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Abstract. This paper presents a new Bayesian framework for layered
motion segmentation, dividing the frames of an image sequence into fore-
ground and background layers by tracking edges. The first frame in the
sequence is segmented into regions using image edges, which are tracked
to estimate two affine motions. The probability of the edges fitting each
motion is calculated using 1st order statistics along the edge. The most
likely region labelling is then resolved using these probabilities, together
with a Markov Random Field prior. As part of this process one of the
motions is also identified as the foreground motion.

Good results are obtained using only two frames for segmentation. How-
ever, it is also demonstrated that over multiple frames the probabilities
may be accumulated to provide an even more accurate and robust seg-
mentation. The final region labelling can be used, together with the two
motion models, to produce a good segmentation of an extended sequence.

1 Introduction

Video segmentation is a first stage in many further areas of video analysis. For
example, there is growing interest in video indexing — where image sequences
are indexed and retrieved by their content — and semantic analysis of an image
sequence requires moving objects to be distinguished from the background. Fur-
ther, the emerging MPEG-4 standard represents sequences as objects on a series
of layers, and so these objects and layers must be identified to encode a video
sequence.

A recent trend in motion segmentation is the use of layers [7, 16]. This avoids
some of the traditional multiple-motion estimation problems by assuming that
motion within a layer is consistent, but layer boundaries mark motion disconti-
nuities. The motions and layers may be estimated using the recursive dominant
motion approach [1, 10], or by fitting many layers simultaneously [11, 15, 16, 17].

Motion estimation is poor in regions of low texture, and here the structure of
the image has to play a part. Smooth regions are expected to move coherently,
and changes in motion are more likely to occur at edges in the image. A common
approach is to use the local image intensity as a prior when assigning pixels to



layers [10, 15, 17]. The normalized cuts method of Shi and Malik [12] can combine
both the motion and intensity information of pixels into a weighted graph, for
which the best partition has then to be found.

Alternatively, the image structure may be considered before the motion es-
timation stage by performing an initial static segmentation of the frame based
on pixel colour or intensity. This reduces the problem to one of identifying the
correct motion labelling for the each region. Both Bergen and Meyer [2] and
Moscheni and Dufaux [9] have had some success in merging regions with similar
motion fields.

This paper concentrates on the edges in an image. Edges are very valuable
features to consider, both for motion estimation and segmentation. Object track-
ing is commonly performed using edge information (in the form of snakes), while
image segmentation techniques naturally use the structure cues given by edges.
If an image from a motion sequence is already segmented into regions of similar
colour or intensity along edges, it is clear that a large proportion of the motion
information will come from these edges rather than the interior of regions. This
paper shows how this edge information alone is sufficient to both estimate and
track motions, and label image regions.

Many papers on motion segmentation avoid the question of occlusion or the
ordering of layers. Occluded pixels are commonly treated as outliers which the
algorithm has to be able to tolerate, although reasoned analysis and modelling
of these outliers can be used to retrieve the layer ordering and identify occluded
regions [2, 3, 16]. With the edge-based method proposed in this paper, the prob-
lem of occluded pixels is greatly reduced since it is only the occluding boundary,
and not the region below, which is being tracked. Furthermore, the relationship
between edges and regions inherently also depends on the layer ordering, and
this is extracted as an integral part of the algorithm.

This paper describes a novel and efficient framework for segmenting frames
from a sequence into layers using edge motions. The theory linking the motions
of edges and regions is outlined and a Bayesian probabilistic framework devel-
oped to enable a solution for the most likely region labelling to be inferred from
edge motions. This work extends the approach first proposed in [14], developing
more powerful probabilistic models and demonstrating that evidence may be ac-
cumulated over a sequence to provide a more accurate and robust segmentation.

The theoretical and probabilistic framework for analysing edge motions is
presented in Sect. 2. The current implementation of this theory is outlined in
Sect. 3, with experimental results presented in Sect. 4.

2 Theoretical Framework

Edges in the image are important features since the desired segmentation di-
vides the image along occluding edges of the foreground object (or objects) in
the image. Edges are also very good features to consider for motion estimation:
they can be found more reliably than corners and their long extent means that
a number of measurements may be taken along their length, leading to a more



accurate estimation of their motion. However, segmentation ultimately involves
regions, since the task is one of labelling image pixels according to the motions.
If it is assumed that the image is already segmented into regions along edges,
then there is a natural link between the regions and the edges. In this section the
relationship between the motion of regions and edges is outlined and a proba-
bilistic framework is developed to enable a region labelling to be estimated from
edge data.

2.1 The Image Motion of Region Edges

Edges in an image are due to the texture of objects, or their boundaries in the
scene. Edges can also be due to shadows and specular reflections, but these are
not considered at this stage. It is assumed that as an object moves all of the edges
associated with the object move, and hence edges in one frame may be compared
with those in the next and partitioned according to different real-world motions.

The work in this paper assumes that the motion in the sequence is layered
i.e. one motion takes place completely in front of another. Typically the layer
farthest from the camera is referred to as the background, with foreground layers
in front of this. It is also assumed that any occluding boundary (the edge of a
foreground object) is visible in the image. With regions in the image defined
by the edges, this implies that each region obeys only one motion, and an edge
which is an occluding boundary will have the motion of the occluding region.
This enables a general rule to be stated for labelling edges from regions:

Labelling Rule: The layer to which an edge belongs is that of the nearer
of the two regions which it bounds.

2.2 Probabilistic Formulation

There are a large number of parameters which must be solved to give a complete
motion segmentation. In this section a Bayesian framework is developed to enable
the most likely value of these parameters to be estimated.

The complete model of the segmentation, M, consists of the elements M =
{®, F, R} where

© is the parameters of the layer motion models,
F is the depth ordering of the motion layers,
R is the motion label (layer) for each region.

The region edge labels are not part of the model, but are completely defined by
R and F from the Labelling Rule of Sect. 2.1.

Given the image data D (and any other prior information assumed about
the world), the task is to find the model M with the maximum probability given
this data and priors:!

maxP (M|D) = max P (RFO|D) . (1)
M RFO®

! Throughout this paper, max is used to also represent argmax, as frequently both
the maximum value and the parameters giving this are required.



This can be further decomposed into a motion estimation component and region
labelling:

max P (RF®|D) = max P (@|D) P (RF|@D) . 2)
RF® RF®

At this stage a simplification is made: it is assumed that the maximum value
(not the model parameters which give this) of (2) is independent of the mo-
tion, and thus the motion parameters @ can be maximised independently of the
others. The expression to be maximised is thus

m(S,XP (@|D) n}l{%xP (RF|®D), (3)

~ 2
~~

a b

where the value of @ used in term (b) is that which maximises term (a). The
two components of (3) can be evaluated in turn: first (a) and then (b).

(a) Estimating the Motions @. The first term in (3) estimates the motions
between frames, which this may be estimated by tracking features. As outlined
in Sect. 2.1, edges are robust features to track and they also provide a natural
link to the regions which are to be labelled.

In order to estimate the motion models from the edges it is necessary to know
which edges belong to which motion, which is not something that is known a
priori. In order to resolve this, another random variable is introduced, e, which
is the labelling of an edge: which motion the edge obeys. The motion estimation
can then be expressed in terms of an Expectation-Maximisation problem [5]:

(4)

P(©,+1leD)P (e|®,D) M-stage.

P (e|®,D) E-stage
maxe

n41

Starting with an initial guess of the motions, the expected edge labelling is
estimated. This edge labelling can then be used to maximise the estimate of the
motions, and the process iterates until convergence.

(b) Estimating the Labellings R and F. Having obtained the most likely
motions, the remaining parameters of the model M can be maximised. Once
again, the edge labels are used as an intermediate step. The motion estimation
allows the edge probabilities to be estimated, and from Sect. 2.1 the relationship
between edges and regions is known. Term (3b) can be augmented by the edge
labelling e, which must then be marginalised, giving

maxP (RF|@D) = %%XZE:P (RF|e)P (e|®D) (5)

since R and F are conditionally independent of D given e (which is entirely
defined by R and F).



The second term, the edge probabilities, can extracted directly from the
motion estimation stage. The first term is more difficult to estimate, and it is
easier to recast this using Bayes’ Rule, giving

P (e|RF)P (RF)

The maximisation is over R and F', so P (e) is constant. It can also be assumed
that the priors of R and F' are independent, and any foreground motion is equally
likely, so P (F') is constant. The last term, the prior probability of a particular
region labelling P (R), is not constant, which leaves the following expression to
be evaluated:

P(RFle) =

I%E]F,'XZP (e|lRF)P(R)P (e|@D) . (7)

The P (e|RF) term is very useful. e is only an intermediate variable, and is
entirely defined by the region labelling R and the foreground motion F'. This
probability therefore takes on a binary value — it is 1 if that edge labelling is
implied and 0 if it is not. The sum in (7) can thus be removed, and the e in
the final term replaced by a function of R and F which gives the correct edge
labels:

maxP (¢ (R, F)|©D)P (R) . (8)
—_———

a b

The variable F' takes only a discrete set of values (in the case of two layers,
only two: either one motion is foreground, or the other). Equation (8) can there-
fore be maximised in two stages: F' can be fixed at one value and the expression
maximised over R, and the process then repeated with other values of F' and
the global maximum taken.

The maximisation over R can be performed by hypothesising a complete re-
gion labelling and then testing the evidence (8a) — calculating the probability of
the edge labelling given the regions and the motions — and the prior (8b), cal-
culating the likelihood of that particular labelling configuration. An exhaustive
search is impractical, and in the implementation presented here region labellings
are hypothesised using simulated annealing.

3 Implementation

This section outlines the implementation of the framework presented in Sect. 2
for two layers (foreground and background), with the motions of each modelled
by an affine motion. The basic implementation is divided into three sections (see
Fig. 1):

1. Find edges and regions in the first frame

2. Estimate the motions and edge probabilities
3. Label the regions and foreground motion

The second two stages can then be continued over subsequent frames and the
edge probabilities accumulated.



(a) Initial static seg- (b) Edges labelled as (c) Foreground regions
mentation motion 1 or motion 2

Fig. 1. ‘Foreman’ segmentation from two frames. The foreman moves his head very
slightly to the left between frames, but this is enough to accurately estimate the motions
and calculate edge probabilities. The foreground motion can then be identified and the
regions labelled to produce a good segmentation of the head.

3.1 Finding Edges and Regions

To implement the framework outlined in Sect. 2, regions and edges must first
be located in the image. The implementation presented here uses a scheme de-
veloped by Sinclair [13] but other edge-based schemes, such the morphological
segmentation used in [2], are also suitable.

Under Sinclair’s scheme, colour edges are found in the image and seed points
for region growing are then found at the locations furthest from these edges.
Regions are grown, by pixel colour, with image edges acting as hard barriers. The
result is a series of connected, closed region edges generated from the original
fragmented edges (see Fig. 1(a)). The edges referred to in this paper are the
region boundaries: each boundary between two distinct regions is an edge.

3.2 Estimating the Motions ©

As described in Sect. 2.2, the problem of labelling the segmented regions can be
divided into two stages: first estimating the motions and then the motion and
region labelling. In order to estimate the motions, features are tracked from one
frame to the next; the obvious features to use are the region edges. The motion is
parameterised by a 2D affine transformation, which gives a good approximation
to the small inter-frame motions.

Multiple-motion estimation is a circular problem. If it were known which
edges belonged to which motion, these could be used to directly estimate the
motions. However, edge motion labelling cannot be performed without knowing
the motions. In order to resolve this, Expectation-Maximisation (EM) is used
[5], implementing the formulation outlined in (4) as described below.

Edge Tracking. Both stages of the EM process make use of group-constrained
snake technology [4, 6]. For each edge, tracking nodes are assigned at regular
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Fig. 2. Edge tracking example. (a) Edge in initial frame. (b) In the next frame the
image edge has moved. Tracking nodes are initialised along the model edge and then
search normal to the edge to find the new location. The best-fit motion is the one that
minimises the squared distance error between the tracking nodes and the edge.

intervals along the edge (see Fig. 2). The motion of these nodes are considered
to be representative of the edge motion (there are around 1,400 tracking nodes
in a typical frame). The tracking nodes from the first frame are mapped into
the next according to the current best guess of the motion. A 1-dimensional
search is then made along the edge normal (for 5 pixels either direction) to find
a matching edge pixel based on colour image gradients. The image distance d,
between the original node location and its match in the next image, is measured
(see Fig. 2(b)).

At each tracking node the expected image motion due to the 2D affine motion
0 can be calculated. The best fit solution is the one which minimises the residual:

meinzz (dy — n(0,1))° (9)

e tce

over all edges e and tracking nodes ¢, where d; is the measurement and n(0,t)
the component of the image motion normal to the edge at that image location.
This expression may be minimised using least squares, although in practice an
M-estimator (see, for example, [11]) is used to provide robustness to outliers.

Maximisation: Estimating the Motions. Given the previous estimate of the
motions @, all tracking nodes are mapped into the next frame according to both
motions. From each of the two possible locations a normal search is performed as
described above and the best match found (or ‘no match’ is reported if none is
above a threshold). These distances are combined into the estimate of the affine
motion parameters (9) in proportion to the current edge probabilities.

Expectation: Calculating Edge Probabilities. For simplicity, it is assumed
that the tracking nodes along each edge are independent and that tracker errors
can be modelled by a normal distribution. Experiments have shown Gaussian
statistics to be a good fit, and although the independence assumption is less
valid (see Sec. 3.3), it still performs satisfactorily for the EM stage.

By assuming independence, the edge probability under each motion is the
product of the tracking node probabilities. Each tracking node tries to find a
match under each of the two motions, yielding either an error distance d; or
finding no match above a threshold (denoted by d; = ®). There are three dis-
tinct cases when matching under the two motions: a match is found under both



motions, under neither motion, or under only one motion. The probability dis-
tributions for each case have been modelled from data by considering an ideal
solution.

Match Found Under Both Motions. The errors under both motions are modelled
by normal distributions and, a priori, both are equally likely. The probability of
a tracker belonging to motion 1 is given by the normalised probability

1
1 +exp (—ﬁ (d3 — d%))

P (MOtiOIl 1|d1d2) = (10)

where, from data, 1/20% = 0.3. The probability of it belonging to motion 2 is,
of course, (1 — P (Motion 1|d;d2)).

Match Found Under Only One Motion. A Gaussian was found to be a good fit
to experimental data:

P (Motion 1|dy, dy = ®) = ae P4 | (11)

with a = 0.97 and 8 = 0.0265. The same equation holds, but with d», if the
single match were under motion 2 instead.

No Match Found Under FEither Motion. In this case, no information is available
and a uniform prior is used:

P (Motion 1|d; =d; = ®) =0.5. (12)

Initialisation and Convergence. The EM is initialised with a guess of the
two motions @. For the first frame, the initial guesses are zero motion (the
camera is likely to be stationary or tracking the foreground object) and the
mean motion, estimated from the initial errors of all the edges. For subsequent
frames, a velocity estimate is used (see Sec. 3.4). For the first iteration of EM,
the tracker search path is set at 20 pixels to compensate for a possible poor
initialisation.

Convergence is gauged by considering the Maximum A Posteriori labelling
of each edge (either motion 1 or motion 2 depending on which is most likely). If
no edge changes labelling between two iterations then convergence is assumed.
The maximum number of iterations is set at 40, which takes around 3 seconds
on a 300MHz Pentium II.

3.3 Labelling Regions R and finding the Layer Order F

Having estimated the most likely motions @, the second term of (3) can be max-
imised. This finds the most likely region labelling and identifies the motion most
likely to be foreground. Using (8), this can be performed by hypothesising possi-
ble region and foreground motion labellings and calculating their probabilities,
selecting the most probable.
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Fig. 3. Markov chain transition probabilities. These are used to calculate the probabil-
ity of observing a particular sequence of tracking node errors along an edge. A residual
of —6 corresponds to no match being found at that tracker under that motion.

Region Probabilities from Edge Data. Given a hypothesised region la-
belling and layer ordering, the edges can all be labelled as motion 1 or motion 2
by following the Labelling Rule from Sect. 2.1. The probability of this region la-
belling given the data (term (8a)) is given by the probability of the edges having
these labels.

The edge probabilities used in the EM of Sec. 3.2 made the assumption
that tracking node errors were independent. While this is acceptable for the
EM, under this assumption the edge probabilities are too confident and can
result in an incorrect region labelling solution. As a result, a more suitable edge
probability model was developed. Correlations between tracking nodes along an
edge can be decoupled using Markov chains, which encode 1st order probabilistic
relationships. (Used, for example, by MacCormick and Blake [8] to make their
contour matching more robust to occlusion.) These higher-order statistics cannot
be used for the EM since they are only valid at (or near) convergence. However,
to ensure that the EM solution maximises the Markov chain edge probabilities,
the EM switches to the Markov chain model near convergence.

The Markov chain models the relationship between one tracking node and the
next along an edge, giving the probability of a tracking node having a certain
residual d; given the residual at the previous tracking node. These transition
probabilities were estimated from data for the cases where an edge is matched
under the correct motion and under the incorrect motion, and the modelled
probabilities can be seen in Fig. 3. It is found that under the correct motion, a
low residual distance is likely, and the residuals are largely independent (unless
no match is found, in which case it is highly likely that the next tracking node
will also find no match). Under the incorrect motion, the residual distances are
highly correlated, and there is always a high probability that no match will be
found.



There are two models of edge tracking node sequence formation: either mo-
tion 1 is correct and motion 2 incorrect, or vice versa. Both are considered
equally likely a priori. The chain probability is calculated from the product of
the transition probabilities, and it is assumed that the probabilities under the
correct and incorrect motions are independent and so the two can be multiplied
to give the hypothesis probability. Finally, the two hypothesis probabilities must
be normalised by their sum to give the posterior edge probability.

The region probability given the data is the probability that all its edges
obey the correct motions. It is assumed that the edges are independent, so (8a)
can be evaluated by multiplying together all region edge probabilities under the
edge labelling implied by R and F'.

Region Prior Term (8b) encodes the a priori region labelling. This is imple-
mented using a Markov Random Field (MRF), where the prior probability of a
region’s labelling depends on its immediate neighbours. Neighbours are consid-
ered in term of the fractional boundary length such that the more of a region’s
boundary adjoins foreground regions, the more likely the region is to be fore-
ground.

The prior model was estimated from examples of correct region segmenta-
tions. An asymmetric sigmoid is a good fit to the data, where it is more likely
to have a promontory of foreground in a sea of background than an inlet in the
foreground (f is the percentage of foreground boundary around the region):

1
~ T+exp(—10(f — 0.4))

P(R) (13)

Solution by Simulated Annealing. In order to minimise over all possible
region labellings, simulated annealing (SA) is used. This begins with an initial
guess and then repeatedly tries flipping individual region labels one by one to
see how the change affects the overall probability. (This is a simple process since
a single region label change only causes local changes.)

The annealing process is initialised with a guess based on the edge prob-
abilities. According to Sec. 2.1, foreground regions are entirely surrounded by
foreground edges. This can be used as a region-labelling rule, although it is found
that it works better if slightly diluted to allow for outliers. The initial region la-
belling labels as foreground any region with more than 85% of its edges having
a high foreground probability.

Taking each region in turn,? they are considered both as foreground and as
background and the probability of each hypothesis is calculated. In each case, the
prior P (R) can be calculated by reference to the current labels of its neighbours
and the evidence calculated from the edge probabilities (using the edge motions
implied by the neighbouring region labels and the layer ordering).

2 Each pass of the data labels each region, but the order is shuffled each time to avoid
systematic errors.



In the first pass, the region is then assigned by a Monte Carlo approach,
i.e. randomly according to the two probabilities. However, the cycle is repeated
and as the iterations progress, these probabilities are forced to saturate such
that after around 30 iterations, all regions will be being assigned to their most
likely motion. The annealing process continues until no changes are observed in
a complete pass of the data, which takes about 40 iterations.

The random element in SA enables some local minima to be avoided. How-
ever, it was found that local minima were still a problem under any reasonable
cooling timetable and, under some situations, the optimal solution was only
found around a third of the time. This is solved by repeating the annealing
process a number of times: 10 maximisations are performed, which gives a 99%
probability of finding the optimal solution. The entire maximisation of (8) takes
around 2 seconds on a 300MHz Pentium II.

Determining Depth Ordering F and Optimal Segmentation R Moving
between region and edge labels, as in the annealing process, requires the layer
ordering F' to be known. This identifies the occluding edges of regions, and a
different layer ordering can result in a very different segmentation. The most
likely ordering, and segmentation, is the one which is most consistent with the
edge probabilities i.e. the R, given F', with the highest probability.

The annealing process is thus performed twice, once for each possible value
of F, first with motion 1 as foreground and then motion 2 as foreground. The
segmentation with the greater posterior probability identifies the most likely
foreground motion and the segmentation.

3.4 Multiple Frames

The maximisation outlined in Sects 3.2 and 3.3 can be performed over only two
frames with good results (see, for an example, Fig. 1(c)). However, over multiple
frames more evidence can be accumulated to give a more robust estimate. It is
always the segmentation of frame 1 that is being maximised, so after comparing
frame 1 to frame 2, frames 1 and 3 are compared, and then 1 and 4 and so on.

Initialisation The estimated motions and edge probabilities between frames 1
and 2, can be used to initialise the EM stage for the next frame. The motion
estimate is that for the previous frame incremented by the velocity between the
previous two frames. The edge labelling is initialised to be that implied by the
region labelling of the previous frame, and the EM begins at the M-stage.

Combining statistics The probability that an edge obeys motion 1 over n
frames is the probability that it obeyed motion 1 in each of the n frames. This
can be calculated from the product of the probabilities for that edge over all
n frames, if it is assumed that the edge probabilities are independent between
frames.



To perform the region and foreground labelling based on the cumulative
statistics, the method described in Sec. 3.3 is followed but using the cumulative
edge statistics rather than those from just one frame.

Occlusion Over only two frames the problem of occlusion has been ignored
as it has little effect on the outcome. When tracking over multiple frames, this
becomes a significant problem. The foreground/background labelling for edges,
however, allows this problem to be overcome. For each edge labelled as back-
ground according to the previous frame’s region labelling, the tracking nodes’
locations in the current image (under the background motion) are projected back
into frame 1 under the foreground motion. If they fall into regions currently la-
belled as foreground, they are marked as occluded and they do not contribute
to the tracking for that edge. All trackers are also tested to see if they project
to outside the frame under the current motion and, if so, they are also ignored.

Segmenting a Sequence The segmentation of an entire sequence may be
approximated by projecting the foreground regions into the other frames of the
sequence according to the foreground motion at each frame. These regions may
then be used as a ‘template’ to cut out the object in each of the subsequent
frames (see Figs 5 and 6).

4 Results

Figure 1 shows the segmentation from the standard ‘foreman’ sequence based
on two neighbouring frames. Between frames the head moves a few pixels to
the left. The first frame is statically segmented (Fig. 1(a)) and then EM run
between this frame and the next to extract the motion estimates. Figure 1(b)
shows the edge labels based on how well they fit each motion after convergence.
It can be seen that the EM process picks out most of the edges correctly, even
though the motion is small. The edges on his shoulders are poorly labelled,
but this is due to the shoulders’ motion being even smaller than that of the
head. The correct motion is selected as foreground with very high confidence
(a posterior probability of about 99%) and the final segmentation, Fig. 1(c), is
very good despite some poor edge labels. In this case the MRF region prior is
a great help in producing a plausible segmentation. On a 300MHz Pentium II,
it takes around 7 seconds to produce the motion segmentation from an initial
static region segmentation.

The effect of using multiple frames can be seen in Fig. 4. Accumulating the
edge probabilities over several frames allows random errors to be removed and
edge probabilities to be reinforced. The larger motions between more widely
separated frames also removes ambiguity. It can be seen that over time the con-
sensus among many edges on the shoulders is towards the foreground motion.
The accumulated edge probabilities have a positive effect on the region segmen-
tation, which settles down after a few frames to a very accurate solution. If the



Fig. 4. Evolution of the ‘foreman’ segmentation, showing the edge probabilities and
segmentations of frames 4752 as the evidence is accumulated. The edge probabilities
become more certain and small errors are removed, resulting in an improved region
segmentation.

Fig. 5. Multiple-frame segmentation of the ‘tennis’ sequence. The camera zooms out
while the arm slowly descends. Shown is the original frame 29 and then the foreground
segmentation of part of the sequence, showing every bth frame. The final region la-
belling is used to segment all frames in a second pass of the data.

segmentation were continued over a large number of frames then the errors from
assuming affine motion become would become significant (particularly as the
foreman tilts his head back and opens his mouth), and the segmentation would
break down. Dealing with non-affine motions is a significant element planned for
further work.

Figures 5 and 6 show some frames from extended sequences segmented using
this method. In the ‘tennis’ sequence (Fig. 5) the arm again does not obey the
affine motion particularly well (and the upper arm and torso hardly obey it at
all), but is still tracked and segmented well over a short sequence of frames. The
‘car’ sequence, Fig. 6, is atypical — it has a large background motion (around 10
pixels per frame), a hole in the foreground object, and the dominant motion is
the foreground. However, it is still segmented very cleanly (including the win-
dow) and the correct motion is identified as foreground. In this case the layer
ordering is rather unsure over 2 frames (70%/30%), but over many frames the
edge labellings are reinforced and the final decision is clearly in favour of the cor-
rect labelling. The affine motion fits the side of the car well over a large number
of frames.



Fig. 6. Multiple-frame segmentation of the ‘car’ sequence. The camera pans to the left
to track the car. Shown is the original frame 490 and then the foreground segmentation
of part of the sequence, showing every bth frame. The final region labelling is used to
segment all frames in a second pass of the data.

5 Conclusions and Future Work

This paper develops and demonstrates a novel Bayesian framework for segment-
ing a video sequence into foreground and background regions based on tracking
the edges of an initial region segmentation between frames. It is demonstrated
that edges can be reliably tracked and labelled between frames of a sequence
and are sufficient to label regions and the motion ordering.

The EM algorithm is used to simultaneously estimate the two motions and
the edge probabilities (which can be robustly estimated using a Markov chain
along the edge). The correct foreground motion and region labelling can be
identified by hypothesising and testing to maximise the probability of the model
given the edge data and a MRF prior. The algorithm runs quickly and the results
are very good over two frames. Over multiple frames the edge probabilities can
be accumulated resulting in a very accurate and robust region segmentation.

The current implementation considers only two layers under affine motions.
Future work will concentrate on extended multi-frame sequences, since over a
longer sequence the edge motions cannot be well modelled by an affine mo-
tion model. Disoccluded edges also appear, and should be incorporated into the
model. Both problems may be solved by using the tracked edges to assist in the
resegmentation of future frames in the sequence, which then behave as new ‘key
frames’ for the segmentation process described in this paper. This would allow
the system to adapt to non-rigid, non-affine motions over the longer term.
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