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Abstract

This paper addresses the problem of automatic detection and recovery of
three-dimensional human body pose from monocular video sequences for
HCI applications. We propose a new hierarchical part-based pose estimation
method for the upper-body that efficiently searches the high dimensional ar-
ticulation space. The body is treated as a collection of parts linked in a kine-
matic structure. Search for configurations of this collection is commenced
from the most reliably detectable part. The rest of the parts are searched
based on the detected locations of this anchor as they all are kinematically
linked. Each part is represented by a set of 2D templates created from a 3D
model, hence inherently encoding the 3D joint angles. The tree data structure
is exploited to efficiently search through these templates. Multiple hypothe-
ses are computed for each frame. By modelling these with a HMM, temporal
coherence of body motion is exploited to find a smooth trajectory of articula-
tion between frames using a modified Viterbi algorithm. Experimental results
show that the proposed technique produces good estimates of the human 3D
pose on a range of test videos in a cluttered environment.

1 Introduction

Many applications such as Human Computer Interaction (HCI), sign language recognition
and avatar animation require pose estimation of the human body from video sequences.
A system that estimates body pose for these applications should be able to self initialize
(i.e. can recover when it loses track, for example, if the individual leaves the view), track
independent of activity, identify the configuration of the body as accurately as possible
and be computationally efficient. For convenience, such a system needs to be able to run
in a standard PC with single (optical) camera.

Tracking human body articulation is a difficult problem due to the high dimensional-
ity of the state space and the inherent ambiguity that arises from using 2D image features
to estimate 3D pose parameters. Traditionally, tracking involves searching for the current
pose based on the pose estimate from the previous frame guided by a dynamic model.
Single hypothesis tracking such as the Kalman filter [16] invariably fails due to the am-
biguity involved. Particle filters have been used in the past to overcome ambiguity by
maintaining multiple hypotheses [4]. However, a large number of particles is needed



for tracking the full range of human motion. The main disadvantage of these traditional
tracking paradigms is that they can neither self-initialize nor recover from a loss of track.

One way of addressing the above problems is to treat tracking as object detection in
every frame. The problem of pose estimation is decoupled from temporal dependency
and hence the problem of initialization and recovery are solved within thistracking as
detectionframework. The temporal information is only used to smooth the motion and
to overcome ambiguous situations. This clearly divides the tracking problem into two
distinct problems: (1) Estimate a set of possible configurations from a single frame (De-
tection) (2) Combine these configurations from each frame to obtain smooth multiple
trajectories (Tracking).

The techniques for solving the detection problem can be divided into two categories
namely top-down, full- template matching approaches and bottom-up part-based approaches.
Gavrila’s pedestrian detection [7] and Stenger et al’s [21] hand tracking frameworks are
typical examples of top-down full template matching methods. A number of 2D templates
are created which cover the entire state space and are organized into a template hierarchy
to facilitate a coarse to fine search strategy. However, the number of templates needed to
find the correct object pose increases exponentially with the number of dimensions and
this is impractical with more than 7 or 8 dimensions.

Bottom-up approaches handle the high dimensionality efficiently by focusing on parts.
These part-based approaches try to identify body parts individually (in contrast to a full
templates) in an image and then assemble a configuration that has maximum support
from image observations. The parts are detected independently of each other based on
generic rectangular shape templates and simple appearance models. Possible body con-
figurations are assembled from the detected collection of parts using Data-Driven Markov
Chain Monte Carlo framework [12] or versions of belief propagation [6, 15, 19] or simple
heuristics [13]. The spatial relationship between parts is lost when they are detected indi-
vidually which potentially leads to a large number of false positives making the problem
of re-assembling them into meaningful configurations very complex.

In this paper we present a ‘hierarchical part-based’ detection scheme with the aim of
combining the best of both top down and part based methods. The main idea is to view
the whole body template as a hierarchy of parts. First we search for the root part. Then
we explore each branch of this hierarchy sequentially by searching for a child part based
on identified locations of the parent part. We avoid the difficult problem of re-assembling
the parts by retaining the kinematic links between parts while searching. At the same time
we circumvent the curse of dimensionality by essentially searching for one part at a time.
Moreover, unlike other part-based approaches [6], our part-templates inherently encode
the 3D pose information, thus we are able to extract 3D articulation parameters directly.

In a pure detection-based approach, the pose with the highest confidence in each frame
can be selected as the best configuration. However this does not guarantee a smooth
transition of pose between frames. In the real world, a body part can physically move only
to an adjacent location in space from one instance to the next. In terms of pose parameters,
this implies smooth transitions, or ‘temporal coherence’. Restricting the motion being
tracked to particular actions [11, 16, 17] or explicitly modelling the manifolds of pose
parameters from training data [2, 5, 18, 23] would not only reduce the dimensionality of
state space, but also provide a means to smooth the motion between frames. But these
approaches are difficult to generalize to arbitrary movements because one would require
a large amount of data to model/learn all possible motions.



In our framework, the temporal coherence is imposed by modelling the detected con-
figurations of each frame as states in a Hidden Markov Model (HMM) and applying the
Viterbi algorithm to estimate a track of smooth pose transitions (see section 3). A sim-
ple dynamical model that penalizes large pose transitions is assumed. This framework
inherently propagates multiple hypotheses for body configurations between frames.

The next section explains how we take advantage of the hierarchical arrangement of
body parts to reduce the number of templates required for pose estimation while extracting
accurate 3D pose information.

2 Hierarchical part-based detection

In template-based approach one needs to search over a large number of templates to es-
timate all possible poses. For example, if the articulation parameters are discretised at
10 degree intervals, over1010 templates are needed to represent all possible poses of the
upper body. We exploit the hierarchical nature of the kinematic structure to reduce this.

Consider the following ‘parts’ or ‘combination of parts’: (a) head and torso, (b) upper
arms and (c) lower arms and hand. For a front-facing upper body, the number of degrees
of freedom for each of these parts is 2 for scale and rotation of torso, 3 for two articulations
and scale of upper arm and 3 for two articulations and scale of lower arm. Hence the
number of templates needed to represent the state space for each of these are considerably
less than for a complete upper body (less than 10 000 in total).
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Figure 1:ROC curves for individual detectors.
Illustrated are the ROC curves of three individ-
ual part detectors: Head-and-torso (red solid),
Right-upper-arm (green dotted) and Right-lower-
arm blue (dashdot). It is evident from these that
the head-and-torso detector is the most reliable
one.

Now the challenge is to combine these
representations in a meaningful way and
extract the pose of the upper body. One
approach is to detect individual parts sepa-
rately and assemble configurations that are
supported by the image [6]. Instead, we
propose to initially search for the head-
and-torso part and then search for other
parts in a breadth first order of the kine-
matic hierarchy.

There are many reasons to search for
the head-and-torso part first. In HCI appli-
cations, the user generally faces the cam-
era. So it is reasonable to assume that
the head and torso are visible most of
the time. Moreover, the head-and-torso
part generally occupies a larger image re-
gion compared to other parts when the
whole upper body is captured in the im-
age. Hence it contains more information
for that part detector to exploit. The relia-
bility of the head-and-torso part compared

to the upper-arm and lower-arm-and-hand parts is illustrated through ROC curves in fig-
ure 1. Searching for parts in this hierarchical manner has precedent in the past literature.

1HT - head and torso, RUA, LUA - right and left upper arm, RLA, LLA - right and left lower arm.



In [15], Ramanan and Forsyth initially detect the possible torso locations to narrow the
search for other body parts. Gavrilla [8] takes a similar approach, which he terms as
‘search space decomposition’, where he localizes the torso using color cues and uses this
information to constrain the search for the limbs.

2.1 Formulation

Now we formulate a posterior for configurations detected in an image. The state vec-
tor x of body configurations is a concatenation of sub-state vectors of the body parts,
x = {xHT ,xRUA,xLUA,xRLA,xLLA} = {xi}. The sub-state vectors contain articulation and
positional parameters. The posterior probability of a pose (x) given the image observa-
tions (z) is formulated as,

p(x|z) =
p(xHT)p(xRUA|xHT)p(xLUA|xHT)p(xRLA|xRUA)p(xLLA|xLUA)p(z|{xi})

p(z)
(1a)

∝ ∏
i

p(xi |xparent(i))∏
i

p(z|xi). (1b)

The priorp(xHT) is taken to be uniform over all articulation (within allowed range of
joint angles) and positional state parameters ofxHT . The conditional priorp(xRUA|xHT)
is also modelled as uniform distribution. Similar arguments/assumptions are made for
the other priors,p(xLUA|xHT), p(xRLA|xRUA) and p(xLLA|xLUA). Since detection in each
frameis performed without prior knowledge from previous frames, it is reasonable to
assume that all poses (with joint angles in valid range) are equally possible.

The likelihood scores obtained during the template matching of individual body parts
are independent of each other. So we approximate the likelihood asp(z|{xi}) ∝ ∏i p(z|xi)
wherep(z|xi) is the likelihood of a single part. This is a standard approximation adopted
by many [6, 13] in the past.

The image observations are based on the chamfer scorezchamand the appearance score
zapp. The joint likelihood ofz = (zcham,zapp) is approximated as

p(z|xi) = p(zcham|xi)p(zapp|xi) (2)

assuming that the observations are independent. The next section describes how these
likelihoods are computed.

2.2 Template search

Even though the high dimensionality of the body can be effectively handled by decom-
posing into parts, the templates2 that represent the parts still need to be searched for
efficiently. Template trees provide an efficient method to search with a large number of
templates. By constructing a hierarchy of templates (for each part separately, i.e. 5 tem-
plate trees), where each node is a prototype for all its children, and searching the children

1The term ‘parent(i)’ represent the parent of parti, for exampleparent(RUA) = HT.
2Templates are created from projections of a 3D model built from 18 truncated quadrics in a similar manner

to [20]. The dimensions of this model are generic and not adopted to fit each person



only if the matching error for the parent is below a threshold leads to an efficient algorithm
which is orders of magnitude faster than a brute force search of all templates [7, 21].

The templates in the first level are matched at coarse grid locations of a given input
image. Then, only the sub-trees under templates that have given matching error below a
threshold are further explored. During this, the templates at each node being investigated
are matched at an ever decreasing neighborhood of the parent’s matched locations. Hence,
subsequent templates are tested at locations where they are highly likely to match, thus
reducing the total number of template evaluations needed to search through the complete
set. Each template is matched to image based on shape and appearance similarity.
Edge features: Similarity between image edge features and template edge features is
measured usingchamfer distance[1]. A robust measure is obtained by dividing the image
edges into 8 groups based on their orientation and calculating thedistance transform
(DT) for each of them separately. The template points with corresponding orientation are
matched with the relevant DT image. The similarity measure of a template is found from
the mean sum(dcham) of individual costs from all edge groups as follows,

p(zcham|xi) =
1

Zcham
exp(−λchamdcham). (3)

In the above formulation,Zcham is the partition function andλcham is the weight assigned
for the edge-based similarity.
Appearance features: In a continuous sequence of images, it can be safely assumed that
the person will not change suddenly in appearance. Hence, each image carries important
information about that person in terms of his/her appearance such as clothing and visible
skin areas. This is exploited by learning appearance models for each body part using RGB
histograms1 from the initial 30 frames of a video sequence. Using these, given an RGB
triplet, an appropriately weighted confidence measure can be obtained. The input image is
segmented using mean shift [3]. The probability of each region belonging to a particular
part is computed based on the collective probability of all the pixels in that region. If that
probability is above a threshold then the whole region2 is assigned to that body part. Thus
a binary image for each part is extracted from the input image. Integral and row-sum
images are computed from these binary images and a correlation type similarity score is
used to match each template efficiently,

p(zapp|xi) =
1

Zapp
exp(−λapp(1−dapp)). (4)

The appearance similarity score,dapp, ranges between1 and−1. The higher the value
the better the similarity, hence the term(1−dapp) in the exponential. In the above formu-
lation, Zapp is the partition function andλapp is the weight assigned for the appearance-
based similarity.

These (Eq.3 and Eq.4) are rather simplistic and computationally inexpensive approx-
imations for feature likelihoods. We obtained reasonable detection rates and relatively
small classification error with these approximations. The negative log likelihood is

− log(p(z|xi)) = λchamdcham+λapp(1−dapp)+K. (5)

1We used 32 bins in each dimension for the joint histogram in RGB [10].
2This is better than assuming each pixel is independent and classifying them individually.



The weight factors,λchamandλapp, and the constantK are computed empirically such
that the maximum likelihood classification error is minimized for all templates1.

The posterior computed for each body configuration found through template matching
in each frame is a sample of the posterior distribution. We find the modes of this distribu-
tion using a simple heuristic based on the distance between the configurations in the state
space and their posterior probability.

Each frame has been dealt with in isolation until now. We describe a tracking para-
digm for a sequence of frames in the next section.

3 Enforcing Temporal Coherence

As noted in section 1, temporal coherence in the movements of body parts translates to
smooth transitions in configuration space. Sets of configurations are detected for each
image in a video sequence and an optimal path through these needs to be found such
that the articulation is smooth. This can be easily found using a Hidden Markov Model
(HMM)2. The detected mode-configurations of each frame are treated as the states of the
HMM at a time instant. Since we do not assume any strict dynamic model, the transition
between these states from one time instant to next is modelled by single Gaussian on each
parameter of the state space. The mean for the distributions are equal to the parameters of
state at(t−1) and the standard deviation depends on the partition size of the state space
used in creating the templates. The probability of each configuration at the initial frame is
assumed to be uniform. The Viterbi2 algorithm is used to find the best path that enforces
smooth pose transition between frames. At each iteration step of the Viterbi algorithm,
multiple hypothesis for paths are propagated. This is essential as there is depth ambiguity
of body parts in monocular sequences.

4 Experiments

Some experiments were performed to assess how reliably the head-and-torso part can
be detected compared to other parts. As shown in Fig.2 and Table 1, lower arm part
produced many more false positive matches than the head-and-torso part. Moreover, in
the examples illustrated in Fig.2, the right lower arm was not detected at all at the given
threshold. Compared to a simple torso part, the combined head-and-torso part is much
more reliably detected. Similarly, the lower-arm-and-hand combined part produces less
classification error compared to a simple lower-arm part.

Note that the number of detections for the same threshold does not vary much across
different images for the head-and-torso part. For example, in table 1, for a low thresh-
old the numbers of head-and-torso parts detected in two different images are 61 and 56
whereas the detections for the lower arm parts are 44,993 and 13,199. Hence the same
threshold can be safely used with head-and-torso part detection for various image se-
quences.

We tested the proposed approach for pose estimation in many video sequences. Each
video sequence contained approximately 500 frames. Since we did not have ground-truth

1A principled approach to compute these might be to use the PDF Projection Theorem as proposed in [22]
2For a detailed explanation of HMM and Viterbi algorithm, refer the tutorial by Rabiner [14]



Threshold Low (0.81) High (0.84)
Part HT LA HT LA HT LA HT LA
Image No. 2(a) 2(e) 2(b) 2(f) 2(c) 2(g) 2(d) 2(h)
Locations 61 44 993 56 13199 4 5 616 1 849

Table 1:Templates and detected locations:
Two different parts - namely, head-and-torso (HT) and lower arm (LA) - are searched for indepen-
dently and the number of detections are tabulated. Their locations on the image are illustrated in
Fig.2. Consider the first and second rows of the above table. The head-and-torso part has been
detected at 61 locations whereas the lower arm part has been detected at over 40 000 locations for
the same likelihood threshold. Moreover, the lower arm part failed to detect the right lower arm in
the examples given in Fig.2

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 2:Templates and detected locations:Head-and-torso part (a,b,c,d) and lower arm part
(e,f,g,h) at their detected locations are overlaid (in white) on the image as explained in the Table 1.
Figures a,b,e and f are for a low threshold and c,d,g,and h are for a high threshold of likelihood. As
illustrated, the head-and-torso part can be more reliably detected compared to lower arm part.

data, the identified configurations were visually evaluated with some tolerance for depth
ambiguity.

4.1 Detection in a single frame

Figure 3 shows examples of poses detected based on the approach of section 2. The results
illustrated here are obtained without exploiting any temporal information.

In the sub-figures (b),(d),(f),(g),and (h) of figure 3, the upper arm of the person in the
image is fully occluded and in sub-figures (b),(f) and (g), the lower arm is pointing directly
at the camera. These poses are correctly identified because the parts are searched for in
the hierarchical order of the kinematic structure. These would have been very difficult to
handle in other part-based strategies as proposed in [6, 12] and [13]

In cases where the highest ranked pose (see section 2.2) did not match well the pose of
the human in the image, the best pose is typically found within the first 20 highest ranked
poses (in 98% of such instances) as illustrated in figure 4. This suggests that the correct
pose will possibly be identified by considering the temporal coherence of articulation
between frames.

4.2 Tracking

When using an HMM and applying the Viterbi algorithm as explained in section 3, as one
backtracks (Fig.6) from time instantt = T, typically all trajectories collapse to a single
path fort < T−10, as also observed in [9]. The Viterbi algorithm is designed to give only
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Figure 3:Pose Detection:Results of detection-based pose estimation in individual frames from 6
different sequences. On average, the body pose was correctly estimated in 80% of the frames in our
experiments. In cases where the highest ranked pose did not match well the pose of the human in
the image, the best pose is typically found within the first 20 highest ranked poses in 98% of such
instances.

Figure 4: Ranked Samples: The ranked samples from detection-based pose estimation. The
highlighted samples are better estimation of pose of the human in the image compared to the first
ranked configuration. The examples shown in here are frames 9 and 14 in the sequence at figure 5.

one best path when backtracked. This can be useful for batch processing a sequence of
frames off-line. A useful modification of this method for real-time pose estimation could
be a time delayed output, i.e. the system could output an estimate of pose for framet− τ
(τ ≥ 10) by backtracking from the input framet. We follow this approach to stay within
the tracking paradigm.

In this approach, application of the Viterbi algorithm takes only a fixed amount of
computation for each new frame. As each new frame is processed, paths need to be prop-
agated only between the current(t) and the previous(t−1) frames. The best configuration
for (t− τ)th frame is then computed by backtracking from thetth frame.

Figure 5 illustrates how the temporal coherence helped to find smooth pose transitions
between frames where the pose detection at each frame separately produced poor results.
The two failed situations shown in figure 4 are frames 490 and 495 in the sequence at
figure 5. In that sequence during simple pose detection, the body pose was misidentified
in frames between 485 and 495. This was rectified by imposing temporal coherence.

On average this method produced 90% correct identification of full upper-body pose.
In 95% of the frames the pose was correct except for one arm. Our implementation
performed at a frame rate of 0.7Hz on a 2.4 GHz PentiumTM 4 machine. We are currently
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Figure 5:Applying the Viterbi algorithm helps to recover better pose estimation.The
first tow rows of images show the best pose estimate from pure detection in each frame
in a sequence of 500 frames. The bottom two rows of images show the pose estimation
obtained by backtracking as explained in section 4.2. As illustrated, the wrongly identi-
fied poses in frames between 485 and 495 are correctly estimated by exploiting temporal
coherence.

optimizing the implementation in order to enable to track in realtime.

5 Conclusions
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Figure 6: Backtracked paths using the
Viterbi algorithm: This is an example of
all the backtracked paths from the very last
frame in a sequence. Note how all the tra-
jectories collapse to a single path within 10
frames from the end.

In this paper we have presented a viable
method for human body tracking and pose es-
timation for HCI applications. A hierarchi-
cal part-based approach that extracts 3D artic-
ulation parameters using templates has been
introduced. As a result of the hierarchical
search, some partially occluded poses were
identified in this approach. Though only re-
sults from upper-body pose estimation are pre-
sented here, the approach can be easily ex-
tended to apply for full body.

Some improvements are possible in this
framework. Imposing joint endstop constraints
would reduce false positive configurations. In
very long input sequences, illumination vari-
ation starts to degrade the appearance-based
similarity measure. This could be remedied by
updating the appearance online from reliably
detected poses in occasional frames.



Simple gestures could be recognized by assigning semantics to regions of articulation
space. If only a fixed set of gestures are to be tracked, then the dynamics of each gesture
and transitions between them could be used to impose constraints on pose further reducing
the false positives.
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