A Bayesian Estimation of Building Shape Using MCMC

A.R.Dickl, P.H. 8. Torr?, and R. Cipolla!

! ¥npineering Departent
Camnhridge University, Cambridge, UK
{ard2d,cipplla}@cam.ac.uk
http:/fwww—avr.eng.can.ac.uk/ ard2i/

* Microsoft Research, 7 1) Thomeon Avenue,
Cambridge, CB3 OFB, UK
philterrfnicroantt.com
http:f/fresparchoticroanft.con/ philtoref

Abstract. This paper investi gates the nse of an implicit prior n Bayesian model-
based 30 reconstruction of architecture from image sequences. In our previous
work architecture is represented a5 a combination of hasic primitives such as win-
dows and doors ete, each with their own prior. The contribution of this work s to
provide a plobal prior for the spatial orpanization of the basic primitives. How-
ever, it iz diffienlt to explicitly formnlate the prior on spatial organization. Instead
we define an imaplieit reprecentation that favours glohal regnlarities prevalent in
architectire {e.g. windows lie in rows etc.}. Specifying exact parameter values for
this prior is problenat ic at best, however it is denwnstrated that fora broad ranpe
of values the prior provides reasonable resnlts. The validity of the prior is tested
visnally by penerating symhetic mildings a deaws from the prior simnlated ns-
ing MCMC, The result is a fully Bayesian method for structure from motion in
the donuain of architecre.

1 Introduction

Mmy alporitlms {e.g. [1,3,16,14]) have been developed for inferring 3D structure
from a set of 2D images. A review of the state of the art in this area can be found
at [17]. However there are often cases in which imape information & ambigucus or
misleading, such as i areas of homopeneows or repeated tExture. In such cases extra
mformation 1 required to obtain a model of the scene.

In the past, demse stereo alporithms have wsed heuristics favourmp “likely™ sce-
narios such as repularization or smoothing in an attempt to resolve these ambiguities
{e.g. [3,16]), but in peneral these are umatisfactory {for mstance, the smooth surface
assumption is violated at occlusion boundaries). It is our belief that maximum like-
lihood estimates {even regularized) of structure have propressed as much as they are
ghle, and that further research in this area will yield neglipible or arpuable benefit. (ur
approach to struchure from motion is to develop peneric methods to exploit domain-
specific knowledpe 10 overcome these ambiguities. This has been successfully done for
other 3D reconstruction domains, e.g. heads [9, 18], bodies [15].

VWithmn this paper we explore the reconstruction of peneric buildings from imapes,
wsing strong pricr knowledpe of building form provided by architects, this is most nat-
wrally done in a Bayesian framework. The Bayesian framework provides 2 rational



method for incorporating pricr information inte the estimation process [12]. However
m complicated scenarios such as the modelling of architecture, there stll remains two
problems to be resolved . Whilst Bayes provides the basic laws for manipulating proba-
Hlites, we still need to resolve the problem of parameterization, and once the problem
1 parameterized choose the best algorithm to optimize the parameters.

Structure is represented as a collection of planes {cormesponding to walls) and prim-
ihves {representing windows, doors and so on). Each primitive is defined by several
parameters, as listed in Table 1. The advantages of this modelbased approach are that
it enables the inference of scene struchure and prometry where evidence from the im-
apes s weak, such as im occhided repions or areas of homogencous texture, and that
it provides an interpretation of the scene as well 2s is peometty and texture [H]. The
representation of the scene as a set of planes and primitives is useful for reasoning
ghout the scene during reconstruction and for subsequent rendermg and manipulshon
of the model. The compactness of the representation also makes recovery of structure
and motion more reliable, as demonstrated m [19].

In previous work [£] 2 framework was defined for model based struchure from mo-
tion for buildings. In this framework an alporithm for estmating 8 maximum a pos-
teriori {(MAF) estimate of the model based on priors and imape likelihood measures
was proposed (this & summarized m Section 2). However the spatial prior wsed i this
work applied only io the parameters of each individusl primitive, thus ignoriog infor-
mation about their spatial juxtapositon (for instamee, that windows are likely to ocour
in rows and columms). In this paper the spatial prior is expanded v include this sort of
information.

The form which the spatial prior should take s far from obviows. Ideally it should
admit all plawsible buildings while excluding those which are for practical or aesthetic
reasons implausible. However the plausibility of a structure can in penerzl only be ver-
ified by manusl inspection. Thus 2 crucial step in the formulation of the prioT is to test
it by drawing sample buildings from 1t and checking that they appear reasonable. How-
ever even with expert knowledpe, it 1s very diffiqult to explicitly represent the prob-
ahility demsity function {pdf) of a suitable prior. What is somewhat easier o do 1s to
express the prior as a scoring funchon that favours paricular confipurations, such as
windows in rows. {ne approach is to use a scormg function suppested by an expert and
then draw samples from the implicitly defimed pdf wing an MCMC alporithm. If the
samples drawn look like reasonable bulldmgs then the prior must be close to the true
price.

This raises the question of just how close to the true prior our estimate must be to
generate reasonable booking models. To answer this empirically the sconing funchon
1 varied both on a small scale and a larpe scale, and the effect on models generated
from the prior, and reconstructions obtained using the prior and an image sequence, is
observed.

The paper is orpanized as follows: Section 2 defines an architectural model s a
collection of wall planes contaimng paremeterized shapes, and establishes a fremework
for optimizing it. In Section 3 the spatial prior 1s discussed and the MCMC zlporithm
s wsed to simulate samples from it. Section 4 then presents some reconstructions based



on this prior, and demonstrates the effect of varying the prior on reconstruction. The
paper conchides with discussion and ideas for future work in Section &.

2 Problem formulation

This section briefly recapitulates previous work [8] on the defimtion of 2 model for
architechure and an algorithm for opimizmg it. The projechon matrices are mitially
recovered using point matching and robust methods as described in [2,20]. With the

rojchon mattices recovered the 3D struchre of the scene must be parameterized.
An architectural model is formulated 33 2 numbe of base planes {penerally walls),
each of which contans a mmber of offset primitives such as doors and windows. Also
modeled are the heipght of the apex of the roof, and the number of ficors in the bulldmg,
as these will affect the window layout. The model M therefore contzins parameters 8 =
{m, 8y, 83, 8r,8z], where 2 1s the mmber of primitives in the model, &y, identifies
the type of each pnmitive, 85 are struchre parameters which define its shape, B are
texture parameters describing its appearance, and By are plobal perameters describing
such things as the mmber of floors and the style of the building {e.g. (lassical, Gothic).
The types of primitive available and their shape parameters are given in Table 1. The
texture parameters are mtensity variables ifx) {between b and 255) defined at each point
x on a regular 2D grid covering the model surface .

Our choice of primitive reflects the scale of detail in the model. The model is de-
signed to be used with photographs of architecture taken from pround level. Therefore
it models a level of detzil consistent with these viewpomts; for instance doors and win-
dows are modelled m addiion to the walls of each uilding. However finer levels of
detail, such as the bocation of indivadual bricks, door handles and fine ormamentahon
are not modelled. Similarly hitle attention is paid to modelling roofs {in fact they are
culy modelled as a simple pyramad), a3 most images taken from pround level include
very little if any information about the roof structure.

To recover the architectural model we want to maximise

Pr{M#&|DI} a Pr{D|MBET) Pr{M#&T}
= Pr{D|M&T) Pr{8|MI} Pc{MT;
= Pr{D|M&L8:878:1) Pr{B18 5878z MI) Pr{MI)
= Pr{D|M&y8:878 1) Pr(8r|818:MI)

Pr{8z|BL8:MI) Pr{8y |8 MIL) Pr{f | MI} {1)
where I is the available data {the mmapes), I denotes prior information {the camera
calibration and the estimated wall planes), and

- Pr{D|MB8 88781} 1 the likehhood of the images given 2 complete specifica-
tHion of the model. This is determined by the deviation of image intensities from
those predicted by the texture parameters.

! Thig allows us to specify the mndel to super resolution; however this aspect is not dealt with
in this paper.



Table 1. Same primitves avallable far modelling classical architecture. Parameters In
brackets are optlanal. The parameters are deflned as follows: «: « pashtlan; 4 ¢ pastian;
w width; R helght; d: depth; ab anrch helght; & bevel (sloped edge); dw: taper of plllars,
buttresses. The MULL madel Is simply a callectlan of sparse trlangulated A0 palrts. AMa
I8 reserved as the backgraund made| [generally a wall).

&1 [Description Parameters

Mi | Window | @,y b, d, (5}, (a)
My Door @, 1w, by d, (8, (a)
My | Pedinent @,y by d
M| Pedestal iy, Ry d
M |Entablatire &, y,w, b, d
Ma | Column &,y b d, duer
M| Butress &, oy 1w, Ay d, die

M | Drain pipe @y,
M|  Floor %
My  Roof A

Mit| NULL ., .o fie, 2102

- Pr{B7|BLB8;MI; is the probability of the texture parameters. This s evaluated
using learnt moddls of appearance, such as the fact that wmdows are often dark
with intersecting mulhons {vertical bars) and transoms {horieontal bars), or that
columns contam wertical fluting.

- Pr{8L|BzMI) is the prior probability for each type of pimitive. It is used to spec-
ify the relative frequency with which primitive types occur, &.g. that wndows are
more common than doors, or that buttnesses appear frequently in Gothic architec-
fure.

- Pr{83|#1L8;MI) is a prior on shape. The formulation and validation of this prior
1s described in more detzil m Section 3.

The global parameters 8y are penemlly piven rather than estimated {for mstance, the
style of the model 1 specified manually) and hence the probabihity Pr{Be| MI) is fixed
at 1 for the piven parameters, and  dsewhere.

21 Obtaining an initial owedel estimaste

Theinput o our system s an uncalibrated sequence of 3—6 images, in which cormer and
line features are autpmatically detected and matched as in [3] to estimate the structure
of the building and the moton of the cameras. This reconstruction is then sepmented
mto planes to obtam zn intHal estimate of the position and orientation of each wall in
the building [7].

Ideally the combmed 8, 85 and 8y, parameter space would then be searched for
MAP parameter values. However each primitive may contain thowsands of texture pa-
ameters, so only the 8 and 8y, parameter spaces are searched. This is carmied out in
two stEps: an mitial search based on an approximate smple imape likelihood function
Iocates likely values for a subset 851 = {=,y,w, k] of the shape parameters, while



the remainmg shape parameters d, a, b, dio are set to zero. These are then used to seed
searches in the full parameter space using the complete likelibood function [£]. Models
found wiing this method are subsequently wsed as seed pomts for the MCMC alporithm
described in this paper.

3 The shape prior

In this section an architectural shape prior Pr (85| 8L MI) is defined and assessed using
2 Markov Chain simulshon. Ideally this prior should encode information about:

= The scale of each primitive. For instance a door should be tall encugh for a person
to comfortably walk through. Scale priors can only be used when the absohite scale
of the model & known.

= The shape of each primitive. For instance columns are likely o be long and thin,
while pedestals are more broad and flat,

= The alipnment of primitives. For instance windows are likely to ocour in rows cor-
respondmg to the fioors of 2 building.

= ther spatial relations such & symmetry about a vertical axis.

It is extremely difficult to explicitly formulate a prior pdf to meet this set of desider-
ata. When it 1s required to draw samples from a pdf Pr{#} which cannot be explicithy
defined, 2 common techmique 1 to simulate the dawing of samples using a Markov
rocess defined on the parameters &. The Markov process is chosen so that over tme
{as t — oo) ifs transition probability Pr{f;|8;_,) comerges to the desired distribution
Pr{#). Therefore as the number of iterations mcreases, the values of # visited by the
Maxkov process mimics imdependent draws from Pr{#) with mcreasing acouracy. The
group of alporithms which operate on this principle are known as Markov Chain Monte
Carlo (MCMC) alporithms [ 10] {Monte Carlo refers to the fact that Markov processes
are: seeded at many points in parameter space).

There are 2 number of ways to penerate 3 Markov process with the desired conver-
pence properties. These include the Metropolis-Hastings class of alporithms, in which
tramsitions of jumps are drawn from 2 wser-defined jumping distribution J, (8:|8: )
and the: updated model is acoepted or rgected based on 2 scoring function F(8). In
particular the Reversible Jump [11] Metropolis-Hastings alporithm is used in this pa-
per, as it allows jumnps between parameter spaces of varying dimension, as required
when primitives are added or removed from the model. This alporithm is summarized
in Algorithm 1.

The behaviour of the Reversible Jump MOCMC alporithn depends larpely on the
choice of both the scorng fumetion and the jumping distribution. These are the subjects
of the: following two sections.

A1 Thescoring fonction
The scoring fimction contains terms relatmg to the scale, shape and alipnment of prim-

Hvres:
‘fp'ﬂ'w {B} = fﬂ:’nh {B} + ‘fl.iu:pe {B} + fnﬁgﬂ {B} + -f'“!"m' {E} {3}



Alpaithm 1 Reverable Jump MCMC alponthm,
Lraw an [nitial point 8 from a starting distribution Pra (8},
bri=1.7do
Lras candidate point &, from the jumping distribution 7,(8, [#;_,).
Calculate the ratio
_ _fi8)58.48,)

"= {8} A0, |81}
Set & = 8, with probability min{e,1}, otherwise set 8 = 8;_1
end for

2}

The shape and scale terms apply only to mdividusl primitives. In this paper the shape
and scale components of the scoring function are given by simple funchions, some of
which are listed in Table 3. The purpose of these components s mainly to disqualify
implausible primitives such as doors which are too thin or short o be practical, wine
dows which extend between floors of the building, or butiresses which do not reach the
groumd.

The component of the scorng funchion for the alignment of shapes into rows and
columns computes the deviztion of the shapes from an alipned grid contaimng B rows
and £ columms. It is defined as

i)

Fatign(8) = 3 [Var{t,) + Var(b,} + Var{r, — L}] e
L&

+, [Var(le) + Var(re) + Var(te — be)] (9

where t,,b,,Ll., 1, are the top, bottom, left and right coordinates of the promitives
belonging to row + and t., b, L., 1, are similarly defined for primitives belonging to
column <. The function Var{x) pives the variance of the elements of x. When a wall
contains O or 1 primitives, it is assipned a fixed score of high variance which encodes a
reference for more than one window per wall if the wall s larpe encuph to accommo-
date it

The symmeiry component of the scoring funchion is maximized when a row is ex-
actly centred on a wall, and decays quadratically.

R
Feym8) = 3 [ — 1) = {r — ) {6)

r=l

where I, is the leftmost point of row 7, 7, is the rightmost point of ow v, 2nd 1 and
are the left and right coordinates of the wall on which the row appears. The symmetry
function i applied only to rows as it was found that columns of shapes are not penerally
vertically symmetric on a wall.



A2 The jumping ditribotion
As well as a seoring function, an MCMC alporithm requires the s pecification of a jump-
mgdnmbmm J{8:|8:_ 7. The jumping distibution is a mixture of several types of

Jump, which are lxsted in Table 2.
There are 2 mumber of 1ssues bearing on the choice of Jump types o use:

- A building should always be a dosed structure with walks which intersect at near
right angks. Therefore the addfremovefmodify wall jumps actually add, remove
or modify a dosed set of perpendicular walls to the model, effectively addmg or
removing a room from the reconstruction while maintaimng closure.

- For efficency, it should be easy to sample from the jumping distributions. Each
Jumpshould alio traverse a significant distance In parameter space, and have a high
acceptance rate. Therefore simple jump types which are likely o penerate a mome
probable model should be used.

- Reversible jump MCMUC requires that jumps be symmetric; that i, after jumping
from {M,,#, } to {My, &} it should always be possible to return to {M,, & ] in

a single ump. More precisely, given a jump type 7;; which moves from the param-
eter space 8 to 85 based on the values of # and some extra random variables ¢,
there must be a reverse ump type f;z which moves from &5 to #; based on & and
g, where the dimension of 81 & ¢, equaks that of 85 & g, This poses difficulties
when considering jumps such as dligming a group of shapes into 2 regular column.
To maintzin reversibility, 2 related jump must be included which can tzke a column
of shapes and perhurb each shape so that if the columm-alipning jump is appled
agaim, the same column confi purahion would result.

Table 2 Jump types avallable ta MCMC algarithm. The parameter « dertfles a single
primitive ta whieh the |ump s applled. Jump Fo "regularises™a raw ar calumn of shapes
by allgning all shapes, making them the same siae, and evenly spaced. Jump 7, 18
simllar but alsa paslitlans the rawso that it 18 centred (0 the wall.

Jump type Description Paranweters
J1 Add shape My, b
0 Renove £hape Wt
oga Modify shape w1, 4, h
o Audd wall s, e, B
o7 Remove wall )

Ta Maodify wall w, R
T HAdd window row/ed )

Ja Eemovwe window rowfcol "t

g Modify window rowdfcol 2

Jia  |Repuolarise window rowica W

Ji1 Symmetrize window row T

Tz Perturb window rowécol | w2, 4, v, R




A1 Verifymgthe shape prior

Havmg specified 2 scoring function and jumping distibution, the Reversible Jump
MCMC algontnn can be used to simulate drawmg independent samples from the shape
pricr that they define. It is important to sample from the shape pricr to verify that it pen-
erates plausible buikdings, and that i not too restrictive, in which case it would produce

In the following experiment, a total of 9 Markov processes are sceded from one of 3
startmg points, shown in Figure 1; asquare "hut”™, a tower, or a bungalow shape. Bach of
the seed models has one wall contaimng a door at pround level, and each wall contains
or 1 windows. Each Markov chain 1 iterated for 2000 jumps, After this period, samples

Flg L “Hwt", “tower™ and “bungalow " seed poinks for dw MCMC algorithm

are drawn at random from each chain and displayed in Figure 2. Samples are drawn at
random intervals rather then from consecutive iterations; consecutive iteratons tend
0 be correlated as most jumps entail cnly 2 minor change to the model. The samples
are displayed as a city of luldings t© llustrate both the mter-building varizhon of the
results and the plausibility of each indiridusl structure.

Flg. 2 CollecBon of Clastical sivle buildings penevated from tie shape priox

4 Results for a single wall

Some results of the MOCMC alporithm are now shown for 2 sinple wall. The scoring
function is altered to inchide imape information by addmg a likelihood term, so that the



complete score 1s now given by

10 = Mty + L3 (21 M

ilx) §=1 i

where i{x7) is the projection of the texture parameter {{x) onto the jth imape, o & an
Imape variance parameter and A is 2 relative scale factor. The plobal parameter set B
s reduced t© contain simply a style parameter, 2s the number of floors can be deduced

Startmg points for the alporithm are penerated from the results of 2 previously de-
veloped algorithm for finding 2 MAF model estimate, described m Section 2.1, Itis first
tested on mapes of the Downing hibrary, one of which is shown in Figure 3{a), which
contaims strong mformation and comphlies with our priors on regularity and shape. Be-
cawse the our old dporithn meorporated priors only on individual primitives, the win-
dows estimated, although approximately correct, are sliphtly misalipned. Furthermore
the window cbscured by the tree is inoorrectly fitted. However the new global shape
algorithm for 2000 iterations, with A4 = 10* and & = 10, the prior has overridden lo-
cal ikelihood maxims and the MAP model is one in which the windows zre properly
gligoed, even where the window is occhuded in some images by a tree (Figure 3{d)). To
test the sensitivity of this result to the choice of prior, 2 Gothic shape prior is substituted
for the: origmal Classical shape prior. Althouph the Gothic prior favours narrower and
more arched windows, the same result s obtained (Fipure 3{e)). In Figure 3(f) a very
different pricr is proposed m which very tall narrow windows are strongly favoured {Ta-
ble 3). This results in a different interpretation of the scene in which vertically shipned

Table ). Aelevant shape priars. 7 and W are the halght and width af the wall eantalning
the primitive. & (g, o) 18 a Gausslan digtributian with mean g and standard deviatlan o.

Primitive [Param. Heore
—(£7(0.75,0.25) + (1.0, 0.25)

Window
N hfw +{(1.25,0.35) + {7(1.5, 0.25)
(Classical) +G/(1.75, 0.25) + G{2.0,0.25))

Window

(Gotic) Afw | ={{3(2.0,0.25) + &(2.5,0.256))
;‘”‘i"“’ Afw | —{(6{4.0,1.0) + 5(6.0,1.0))

Window | g/H |0,if0.1 < /F < 0.9 Else LARGE.
Window | &/W |0, 0.1 < 2/W < 0.9. Hse LARGE.
Window | Ajd |0 —0.2 < hfd < 0.2 Else LARGE,

The next imape sequence, of the Palazzo Pitt, one imape of which is shown in
Fipure 4{a), s more challenging. The imapes were tiken on 2 rany day, and the window



Fig. A {a) One Image af the wall. (b) Mode| abtalned using anly Classlcal single primitive
priar. {e) Frantal view of this made| (windaws are darker, backgraund |8 [lgHt]. (] Madel
dbtalned using MCMC and Gathie shape priar. {e] Same madel, projected anta Image.
(f) Incarrect madel abtalned using priar favauring very narrcw windows.

fexture 1s indishinet from wall texture—the wmdows and wall zre a similar colour, and
the brick texture of the wall i not easily distinpuished from that of the windows. Due
1o the lack of mformation in the images, the reconstruction obizined is dependent on
whether a Classical or Gothic prior 1s used. Using Classical priors {Figure 4{b}), only
the interior parts of the top windows are detected, whereas a Gotlne prior {Figure 4{c))
detects the surrcundmg arch structure. Applying the full set of shape priors with A =
10%, & = 10 results m 3 MAF model where the windows are alipned despite this not
being the case for the bottom row of windows. To prevent this from occurring, A canbe
reduced to 1 m which case the prior has no significant effect on the model.

(a} (b} (c} (d} (e} &

Fig. 4. {a) One Image of the Palazza Pittl. (b) Model abtalned using Classical priars. [e)
Madel abtalned using Gathie priars. (d) Primitives befare MCMC. (&) After MCMG. (f)
Projected anta Image.

5 Building Resulis

When jump types imvolving wall plane parameters are mcluded in the MCMC zlpo-
rithm, closure of the building is enforced and the reconstructon comverpes to a sym-
metric model such as that shown in Fipure 5. The texture for this model & cut and
pasted from areas of the imapeidentified as a wall, window, columns and s0 on, 2nd the
samws texture sample is used for every mstance of 2 type of primitive. Another feature



of wilng an MCMC alporithm to sample the postericr 1s that as well as havimg a MAFP
modd estimate, other probable samples can also be examined. This is useful for iden-
tifying ambiguities in the recomstruction. Four of the more marked ambipuities present
m this model are shown m Figure 5 {1)<{1).

Theoperation of this algorithm isshown in Figure & for the Trimity Chapel sequence.
Note that the entire model s obtained from only 3 images. Although the model 1s not
completely accurate In areas which are mot visible in the imapes, it & a plawible struc-
ture, and is obtamed automatically except for the prior specification of the structure as
being Gothic, and the restriction of the vanety and shape of primitives this entaiks. The
width of each part of the buwlding i obtained from the averape size of the window or
door primitives on visible walli—each segment of the building is made wile enough to
acoommodate one window of beight and width equal to the average height and width
of the viible windows, with spadng to @ther side equal to half the window wadth.
In the absence of 1mage mformation, this seems a reasonable assumption to make and

51 Comparism with gromd troth

It is difficult to directly compare the results of this alporithm with previows methods, as
o other method solves quite the same problem as this one. In the absence of experi-
mental results with which to compare i, some pround truth measurements were taken
from the Downing College library, reconstructed in Fipure 5.

The height, width and depth of a2 set of windows belonging to this building were
measured with a tape measure. The resulting lengths are shown i Figure 7. Because
the absolute scale of the model s imknown, only mtos of lengths are compared to
pround truth values. It is assumed that there & a2 +lom eTor in each measurement.
In Table 4, 2 comperison of the cormesponding model values and pround truth mea-
surements s piven. The uncertamty in the model values s based on the resohition of
the prid of texture parameters on each plane. It @n be seen that the mtios of win-

Ratio|Ground ruth|  Model |
L owver | Lipper| Lower | Upper
Afw| 148 [152 [ 150 | 164
wid | 567 | 637 [ 500 | 740
oy fo| 222 | 224 | 218 | 228
efw | 256 (277 | 294 | 300
Table 4 Comparison of ratios of window hetgle (i) towidth (w), width o depth (&) wall—column
sparation (d ) to window width and the crcupference of & column {c) o window widoe The
upper and lvwey bounds ave based on & 1cm accuwey for ground trubt Magsuyements, sxcept for
Ha civcusiference of the base of B colume, wigoh i measured o S10cm The accuvarcy of the
roded measre e nte it Brited to the vesolufion of the texiure parameters

dow height to width, and width to depth, are recovered to within the accuracy bounds



(a} (b} {c} {d}

(D (2 (k} 0

Flg. & {a) MAP mode] of side wall of Downing fbwary, after 2000 MCMC iterations using He
Clzsgeal priox (b) Front wall Bod: front and back faces of primitives are drawn, lence the
per of wianples and rectangles for tw pediment and ensblamye, {c){d) 3D rendering of MAP
Downing model, obtained witisouw using addfvepiovofilelete wall jumps The teuye s gown on the
roded are autnmatically savacted from the images wigch are most frorton to each plane. {2)-
(1) Four visws of B completed model of Dowring Bbrayy with extva walls added. Ever Hough
onfy o walls are visible, o complete building lic been modelled ucing symmety Wall, window,
roof and column wxerres ave sampled from B images and applicd o tie appropriate pripubws.
({1} Some ambiguines in e Downing model, chosen from the 20 most probable models vicited
by tee MOMY provess. (1) Window sifls aye included in S window primithes (j) Mindpws are
represented using Mo pHpibves eacl (k) The door ic omitted () Exva columns ave added in
between e exicing ones.



{} i} U ik} 1)

Flg. 6. {a)qc) 3 original images of Tvinity college courtyard. {d) MAP model primitives, siper-
imposed on image. (e} Wirgrare MAP model ({iH{(g) 3D model with texire srken from images.
{EH{m) Five views of fe completed model of the rovtle-east corner of Grear Court, Trindty College.
Ondy wo of He walls are visible in e images

Huigh b JLDm
Tl I T

Eups IO

Ponl Pk e o il e 7 sl

Conle e s s 1

Fig. T. Some meaanementc made of e Downing Libnary scene, The athey windows in 8 scene
a2k the sTme St af e one gown (o araccumacy of =1cm).



of the pround truth measurements. The ermor margins are generally preater for model
measurements, which are constrained by the resclution of the images. Although high
resolution Images {1600 % 1200 pixels) were used for this model, it seems that even
more resclution 1s required to precisely recover fine details such as the depth of each
window. The distance from the column to the wall is abo dentified accurately, but the
circumference of the cobumn is slightly underestimated {although the error marpins just
overlap). The circumference of the column is quite difficult to measure precisely, duesto
the stonework on its cuter rim. Therefore there is an uncertamty of +10cm associated
with its measurement—this is deived from the fact that there are 20 partiions in the
fluting around the base of the column, each of which can be measured 1o 2 precision of
approximately +0.5cm.

& Conchision

If structure from motion algorthms are 1© progress they must find ways of Incorporating
more and higher level prior mformation concenmg the nature of the world. To effec-
fively use this information, recognition of what we are observing will play a crucial rivle.
Recovering structure from visual input alone s highly il conditioned, thus 1s it envis-
aped that a robot of the future might carry many prior models i its head and recognize
which class of priors 1s appropriate to reduce the ambipnty m resolving a particular
scene, Thus classic peometric structurs from motion becomes a Mend of karmng, clas-
sfication and peometry, This paper has presented a framework for representing one
such spatial prior for the case of architecture. Samples are penerated from the prior
and shown to be reasonable instances of pemine buildings. A Bayesian famework is
a natural way to dfectivey use the prior information o enhance 3D reconstruction in
a variety of ways, Future work includes the parametrization of texture in a similar way
0 shape, 16. using only a few texture parametars per primitive, which would also re-
sult m a super resolution of the Images. As previously mentoned, the roof structure
1 currently modelled simply s a pyramid; however more complex roof models could
improve the appearance of the model from elevated viewpoints.

The peneral philosophy underlying this paper s that the state of the art has been
reached with existing structure from motion methods, and that the best route for progress
1s to combine structure from motion with recopnition. This allows the use of strong prior
modeds of shape, stronger than the markoy random fields traditionally wed. To some
extent this has been done in the past with simple shape models e.g. [4, 6, 13], but these
modelds possess only limited variability. Within this paper we have attempied to present
2 peneric framework which could be used to optimize classes of objects that possess
2 much preater variability of shape, but that can be decomposed into a ‘lego kit' of

Software: It is mtended 1o redease 3 Matlab SFM toolkit to illistrate some of the
methods described, please check http:#research microsoft.oomd philtinrs, as the release
1 aimed 1o coincide with BCCV.
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