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Abstract

lllumination and pose invariance are the most challenging aspects of face recognition. In
this paper we describe a fully automatic face recognition system that uses video information
to achieve illumination and pose robustness. In the proposed method, highly nonlinear mani-
folds of face motion are approximated using three Gaussian pose clusters. Pose robustness is
achieved by comparing the corresponding pose clusters and probabilistically combining the
results to derive a measure of similarity between two manifolds. Illumination is normalized
on a per-pose basis. Region-based gamma intensity correction is used to correct for coarse
illumination changes, while further refinement is achieved by combining a learnt linear man-
ifold of illumination variation with constraints on face pattern distribution, derived from
video. Comparative experimental evaluation is presented and the proposed method is shown
to greatly outperform state-of-the-art algorithms. Consistent recognition rates of 94-100%
are achieved across dramatic changes in illumination.

1 Introduction

Important practical applications of automatic face recognition have made it a very popular research area
in the last three decades, see [3, 5, 6, 17] for surveys. Most of the methods developed deableithhot
recognition. In controlled imaging conditions (lighting, pose and/or occlusions) many have demonstrated
good (nearly perfect) recognition results [17]. On the other hand, single-shot face recognition in uncon-
trolled, or loosely controlled conditions still poses a significant challenge [17].

The nature of many practical applications is such that more than a single image of a face is available.
In surveillance, for example, the face can be tracked to provide a temporal sequence of a moving face.
In access control use of face recognition the user may be assumed to be cooperative and hence can be
instructed to move in front of a fixed camera. Regardless of the setup in which multiple images of a face
are acquired, it is clear that this abundance of information can be used to achieve greater robustness of
face recognition by resolving some of the inherent ambiguities of the single-shot recognition problem.

The organization of this paper is as follows. Section 2 reviews the existing literature on face recog-
nition from video. Section 3 gives the overview of the proposed method. In Section 3.1 the benefits of
registration in the proposed framework are explained. Section 3.2 shows how we cluster faces by pose.
Section 3.3 introduces the proposed method of illumination normalization. In Section 3.4 it is shown how
a unified measure of similarity between face motion manifolds is obtained. Section 4 reports experimen-
tal results and compares the proposed method with several competing methods reported in the literature.
Finally, Section 5 concludes the paper and discusses promising directions for future research.

2 Related Previous Work

Single-shot face recognition is a well established research area. Algorithms such as Bayesian Eigenfaces
[12], Fisherfaces [17], Elastic Bunch Graph Matching [10] or the 3D Morphable Model [4, 13] have



demonstrated good recognition results when illumination and pose variations are not large. However, all
existing single-shot methods suffer from the limited ability to generalize to unseen illumination conditions
or pose.

Compared to single-shot recognition, face recognition from video is a relatively new area of research.
Most of the existing algorithms perform recognition from image sequences, using the temporal compo-
nent to enforce prior knowledge on likely head movements. In the algorithm of of &hal [18] the
joint probability distribution of identity and motion is modelled using sequential importance sampling,
yielding the recognition decision by marginalization. In [11] ledeal. approximate face manifolds by a
finite number of infinite extent subspaces and use temporal information to robustly estimate the operating
part of the manifold.

Fewer methods recognize from manifolds without the associated ordering of images, which is the
problem addressed in this paper. Two algorithms worth mentioning are the Mutual Subspace Method
(MSM) of Yamaguchi [8] and the Kullback-Leibler divergence method of Shakhnar@tiah [14].

In MSM, infinite extent linear subspaces are used to compactly characterize face sets i.e. the mani-
folds that they lie on. Two sets are then compared by computing the first three principal angles between
corresponding principal component analysis (PCA) subspaces [8]. Varying recognition results were re-
ported using MSM, see [8, 14, 16]. A major limitation of MSM is its simplistic modelling of manifolds
of face variation. Their high nonlinearity (see Figure 1(a)) invalidates the assumption that data is well
described by a linear subspace. More subtly, the nonlinearity of modelled manifolds means that the PCA
subspace estimate is very sensitive to the particular choice of training samples. For example, in the origi-
nal paper [8] in which face motion videos were used, the estimates are sensitive to the extent of rotation
in a particular direction. Finally, MSM does not have a meaningful probabilistic interpretation.

The Kullback-Leibler divergence (KLD) based method [14] is founded on information-theoretic grounds.
In the proposed framework, it is assumed ikt person’s face patterns are distributed according(t).
Recognition is then performed by findipg(x) that best explains the set of input samples — quantified by
the Kullback-Leibler divergence. The key assumption in their work, that makes divergence computation
tractable, is that face patterns are normally distributedoic) = ./ (xi,Ci). This is a crude assumption
(see Figure 1(a)), which explains the somewhat poor results reported with this method [16]. KLD was
also criticized for being asymmetric [1, 9].

More subtly, both approaches have the disadvantage of comparing whole face distributions, which
has the implicit assumption that for the same people we expect the training and testing distributions to
be similar. This does not have to be the case for confident recognition. Consider the case when in the
training video the head motion was from frontal face to the left and in the testing video from frontal face
to the right. Clearly, the two manifolds will be different even if the imaging conditions (such as lighting)
are unchanged. Still, the intersection of the manifolds in the region of the frontal face provides enough
information for confident recognition decision.

Finally, neither of the two methods addresses the issue of changing illumination that inevitably occurs
in most practical applications. This is the most challenging problem of automatic face recognition [15].

3 Face Recognition from Motion Manifolds

Video of a face in motion carries information about its 3D shape and albedo. This information can be
used either explicitly, by recovering a model of the face (e.g. [4]), or implicitly by modelling manifolds

of face pattern variations (e.g. [1]). We employ the latter approach. In our method, manifolds of face
variations are modelled using three Gaussian clusters describing small face motion around different head
poses. Given two such manifolds, first the pose clusters are determined, then corresponding clusters are
compared and finally, the results of the pairwise comparisons are combined to give a unified measure of
similarity of the manifolds.

3.1 Registration

Manifolds of faces in motion are complex and nonlinear (see Figure 1(a)), and modelling them using
Gaussian clusters becomes increasingly difficult as their intrinsic dimensionality is increased. There-
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Figure 1:A typical face manifold of mainly lateral head rotation around the fronto-parallel f286%) (a). Shown

is the projection to the first 3 PCA components. The manifold is smooth, but highly nonlinear. Different pose cluster
memberships are marked in different styles with the associated mean images displayed. Example automatically affine
registered and cropped faces from the 3 pose clusters can be seen in (b).

fore, it is advantageous to normalize the raw, input frames as much as possible so as to minimize the
dimensionality of modelled manifolds. Since reliable methods for facial feature localization have been
developed [7], some of the pattern variations are easily removed directly, that is, by recovering transfor-
mation parameters from sets of point correspondences. Images can then be registered to have relevant
facial features in selected canonical locations.

In our method, 4 characteristic facial points are used for affine registration: the locations of pupils
and nostrils (see Figures 6 and 7). Since 4 point correspondences over-determine affine transformation
parameters (6), we estimate them in the minimuynerror sense.

3.2 Clustering by Pose

In our method, both recognition and illumination normalization are performed on a per pose basis. We
describe face motion manifolds using Gaussian clusters corresponding to different head poses.

Inspection of manifolds of registered faces in random motion around the fronto-parallel face shows
that they are dominated by the first nonlinear principal component. This principal component corresponds
to lateral head rotation, see Figure 1(a). Therefore, the centres of Gaussian clusters used to characterize
them should correspond to different yaw angle values. In this work we describe the manifolds using three
Gaussian clusters, corresponding to the frontal face orientation, face left and face right.

3.2.1 Finding Pose Clusters

As the extent of lateral rotation, as well as the number of frames corresponding to each cluster, can vary
from video to video, a generic clustering algorithm, such as the k-means algorithm, is unsuitable for
finding the three Gaussians.

With the prior knowledge of the semantics of clusters, we decide on a single frame membership frame-
by-frame. We found that the locations of pupils and nostrils (see Section 3.1) are sufficient to distinguish
between the three clusters. On top of its simplicity, this method has the attractive feature of introducing
little computational overhead. We define the quantitgs follows:

_ } Xreye+ Xieye — Xrnostril — Xinostril @
2 Xreye — Xleye

Quantity n measures the shift of the projection of the centre point of pupils from that of nostrils, see
Figure 2(a). As nostrils are further away from the centre of the head (and hence the axis of rotation), the
magnitude ofy will increase with head yaw deviation from the frontal orientation. The distribution of
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Figure 2:Parallax used to cluster input face images (a). The distributions(@j for the three clusters, computed
from 200 manually labelled frames is shown in (b). Good separation of clusters is demonstrated.

the value ofn for each pose is shown in Figure 2(b). A frame in our method is classified to the maximal
likelihood pose. Examples of classified frames can be seen in Figure 1(b).

3.3 lllumination Normalization

lllumination variation of face patterns is extremely complex due to varying texture reflectance properties,
face shape and, type and distance of lighting sources. Hence, in such a general setup, it is difficult to
learn. However, on the coarse level most of the variation can be described by dominant light direction
e.g. ‘strong left light'. This is a much easier problem to address and it significantly simplifies the learning
of the residual variation. This motivates the two-stage, per-pose illumination normalization employed in
the proposed method:

1. Region-based gamma intensity correction, followed by

2. lllumination subspace normalization.

3.3.1 Gamma Intensity Correction

Gamma intensity correction (GIC) compensates for global brightness changes of an image. It transforms
image pixel values by exponentiation so as to best match a canonically illuminated image. Formally, given
an imagd and a canonically illuminated imade, the gamma intensity corrected images defined as
follows:

v = angming 106y~ lefxy)l @)

"(xy) = lxy)Y @)

This is a nonlinear optimization problem and in our implementation of the proposed method it is solved
using the Golden Section search with parabolic interpolation.

In region-based GIC images are divided into regions corresponding to smoothly varying surface nor-
mals of the imaged object, and GIC is applied to each of them separately, see Figure 3. An undesirable
feature of this method is that it tends to produce artificial intensity discontinuities at region boundaries
[15]. This is due to discontinuities in the computed gamma value maps. For this reason, in our method
the obtained gamma value maps are Gaussian smoothed before input images are transformed according
to them. This almost completely remedies the problem, see Figure 3.
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Figure 3:Canonical illumination image and the regions used in region-based GIC (a), original unprocessed face im-
age (b), gamma value map (c), smoothed gamma value map (d), region-based GIC corrected image without smoothing
(e), and region-based GIC corrected image with smoothing (f). Notice the artefact at region boundaries in the gamma
corrected image (e). The image (f) does not have the same problem. Note that the coarse effects of the strong side
lighting in (b) have been greatly removed.

3.3.2 lllumination Subspace Normalization

After region-based GIC is applied to all images, for each of the pose clusters, it is assumed that the light-
ing variation can be modelled using a lingaose illumination subspacé&iven a reference and a novel
cluster corresponding to the same pose, each frame of of the novel cluster is normalized for the illumina-
tion change. This is done by adding a vector from the pose illumination subspace to it so that its distance
from the reference cluster’s centre is minimal.

Constructing a pose illumination subspace.We construct a pose illumination subspace by perform-

ing PCA on deviations of each persons’s images under different illuminations from the same person’s
mean image for that pose and retain the eigenvectors that explain 90% of data energy. In other words,
for each pose, given thatj is thek-th frame of persom under illuminationj, we perform PCA on data

x}fj —Xi (over alli, j andk), where; is the persoi's mean image.

From the way this subspace is constructed, it can be seen that it explains a lot of variation: changes
in illumination due to varying illumination conditions and albedo, as well as some motion (as each pose
cluster describes faces for a range of yaw angles). This is especially the case as we do not make the
assumption that faces are Lambertian, or that the light sources are point lights at infinity. The significance
of this is that a large enough subspace to explain the modelled phenomenon will, undesirably, also be able
to explain phenomena not modelled, such as differing identity. For this reason, we use the Mahalanobis
distance in the reference cluster’s distribution, when computing the illumination subspace correction for
each novel frame. This way, prior knowledge from the reference video sequence is used to constrain
the expected variation of face patterns in the given illumination conditions. We found that the use of
Mahalanobis distance, as opposed to the usual Euclidean distance, in this case achieved better explanation
of novel images when the person’s identity was the same, and worse when it was different.

Formally, given a reference pose clusfgg} and an input frame, with the same pose, the proposed
illumination normalization ok can be described by the following minimization problem:

a” = argmin((xr) —x—Bya)" BRCx'Bk ((xr) —x—Bia) (4)
X" = x+Ba’ ®)

whereB; is the pose illumination subspad@g andBg the diagonalized covariance matrix and the prin-
cipal components ofxgr}, andx* the illumination normalizeat. This quadratic minimization problem is
solved by differentiation and the minimum is achieved for:
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Figure 4:In (a) are respectively shown the original registered and cropped face images from a sequence and the
same images after normalization to best match the illumination conditions of the third video sequence. The effects
of strong side lighting can be seen to have been removed. Frames from two videos belonging to the same person,
before illumination compensation (b), and after the blue one has been re-illuminated (c). Shown are the projections to
the first two principal components. Notice that initially the clusters were completely non-overlapping. lllumination
normalization has adjusted the location of centre of the blue cluster, but has also contracted it. Now while overlapping,
the two sets of patterns are distributed differently.

* - -1 _
a = (B/BrCr'BLBI) "Bl BRCRBL ((xR) —X) 6)

Examples of registered and cropped face images before and after illumination normalization can be
seen in Figure 4(a).

Practical considerations. Computation of the optimal valug (6) involves inversion and PCA com-
putation on matrices of sizd x N, whereN is the number of pixels in a face image. These are both
expensive computations. To reduce the computational overhead, we exploit the fact that data modelled is
of much lower dimensionality thaN. In our implementation of the proposed method, we first perform
PCA dimensionality reduction of all pose data by projecting all facesdo@pose subspadeat explains

95% of face data variation in a specific pose. To additionally speed up the process, we assume that the
intrinsic dimensionality of a single pose cluster is 6 (95% of cluster data variability) and that all other
variation is due to isotropic Gaussian noise. As finding the largest eigenvalues of a covariance matrix can
be done rapidly (e.g. see [2]), we find the 6 largest ores), with the associated eigenvectovs )

and estimate the rest:

N—-6
Cr = diaghs...Agh .. A) )
_ S
IR o
{vzn} = Null({vis}) 9

3.4 Comparing Face Distributions

Having normalized one face cluster with respect to illumination, we want to compare it with a corre-
sponding cluster from a different video sequence, under the same lighting. To appreciate the effects that
the proposed method of compensating for illumination changes has refer to Figure 4(b,c). An important
observation is that the spread of the cluster that is being normalized is reduced. This is the consequence
of performing the normalization frame-by-frame, trying to make each as close as possible to the other
cluster’s centre - a single point. For this reason, ‘distance’ measures that compare two clusters as pattern
distributions, such as the Bhattacharyya distance, the Kullback-Leibler divergence [14] or the Resistor-
Average distance [1, 9], are not good choices. As the measure of distance between two clusters we use
the simple Euclidean distance between their centres.
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Figure 5: Likelihood ratio corresponding to frontal head pose obtained from the training corpus (a), the RBF
network architecture used to interpolate the likelihood ratio (b), the RBF interpolated likelihood ration (c), and the
joint interpolated likelihood ratio for pose frontal and left (d). Note that the initial estimate (a) is not monotonically

decreasing, while (c) and (d) are.

3.4.1 Integrating Distances Between Pose Clusters

Having computed the three distand®s; 3 between corresponding pose clusters of two manifolds, we
want to combine them in a probabilistic manner so that the recognition decision can be made. The
decision is made based on the likelihood ratio:
P(D123|s
p= 0239 (10
P(D1.23|-9)
wheres signifies that the two videos are of the same person. Therefore, we need an estimate of
P(D1.23|s) andP(D123|—s). To this end, we make the assumption tRéD1), P(D2) and P(D3) are
statistically independent. Hence:

P(D123ls) = HP(Di|S) (11)
P(D123[-s) = []P(Di|-s) (12)

We learnP(Dj|s) andP(D;|—s) from a labelled, ground truth corpus, in two stages. First, we obtain
a Parzen window estimate of intra- and inter- personal pose distances from a small database of videos of
faces under varying illumination conditions, see Figure 4(a). It can be seen that the obtained likelihood

ratios pp(g?i‘% have the salient features of the sought for distributions, but lack some properties that we
expect these distributions to have. In particular, we expect them to be monotonically decreasing. The
reason why these initial estimates are not is that in the regions with small density of learning corpus sam-

ples, the ratio estimates are undefined.

Approximating likelihood ratios using RBF networks. To overcome the problem of non-monotonically
decreasing likelihood estimates, we approximate the desired likelihood ratios by training 2-layer RBF net-
works using carefully selected points from the initial estimates. The points we use are local peaks and the
near-zero values for high distances. We obtained good results using 6 neurons in the second layer, with
the spread of 60, using the network architecture in Figure 4(b). The results can be seen in Figure 4(c,d).
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Figure 6: Frames from typical input video sequences used for evaluation of methods in this paper. The rightmost
frame is shown with automatically detected pupils and nostrils, and the region of the face used for recognition. Notice
the presence of cast shadows and very varying illumination conditions (different for each frame).

4 Experimental Evaluation

We performed several experiments for the purpose of evaluating our algorithm and comparing its perfor-
mance with algorithms in the literature. The data sets used in experiments are described in Section 4.1.
Algorithms chosen for comparison are:

e The proposed method,
e KLD-based algorithm of Shakhnarovieh al. [14],
e Mutual Subspace Method [8],

e Majority vote using Eigenfaces.

In the KLD-based method 85% of data energy was explained by the principal subspace used. In
MSM, the dimensionality of PCA subspaces was set to 9 [8]. The first 3 principal angles were used
for recognition, as this produced best results in the literature [8]. In the Eigenfaces method, the 22-
dimensional principal subspace used explained 90% of data energy.

4.1 Data

Methods in this paper were evaluated using 10 databases with the same 60 individuals, in different illumi-
nation conditions for each database. Learning described in Sections 3.2 and 3.3 is performed on randomly
selected 20 individuals and 5 lighting conditions. The other 40 individuals in the remaining 5 illumina-
tion conditions were used for testing. We emphasize that this makes all learning described completely
unbiased athe evaluation was performed on unseen faces and illumination conditions.

We performed 25 recognition tests, using each database for training and testing it against all the others.
For each person in a database we collected a data set consisting of 20-100 images of a face in random
motion (yaw within approximately-30°, see Figure 6), sampled from a video at 10fps. Face images
were affine registered (Section 3.1) and automatically cropped at approximately mouth and mid-forehead
level. Pupils and nostrils were automatically detected using the algorithm described in [7]. Finally, for
computational and memory reasons, images were subsampBixt80 pixel grayscale images with
pixel values normalized to lie in the ran¢@ 1]. See Figures 6 and 7. We emphasize that the whole
process is automatic — no human intervention is required at any point.

4.2 Results

Recognition results are summarized in Figures 8 and 9. The proposed method significantly outperformed
other methods on each training-testing combination, yielding the average recognition rate of 95%. In-
spection of failed recognitions of our method suggests that the main problem was significant user motion
to and from the camera. For some of the databases used the dominant light sources were relatively close
to the user (from= 0.5m) which invalidated the implicit assumption that illumination conditions were
unchanging within a single video sequence. Some examples of very differently illuminated faces within

a single sequence can be seen in Figure 7.
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Figure 7:Registered and automatically cropped fa@<{ 30 pixels) from typical sequences used for the compari-
son of recognition methods in this paper. All frames are of the same person, in frontal pose, each row corresponding
to one of 10 different illumination conditions used for the evaluation. Notice extreme illumination changes.

Database 1 Database2 Database3 Database4 Datalfagedrage STD
Database 1 100 90 95 95 90 96 4.2
Database 2 95 95 95 95 90 94 2.2
Database 3 95 95 100 95 100 97 2.7
Database 4 95 90 100 100 95 96 4.2
Database 5 100 80 100 95 100 95 8.7

Figure 8:Recognition performance (%) of the proposed method using different training/testing database combina-
tions. Excellent results are demonstrated with little variance of the results with the choice of the training database.

Finally, good separability of intra- and inter- person differences was demonstrated (see Figure 9),
thereby showing that the method is suitable for verification purposes. Less than 0.5% of false positive
rate is attained for 91% true positive rate.

5 Summary and Conclusions

In this paper we introduced a practical face recognition system from video, robust to illumination changes
and pose. In the proposed algorithm recognition is performed by comparing face motion manifolds,
described by three Gaussian pose clusters. Compensation for illumination changes is performed on a per-
pose basis, first by region-based gamma intensity correction and then using a linear, pose illumination
subspace. Normalized pose clusters are compared using the Euclidean distance between their centres.
Finally, it is shown how a two-layer RBF network can be trained to estimate the likelihood ratio of
two face motion manifolds belonging to the same person. An extensive experimental evaluation and
comparison of the proposed method and state-of-the-art algorithms in the literature is presented. It was
shown that our method consistently outperformed existing methods, achieving on average recognition
rate of 94—100% on 5 databases of 40 people each and extreme lighting variations.

Our future work will concentrate on recognition from face motion manifolds when the extent of

) b Average STD
Proposed method 96 4.7
Majority vote,
Eigenfaces 43 31.9
KLD 39 32.5
MSM 24 38.9
@ (b) (©)

Figure 9:Cumulative distributions of intra-personal (dashed line) and inter-personal (solid line) distances (a). Good
separability is demonstrated. The corresponding ROC curve can be seen in (b) — less than 0.5% of false positive rate
is attained for 91% true positive rate. Average recognition rates (%) of the compared methods are shown in (c). The
performance of the proposed method is by far the best.



motion is even larger and less controlled, as well as other efficient illumination normalization techniques
that do not require the assumption of constant illumination for each video sequence.
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