “ground truth” to compare our method with the standard
Faugeras-Toscani method. The main advantage of using our method is that we
don’t need any knowledge of the 3D structure of the grid to calibrate the camera.
On the other hand, at least five images are needed.

Table 1 gives the results for the following experiment:

— non-planar calibration: the mean and the standard deviation on 26 images
of the grid calibrated with the standard Faugeras-Toscani method initialised
with the DLT linear method [1]. In this case we use both planes to calibrate
the camera;

— planar self-calibration: the mean and the standard deviation on 50 tests using
m images (m = 6,8,10) randomly chosen between the 26 images of the grid.
The same tests are repeated using the right plane alone, the left plane alone
and then again with r and @ fixed to nominal values.



The results are very good and agree with the simulations. They are more accurate
than the results obtained by Triggs with a sequence of images of a calibration
grid. In our case, the angle of rotation between the images of the sequence can be
greater than 60° which has in general the effect to improve the results. However,
this is not always true since the planes can be very close to the optical center of
the camera (see in Figure 3) and in this case the estimation of the collineations is
not accurate. The calibration obtained using the right plane is again very similar
to the calibration obtained using the left plane. As we expected the accuracy
decreases as we decrease the number of images but the worst result (obtained
using only 6 images of the grid) is only an error of 2% on the focal length.

|calibration method] f ] r | 0 | u | v |
[DLT linear 685 + 3 [1.0005 & 0.0033]90.00 + 0.14[322 + 5 [229 + 4 |
Faugeras-Toscani (685 + 3 |{1.0003 £ 0.0022|90.00 &+ 0.16{322 &+ 5 |229 £+ 4
right plane (10 im)|680 + 8 [0.9976 + 0.0088|89.23 + 0.59(318 + 8 (230 + 8

left plane (10 im)|680 £+ 6 |0.9943 + 0.0058|89.89 + 0.30(320 + 7 (232 + 4
right plane ( 8 im) [681 + 12|0.9950 + 0.0105|89.21 + 0.80(315 + 11232 £+ 9
(
(

left plane ( 8 im) [678 £ 12|0.9969 + 0.0075(90.06 + 0.24(327 + 14/233 + 3
right plane ( 6 im) |686 + 13|0.9891 + 0.0126|89.63 + 0.69(312 + 18(231 + 11
left plane ( 6 im) |685 + 10|0.9886 + 0.0147|89.80 + 0.59(339 + 18(232 £+ 7

Faugeras-Toscani |685 £ 3 1+0 90 +0 |322+6 (22914
right plane (10 im)|679 + 6 1+0 90+0 |318+5 |224+38
left plane (10 im)|675 &+ 6 1+0 90+0 |325+4 |232+4
right plane ( 8 im) (687 + 6 1+0 90+0 (323+3 |231+6
left plane ( 8 im) |676 & 4 1+0 90 £ 0 343 + 27|231 + 12
right plane ( 6 im) |676 =+ 8 140 90+£0 [314+9 [227+5
left plane ( 6 im) |677 + 18 140 90 £ 0 327 + 34[230 + 31

Table 1. Results using digital images of the grid (statistics on 50 tests)

After the camera has been calibrated, the 3D reconstruction of the planes
was realized. If n,; and n;; are respectively the normal to the right and left
plane in the frame attached to the image 7;, the angle between them is:

¢; = cos ! (n%nlj)

This angle should be the same for all the images j = 1,2,3,...,m. In order to
verify the quality of the reconstruction results we can compute the mean and
the standard deviation o over all the images. For example, the results obtained
with a sequence of m = 10 images were:

1 m
= — i = 89.84
v m;¢y ,




4.3 Self-calibration from images of a facade

In this experiment, in order to test our algorithm in very extreme conditions,
only four images of a facade (see Figure 4) were taken with the same digital
camera. With such images the localisation of the corners was not accurate and
with only four images we can only calibrate the focal length and the principal
point (thus we fixed » = 1 and 6 = 90°). The results obtained using our self-
calibration with 56 points (the corners of the windows on the facade) are f = 678
(1 % of the mean focal length obtained with the Faugeras-Toscani method and
the calibration grid), v = 355 and v = 216. The results are very good even using
images of a roughly planar structure.

Fig.4. Four images of a facade. The corners of the windows (marked with a white
cross) belong roughly to a plane. They are used to compute the super-collineation
matrix from which it is possible to self-calibrate the camera.

5 Conclusion

In this paper we presented an efficient technique to impose the constraints ex-
isting within a set of collineation matrices computed from multiple views of a
planar structure. The obtained set of collineations can be used for several appli-
cations such mosaicing, reconstruction and self-calibration from planes. In this
paper we focused on self-calibration proposing a new method which does not
need any a priori knowledge of the metric structure of the plane. The method



was tested both with synthetic and real images and the obtained results are very
good. However, the method could be improved by imposing further constraints
in order to obtain not only a consistent set of collineations matrices but also a
consistent set homography matrices. The method could also be improved using
a probabilistic model for the noise.
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