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Abstract

In this work we consider face recognition from face mo-
tion manifolds. An information-theoretic approach with
Resistor-Average Distance (RAD) as a dissimilarity mea-
sure between distributions of face images is proposed. We
introduce a kernel-based algorithm that retains the simplic-
ity of the closed-form expression for the RAD between two
normal distributions, while allowing for modelling of com-
plex, nonlinear manifolds. Additionally, it is shown how er-
rors in the face registration process can be modelled to sig-
nificantly improve recognition. Recognition performance of
our method is experimentally demonstrated and shown to
outperform state-of-the-art algorithms. Recognition rates
of 97–100% are consistently achieved on databases of 35–
90 people.

1. Introduction

Important practical applications of automatic face recogni-
tion have made it a very popular research area in the last
three decades, see [1, 4, 7, 22] for surveys. Most of the
methods developed deal withsingle-shotrecognition. In
controlled imaging conditions (lighting, pose and/or occlu-
sions) many have demonstrated good (nearly perfect) recog-
nition results [22]. On the other hand, single-shot face
recognition in uncontrolled, or loosely controlled condi-
tions still poses a significant challenge [22].

The nature of many practical applications is such that
more than a single image of a face is available. In surveil-
lance, for example, the face can be tracked to provide a tem-
poral sequence of a moving face. In access control use of
face recognition the user may be assumed to be coopera-
tive and hence can be instructed to move in front of a fixed
camera. Regardless of the setup in which multiple images
of a face are acquired, it is clear that this abundance of in-
formation can be used to achieve greater robustness of face
recognition by resolving some of the inherent ambiguities

of the single-shot recognition problem.
The organization of this paper is as follows. Section 2 re-

views the existing literature on face recognition from video.
Section 3 introduces the concept of classification using the
Kernel RAD. In Section 4 we show how errors in the face
registration process can be modelled and incorporated in the
described recognition framework. Section 5 reports experi-
mental results and compares the proposed method with sev-
eral competing methods reported in the literature. Finally,
Section 6 concludes the paper and discusses promising di-
rections for future research.

2. Related Previous Work
Single-shot face recognition is a well established research
area. Algorithms such as Bayesian Eigenfaces [10, 14],
Fisherfaces [20, 22], Elastic Bunch Graph Matching [3, 12]
or the 3D Morphable Model [2, 15] have demonstrated good
recognition results when illumination and pose variations
are not large. However, all existing single-shot methods
suffer from the limited ability to generalize to unseen il-
lumination conditions or pose.

Compared to single-shot recognition, face recognition
from video is a relatively new area of research. Most of
the existing algorithms perform recognition from image se-
quences, using the temporal component to enforce prior
knowledge on likely head movements. In the algorithm of
of Zhouet al. [23] the joint probability distribution of iden-
tity and motion is modelled using sequential importance
sampling, yielding the recognition decision by marginaliza-
tion. In [13] Leeet al. approximate face manifolds by a
finite number of infinite extent subspaces and use temporal
information to robustly estimate the operating part of the
manifold.

There are fewer methods that recognize from manifolds
without the associated ordering of face images, which is the
problem we address in this paper. Two algorithms worth
mentioning are the Mutual Subspace Method (MSM) of Ya-
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maguchiet al. [9, 19] and the Kullback-Leibler divergence
based method of Shakhnarovichet al. [17].

In MSM, infinite extent linear subspaces are used to
compactly characterize face sets i.e. the manifolds that
they lie on. Two sets are then compared by computing the
first three principal angles between corresponding principal
component analysis (PCA) subspaces [9]. Varying recogni-
tion results were reported using MSM, see [9, 17, 18, 19].
The major limitation of MSM is its simplistic modelling of
manifolds of face variation. Their high nonlinearity (see
Figure 1) invalidates the assumption that data is well de-
scribed by a linear subspace. More subtly, the nonlinearity
of modelled manifolds means that the PCA subspace esti-
mate is very sensitive to the particular choice of training
samples. For example, in the original paper [19] in which
face motion videos were used, the estimates are sensitive to
the extent of rotation in a particular direction. Finally, MSM
does not have a meaningful probabilistic interpretation.

The Kullback-Leibler divergence (KLD) based method
[17] is founded on information-theoretic grounds. In the
proposed framework, it is assumed thati-th person’s face
patterns are distributed according topi(x). Recognition is
then performed by findingpj(x) that best explains the set
of input samples – quantified by the Kullback-Leibler di-
vergence. The key assumption in their work, that makes
divergence computation tractable, is that face patterns are
normally distributed i.e.pi(x) = N (x̄i,Ci). This is a
crude assumption (see Figure 1), which explains the some-
what poor results reported with this method [18]. KLD was
also criticized for being asymmetric [11].

3. Recognition using Kernel RAD
3.1. Resistor-Average Distance
Resistor-Average Distance is a symmetric measure of dis-
similarity of two probability distributions. It has a close re-
lationship to optimal classifier performance and reflects its
error rate better than the KLD from which it is derived [11].
It is defined as:

DRAD(p, q) =
(
DKL(p||q)−1 + DKL(q||p)−1

)−1
(1)

KLD is an information-theoretic measure that quantifies
how well a particular pdfp(x) describes samples from an-
ther pdfq(x) [5]. It is defined as:

DKL(p||q) =
∫

p(x) log2

(
p(x)
q(x)

)
dx. (2)

For most practical purposes the evaluation of the above
expression is computationally expensive and numerically
problematic. However, whenp(x) andq(x) are two nor-
mal distributions, there is a closed-form expression for KLD
[21]:
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Figure 1: A typical face manifold of lateral head rotation
around the fronto-parallel face (±30◦). Shown is a projec-
tion to the first 3 principal components. The manifold can
be seen to be smooth, but highly nonlinear.

DKL(p||q) =
1
2

log2

( |Σq|
|Σp|

)
+

1
2

Tr
(
ΣpΣ−1

q + Σ−1
q (x̄q − x̄p)(x̄q − x̄p)T

)− N

2
(3)

where N is the dimensionality of data,̄xp and x̄q data
means, andΣp andΣq the corresponding covariance ma-
trices.

The simplicity of (3) comes at the cost of a strong as-
sumption on the two data distributions. In the case of varia-
tion of face patterns (vectors of pixel values), this assump-
tion is unjustified. Lighting or pose changes, or even simple
plane transformations (rotation, translation), are all highly
nonlinear (see Figure 1). In the next section we review Ker-
nel PCA (KPCA) which is in our method used to efficiently
handle nonlinear face manifolds.

3.2. Kernel Principal Component Analysis
PCA is a technique in which an orthogonal basis trans-
formation is applied such that the data covariance matrix
C = 〈(xi−〈xj〉)(xi−〈xj〉)T 〉 is diagonalized. In the case
of nonlinearly distributed data, PCA does not capture the
true modes of variation well.

The idea behind KPCA is to map data to a high-
dimensional space in which itis approximately linear – then
the true modes of data variation can be found using standard
PCA. Performing this mapping explicitly is prohibitive for
computational reasons. This is why a technique known as
the “kernel trick” is used. LetΦ map the original data in
input space to a high-dimensional pattern space in which it
is (approximately) linear. In KPCA the mappingΦ is re-
stricted to be such that there is a functionk (the kernel)
such thatΦ(xi)T Φ(xj) = k(xi,xj). In this case, principal
components of the data can be found by performing com-
putations in input space only.
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Assuming zero-centred data in the feature space (for in-
formation on centring data in the feature space as well as a
more detailed treatment of KPCA see [16]), the problem of
finding principal components in the feature space is equiv-
alent to solving the eigenvalue problem:

Kui = λiui (4)

whereK is the kernel matrix:

Kj,k = k(xj ,xk) = Φ(xj)T Φ(xk) (5)

The projection of a data pointx to thei-th kernel princi-
pal component is computed using the following expression
[16]:

ai =
N∑

m=1

u
(m)
i k(xm,x) (6)

3.3. Combining RAD and KPCA
The variation of face patterns is highly nonlinear (see Fig-
ure 1). Hence RAD between two sparsely sampled face
manifolds cannot be easily computed in the input space.
Therefore, we are looking for a mapping of data from the
input space into a space in which data is nearly linear. As
before, we would not like to compute this mapping explic-
itly. Also, data covariance matrices and their determinants
in the expression for the KLD between two normal distribu-
tions (3) limit the maximal practical dimensionality of the
pattern space.

In our method both of these problems are solved using
KPCA. The key observation is that regardless of how high
the pattern space dimensionality is, the data has covariance
in at mostN directions, whereN is the number of data
points.

Therefore, given two data sets of faces, each describing
a smooth manifold, we first find the kernel principal com-
ponents of their union. After dimensionality reduction is
performed by projecting the data onto the firstM kernel
principal components, the RAD between the two distribu-
tions, each assumed Gaussian, is computed.

4. Modelling Registration Errors
The variation of face patterns is highly nonlinear even for
simple planar transformations, like translation or rotation.
Since reliable methods for facial feature localization have
been developed [8], these unwanted variations are best dealt
with directly, that is, by recovering transformation parame-
ters from sets of point correspondences. Images can then be
registered to have relevant facial features in selected canon-
ical locations.

Most face recognition methods do not consider how reg-
istration errors impact recognition performance. Modelling

of even small affine misregistrations (by randomly perturb-
ing manually registered data) shows that these variations
can be significant, suggesting that they should be included
in the data formation model.

We recognize two sources of registration errors:

• errors due to small localization inaccuracies of facial
feature detectors, and

• large errors due to wrongly localized features (out-
liers).

The fundamentally different nature of these two sources
of error suggest separate modelling of the two. We handle
small registration errors by augmenting the input data sets
with synthetically perturbed data. Large registration errors
are handled using RANSAC for KPCA computation.

4.1. Small Registration Errors
Small registration errors occur due to small localization in-
accuracies of facial feature detectors (see Figure 3). These
are most pronounced when input images have low resolu-
tion, which is sometimes all that is available, or when sub-
sampling is necessary for computational efficiency reasons.
Although at first sight small, these localization errors cause
a significant drift of face patterns along the misregistration
manifold, especially when few facial features are used or
when data is nonlinearly mapped, as in the proposed algo-
rithm.

In our method, a set of face images is augmented by syn-
thetic samples from the corresponding misregistration man-
ifold. The samples are generated by applying small, random
perturbations to the input images. We useNs ∼ 2Np as a
rule of thumb for the number of synthetic samples, where
Np is the number of registration transformation parameters
(soNp = 6 for affine registration).

4.2. Large Registration Errors
Large registration errors are due to wrong facial feature lo-
calization. Unlike small errors from the previous section,
these do not lie on a smooth manifold and are in our method
considered outliers (see Figure 3).

Our algorithm uses RANSAC [6] for robust estimation
of the KPCA subspace used for dimensionality reduction
(Section 3.3). This process is summarized in Algorithm 1.

A summary of the complete method proposed is given in
Algorithm 2.

5. Experimental Evaluation
We performed several experiments for the purpose of eval-
uating our algorithm and comparing its performance with
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Algorithm 1 RANSAC Kernel PCA
1: c = 0
2: for c = 0 to Climit do
3: Randomly selectNd data samples{yi}, whereNd

is the dimensionality of the KPCA subspace being
constructed.

4: Compute kernel principal components of{yi}.
5: From the rest of the data select data points within

a threshold distance from the origin in the KPCA
space. If the number of selected points is greatest
so far, call it{zi}.

6: end for
7: Compute KPCA on{zi}.

Algorithm 2 Robust Kernel RAD
Input: sets{ai}, {bi}
Output:DRAD({ai}, {bi})

1: Using RANSAC find inliers in{ai}, {bi} → inliers
{aV

i }, {bV
i }

2: Perturb〈aV〉, 〈bV〉 → synthetic data{aS
i }, {bS

i }
3: Perform RANSAC Kernel PCA on{aV

i } ∪ {bV
i } ∪

{aS
i } ∪ {bS

i } → principal componentsui

4: Project{aV
i }∪ {aS

i }, {bV
i }∪ {bS

i } ontoui → projec-
tions{aP

i }, {bP
i }

5: Compute RAD between{aP
i } and {bP

i } →
DRAD({ai}, {bi})

algorithms in the literature. The data sets used in experi-
ments are described in Section 5.1. Algorithms chosen for
comparison are:

• Kernel RAD,

• Robust Kernel RAD,

• KLD-based algorithm of Shakhnarovichet al. [17],

• Kernelized KLD-based algorithm,

• Mutual Subspace Method [19],

• Majority vote using Eigenfaces.

The dimensionality of the KPCA subspace used in our
Kernel RAD methods was set to 20 for computational
reasons. The RBF kernelk(xi,xj) = exp(−0.6(xi −
xj)T (xi − xj)) was used in all kernel methods and was
found empirically. In the original KLD-based method 85%
of data energy was explained by the principal subspace
used. In MSM, the dimensionality of PCA subspaces was
set to 9 [19]. The first 3 principal angles were used for
recognition, as this produced best results in the literature
[19]. In the Eigenfaces method, the 22-dimensional princi-
pal subspace used explained 90% of data energy.

Figure 2: Frames from typical input video sequences used
for evaluation of methods in this paper. The bottom-right
frame is shown with automatically detected pupils and nos-
trils, and the region of the face used for recognition.

5.1. Data

The evaluation of methods in this paper was done on six
databases, five with 35 and one with 90, mostly male indi-
viduals. For each person in a database we collected a train-
ing and a testing image set, each consisting of 30-50 im-
ages of a face in random motion (yaw within approximately
±30◦), sampled from a video at 10fps (see Figure 2). Il-
lumination conditions for each database were different, but
unchanging across the training and testing sets. Face images
were affine registered using 4 point correspondences (using
pupils and nostrils) and automatically cropped at approxi-
mately mouth and mid-forehead level. Pupils and nostrils
were automatically detected using the algorithm described
in [8]. Finally, for computational and memory reasons, im-
ages were subsampled to15 × 15 pixel grayscale images
with pixel values normalized to lie in the range[0, 1]. See
Figures 2 and 3. We emphasize that the whole process is
automatic – no human intervention is required at any point.

5.2. Results

The recognition results are summarized in Figure 4. Our
Robust Kernel RAD outperformed other methods on each
database, producing the highest average recognition score
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Figure 3: Registered and automatically cropped faces (15×
15 pixels) from 4 typical sequences used for comparison
of recognition methods in this paper. Presence of outliers
can be seen in the last set of faces, while small registration
errors are present in all 4 sets.

of 98%, with non-decayed performance for the large
database. The original KLD-based method produced very
low recognition rates. The likely reason for this is the high
nonlinearity of manifolds described by training sets used,
caused by close, office lighting.

It can be seen that kernelization alone of the original
KLD method improved the results dramatically – from 45%
to 85%. This confirms that face recognition by manifold
modelling is indeed a promising direction of research. Con-
sistent improvement of recognition rates using RAD over
KLD is also demonstrated.

Registration error modelling was confirmed to be very
important, additionally decreasing the error rate to 2%. Dis-
tance matrices on a typical database are compared for the
Kernel RAD method without and with misregistration mod-
elling in Figure 5. Increase not only in recognition perfor-
mance can be seen, but also in separability of within and
between class distances. Separability for the Robust Kernel
RAD method is shown in Figure 6.

6. Summary and Conclusions
In this paper we introduced a novel approach to face recog-
nition from face motion manifolds. In the proposed algo-
rithm the Resistor-Average distance computed on nonlin-
early mapped data using Kernel PCA is used as a dissimilar-
ity measure between distributions of face images. Addition-
ally, sources of registration errors are explicitly modelled
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Figure 5: Typical distance matrices using Kernel Relative
RAD without (left) and with(right) modelling of registra-
tion errors for a set of 35 people. Brighter pixels represent
smaller distances (the intensity scale is logarithmic).
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Figure 6: Histograms of within-class (solid line) and
between-class (dashed line) Robust Kernel RAD on the 5
databases used in the method evaluation. Good separability
is demonstrated.

allowing for their effects to be greatly reduced. A num-
ber of experiments was presented using frames from videos
of faces in random motion. It was shown that our method
consistently outperformed existing methods, achieving on
average the recognition rate of 97–100% on 6 databases of
35–90 people each.

The success of recognition based on kernelizing the
RAD suggests that future research should concentrate on
better understanding of face manifolds. Insight into the
shape of these manifolds should help in the choice of more
appropriate kernel functions. At last, the proposed method
does not handle illumination changes. Our future work will
concentrate on efficient illumination compensation on face
manifolds.
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Database 1 Database 2 Database 3 Database 4 Database 5 Database 6 Average
Robust Kernel RAD 100 94 97 100 100 97 98
MSM 100 88 94 94 97 94 94
Kernel RAD 90 85 92 92 97 88 91
Kernel KLD 84 85 86 81 88 88 85
Majority vote, Eigenfaces 81 70 58 69 73 73 71
KLD 42 35 39 50 60 44 45

Figure 4: Results of the comparison of our novel algorithm with existing methods in the literature. Shown is the identification
rate (%) for five databases of 35 people (1–5) and one of 90 (6). Robust Kernel RAD produced best results on all 6 databases.
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