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Abstract

An approach to recognise 10 elementary gestures is proposedand it can be
applied to sign language recognition. In this work, a motiongradient ori-
entation image is extracted directly from a raw video input and transformed
to a motion feature vector. This feature vector is then classified into one of
the 10 elementary gestures by a sparse Bayesian classifier. Atraining set of
628 samples and a testing set of over 1000 samples have been obtained to
evaluate the proposed method. A real-time system was built and trained with
the training set. From the experiment, the reported classification accuracy is
90% and the system can run in around 25 frames per second. Compared with
other recently proposed methods that involve the use of handtracking, the
system can work reliably in real-time without relying on accurate tracking,
and give a probabilistic output that is useful in complex motion analysis.

1 Introduction

Sign language systems are well known for their structured sets of gestures and they can
provide a test bed for gesture recognition algorithms. Research in sign language recogni-
tion is therefore useful in building an interface between deaf and hearing people, and also
in developing novel human-computer interfaces.

Sign language recognition is a complex problem, which requires adivide-and-conquer
approach. Complex sign recognition can be considered as recognition of a sequence of
primitive movements. It is, however, usually difficult to recognise primitive movements
from raw images. This is mainly because getting motion information from raw images
usually involvestarget detectionandvisual trackingthat are also complex problems in
computer vision. Recent works such as [4, 6] rely heavily on an accurate tracking result
and thus they may fail if the tracking result is not reliable.To perform accurate track-
ing, assumptionsthat are usuallyviolated in real world situation are often used, e.g.,
assuming non-skin colour background when a colour-based tracker is used, or assuming
non-cluttered background if an edge-based tracker is used.Hence, theapplicabilityof the
system is often compromised.



In this paper, an approach to recognise 10 elementary gestures whichdoes notrely
on tracking is proposed. Gesture recognition is done by exploitingmotion gradient ori-
entation (MGO) imagesto form motion features and using asparse Bayesian classifier
to map the features into their corresponding classes. The present research has three main
contributions. Firstly, by using the motion feature, whichis derived from the MGO image,
the key motion information can be encodedwithout any accurate visual tracking. This
motion information can be used directly in motion classification and can yield a fairly
high classification result. Secondly, due to the use of the Bayesian classifier, the final out-
come is aprobabilistic valueinstead of a simple true or false answer. The implication is
that the final probabilistic results can be used in otherhigh-level inference processesthat
need to maintain multiple hypotheses. Thirdly, the classifier maintains asparse model,
which facilitates an efficient use of computational resources and areal-time performance.

1.1 Previous work

Sign language recognition problem was first tackled by borrowing techniques from speech
recognition. One of these techniques, Hidden Markov Models(HMMs), have been widely
used in this problem in the past decade. In [7], HMMs were directly applied to solve the
problem and their extensions such as parallel HMMs [10] and self-organizing HMMs [2]
were also proposed to improve the performance. Recently, the use of HMMs has been
criticised. One major criticism is that HMMs requirelarge training sets(e.g. [4]) and
this will inhibit the growth of the vocabulary. In addition,recent HMMs designs analyse
each sign as a wholewithout breaking it down into corresponding components (e.g. [6]),
making the model more complicated and reducing its extensibility.

A few suggestions have been proposed to address the mentioned weaknesses of HMMs.
Bowden et al. [4] proposed the use of a “two stage classification” that does not involve the
use of HMMs. In their work, motion data was firstly transformed intoa linguistic feature
vectorwhich encodes a relative position, a relative motion and shape of hands (Stage I
Classification), and the feature vector was then classified into its corresponding sign by
a bank of Markov chains(Stage II Classification). As one may expect, the overall classi-
fication result is determined by the accuracy of the Stage I Classification. In their work,
hard-coded prototypical motion patterns are used in the Stage I Classification to perform
hand motion classification and this may reduce the reliability of the system. In [6], Derpa-
nis et al. did not use HMMs in their work and they mainly focused on the classification of
relative motion of hands from motion data (similar to Stage IClassification in [4]). They
exploited manually defined functions to mapmotion data in time series formatinto the
correspondingmotion typerobustly. Their work, however, relied heavily on the accuracy
of the tracking result as shown in their experiments (97% overall accuracy with manually
segmented output vs. 86% overall accuracy with automatic tracking output).

This paper extends their work to allow reliable hand motion classification without
relying on tracking. In the following sections, the description of the proposed method and
the implementation details will be presented.

2 Overview

In [6], Derpanis et al. introduced the idea of breaking down signs intoconstituent primi-
tive movementswith the aid oflinguistic information. They generalised a set of 14 prim-



itive movements and also a set of basic hand shapes using Stokoe’s phonemic analysis
of American Sign Language (ASL) [8]. Any sign in ASL can be represented by a com-
bination of the primitive movements and the corresponding hand shape. On the other
hand, sign language recognition can be done by recognising the hand shape, the primitive
movements and the corresponding sequence. This recognition process can be considered
as the Stage II Classification in [4]. Since the overall recognition accuracy is determined
by the accuracy of recognising hand shape and hand motion, itis worth investigating how
we could obtain an accurate result in the Stage I Classification. It is especially important
to study hand motion recognition, which involves large inter- and intra-personal variation.

2.1 Problem Definition

In this paper, we will focus on how to obtain an accuratehand motion classificationre-
sult without assumingaccurate tracking. Instead of having 14primitive movementsas
in Derpanis et al.’s work, we only have 10: (1) upward, (2) downward, (3) rightward,
(4) leftward, (5) toward signer, (6) away signer, (7) nod, (8) supinate, (9) pronate, and
(10) circular. In other words, the primitive movements thatare a combination of two or
more constituent primitives (e.g. ‘up and down’ equals to ’upward’ plus ’downward’) are
removed. Figure 1 illustrates the 10 primitives, together with the hand shapes that are
used in the experiment. The research problem in this paper isto classify a given video
sequence of hand motion into one of the ten primitives.

2.2 Proposed Algorithm

The input of the system is avideo sequenceof a single gesturesigned by a signer. The
output of the system is aclassification result. The tasks involved can be categorised into
3 main stages as shown below (the implementation details will be described in Section 3):

Feature Extraction Stage:

1. Obtain amotion gradient orientation (MGO) image(O) from the givenimage se-
quence, V ={I0, I1, ..., It}.

2. Obtain new basis functions by applying Principal Components Analysis (PCA) on
the MGO images (O) obtained from all training examples (givenN image sequences
{V1, V2, ...,VN}). Once the new basis functions are obtained, the MGO image (O)
can be transformed into anew motion feature vector(x) of a lower dimension.

Learning Stage:

1. Convert all examples (N image sequence{V1, V2, ...,VN}) into their corresponding
motion feature vectors ({x1, x2, ...,xN}) using the above feature extraction scheme.

2. Train asparse Bayesian classifiergiven the feature vectors ({x1, x2, ..., xN}) and
their corresponding class labels ({t1, t2, ..., tN}).

Testing Stage:

1. Convert the given testing datum (V) into its corresponding motion feature vector
(x) using the above feature extraction scheme.



2. Obtain a classification result (t) from the Bayesian classifier given the motion fea-
ture vector (x).

Figure 1: This figure illustrates the 10 primitive movementsthat are classified by the
proposed system and the 5 basic hand shapes tested in the experiment.

3 Technical Details

3.1 Extraction of Motion Gradient Orientation Images

Motion gradient orientation (MGO) was proposed by Bradski and Davis [5] to explicitly
encode changes in an image introduced by motion events. The MGO is computed from
a motion history image (MHI) and a motion energy image (MEI).While a MHI encodes
how the motion occurred, a MEI encodes where the motion occurred, the MGO therefore
is a concatenation representation of motion (where and how it occurred).

Given a video sequence,V ={I0, I1, ..., It} whereIt is an image captured at timet
(and the precise form isI(x,y, t)), a binary maskD(x,y, t) can be obtained fromimage
differencing1 and this mask can be used to indicateregions of motionat timet.

The motion history image (MHI) can be defined as [3]:

Hτ(x,y, t) =

{

τ i f D(x,y, t) = 1
max(0,Hτ(x,y, t −1)−1) otherwise.

(1)

In our system,τ is set to 255, which is the highest intensity of a greyscale image, and the
mostrecent motionwill generate thebrightestMHI pixels. Thus, the intensity in a MHI
encodeshow the motion has occurred.

In addition to the MHI, the MEI is obtained by thresholding the MHI above zero [3]
to represent where the motion has occurred. By performing morphological openings on
the MEI to remove any noise introduced by irrelevant motion,the refined MEI encodes
the location of the motion region. By finding the largest rectangle that covers all the
motion pixels in the refined MEI, we can define a region of interest (ROI) that contains
the relevant motion.

Within the ROI, motion gradient orientation (MGO) can be defined as [5]:

φ(x,y) = arctan
Fy(x,y)

Fx(x,y)
(2)

1The threshold is set to 30 in this system.



whereFx(x,y) andFy(x,y) are the spatial derivatives alongx andy direction of the MHI.
To obtain the final MGO image value (O(x,y)), φ(x,y) is rescaled2 so that the range

of intensity values is between 0 and 255. The intensity valueindicates theorientation of
the motion changes. Furthermore, since the size of the ROIs may vary from one video
to the other, the final MGO images are resized to the corresponding refined images with
standard size (which is 200×200 pixels in the proposed system). Typical MGO images
corresponding to the 10 primitive movements used are illustrated in Figure 2.

Figure 2: This figure illustrates the MGO images corresponding to the 10 primitive move-
ments classified by the proposed system.

3.2 Dimension Reduction by PCA

In order to reduce the number of training samples, dimensionreduction is done on the
MGO images that potentially can be very large in size (200×200 in the proposed sys-
tem). Principal Component Analysis (PCA) is used in the proposed system to reduce the
dimension of the MGO images. By performing PCA on all the training MGO images,
the eigenvalues indicate that the first 17 components provide an adequate summary of all
the images, which account for 90% of the variation. Thus, thefirst 17 eigenvectors are
chosen as the new basis functions for converting any new incoming MGO image (O) into
a new feature vector. Finally, normalization is done to givea final feature vector(x) with
zero meanandstandard deviation of onein all dimensions.

3.3 Classification by a Sparse Bayesian Classifier

Variation in MGO images due tointer- and intra-personal variationcan be huge and thus
a powerful classifier is needed. Firstly, different signerswill sign the same gesture in
different ways and thus generating different MGO images (see Figure 3). Furthermore,
MGO images corresponding to the same gesture signed by the same person can have a
significant variation due to difference in hand used (left vs. right) and hand shape (see
Figure 4(a)). This variation may cause a difficulty in classification of a gesture, and
thus a powerful classifier, a sparse Bayesian classifier (or aRelevance Vector Machine
(RVM) [9] for classification), is used in this system.

Compared with other state-of-the-art classifiers such as Support Vector Machine (SVM),
the RVM classifier performs equally well (see Section 4.3 and4.4). In addition, the final

2Orientation value ‘0’ is adjusted to 255 in order to avoid theconfusion between pixels indicating this
orientation and pixels representing the static background.



outcome of the RVM classifier is aprobabilistic valueinstead of a simple true or false
answer. Furthermore,sparsity of the modelstored by the RVM classifier ensures fast and
efficient classification process, which also implies that itcan be implemented in comput-
ing devices with limited memory storage such as Pocket PC or Smartphone. With these
advantages, application of RVM techniques onregressionhas been exploited in various
vision-based applications such as face tracking [11] and body tracking [1].

Although the RVM classifier is supposed to be a binary classifier, it can also be ex-
tended to amulti-class classifier. In the proposed system, the “one-versus-others” method
is used. Since we have a total of 10 classes of motion, 10 independent RVM classifiers
are constructed and each of them is trained to separate one class of data from all others.
After all the classifiers are trained, the system can be tested by feeding a sample to all
the classifiers. In practice, suppose this sample belongs toclassi, the classifier which is
trained to separate classi data from the others will give the largest output.

Given a training set{xn, tn}N
n=1, the problem oflearning a binary classifiercan be

expressed as that of learning a functionf so that the input featurexn will map onto their
correct classification labeltn and the probability ofxn is classified as the target class
(wheretn = 1) equals toσ(yn) = 1/(1+e−yn) whereyn = f (xn).

Typically, the functionf can be written as a sparse model where (M � N) [9]:

f (xn) =
M

∑
m=1

ωmφm(xn)+ω0 (3)

whereω = (ω0, ...ωM)T are the weights andφm(xn) = K(xn,xm) with K(·, ·) a positive
definite kernel function (where Gaussian Kernel with width 1is used in the proposed sys-
tem) andxm an example (or a relevance vector) from the training set. Under the RVM
framework where hyperparametersα = {α0, ...,αM} are introduced, learningf from the
training data means inferringω from the datat = {t1, ..., tN} such that the posterior prob-
ability over the weights,p(ω | t,α), is maximised. Due to space limitation, the learning
algorithm will not be addressed here. Readers may refer to [9] for more details.

4 Experimental Results and Discussion

4.1 Experimental Setup

The proposed method wasimplementedusing unoptimised C++ code and the OpenCV
library. All the experiments described were executed on a P42.4GHz computer with 1G
memory. Both training and testing data are videocapturedunder arbitrary room condi-
tions (with various backgrounds and lighting). The video was captured by a webcam with
a resolution of 320×240 pixels at 15 frames per second. In each video clip, the signer at-
tempts to sign one of the ten primitive movements as described in Section 2. On average,
each movement, which is manually segmented, lasts between 2and 5 seconds. Three sets
of video data together with the corresponding MGO images areillustrated in Figure 3.

In the learning stage, video data on a single signer was used to train the classifier.
The goal of the training stage is to train the classifier so that it can correctly recognise the
primitive movements, irrespective of thehand (left or right) being usedand theshape of
the hand. Therefore, the signer was asked to generate the primitives(or gestures) using
different hand shapes with each hand. For hand shape, 5 hand shapes that correspond to



Figure 3: Each row shows 4 sample images from a typical set of testing video together
with the corresponding MGO image. The enlarged hand shape isshown in the left-bottom
corner of each image. In all 3 cases, the signers attempt to sign the ’Supinate’ gesture.

characters ‘E’, ‘B’, ‘B5’, ‘K’ and ‘L’ in ASL were selected tobe signed (see Figure 1
for these hand shapes). These 5 hand shapes were selected because people can easily
tell them apart through visual observations (for example, ‘E’ and ‘A’ differ slightly in the
position of the thumb and thus only ‘E’ was chosen). Thus, thetotal possible number of
training cases is 10 (number of primitive movements)× 2 (left or right hand)× 5 (number
of hand shapes)= 100. The signer was also asked to sign the same combination for at
least 5 times. In total, the training set consisted of 628 gestures.

In the testing stage, video data from 5 different signers wasused to test the classifier.
Similar to the setup for capturing training data, the signers were asked to generate all
classes of gestures using different hand shape and different hand. The hand shape used
was the same as those used in capturing of training data. The signers were also asked to
sign each combination at least twice. The testing set consisted of 1025 gestures.

4.2 Evaluation of the proposed method

Given the size of the training set is 628 and using the “one-versus-others” classification
scheme, each RVM classifier maintains asparse modelwith around 30 relevance vectors
eventually (and at most 40). Assuming static background3, the classifier can recognise
primitive movements from the proposed motion features accurately under awide range of
backgrounds(e.g. cluttered background, and background with skin colour). The overall
accuracyon 1025 test cases is 89.7%. Among these 1025 test cases, 73 of them cannot be
mapped into any class (i.e. 7.1% of test cases). Theconfusion matrixis shown in Table 1.

In terms ofexecution speed, the extraction of the motion features (which includes the
generation of the MGO image from the captured images and the generation of the final
feature vector through PCA projection) takes 34.3 ms on average while the RVM classi-
fication step takes 7.2 ms on average. The average frame rate is 24.1 frames per second
(fps)). That is to say, the system can run inreal-time.

3This assumption is valid in most signing environments (e.g. those shown in television).
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up 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
down 0.00 0.96 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.00
right 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.01 0.00
left 0.00 0.00 0.01 0.99 0.00 0.00 0.00 0.00 0.00 0.00
toward 0.03 0.01 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00
away 0.01 0.00 0.00 0.00 0.01 0.98 0.00 0.00 0.00 0.00
nod 0.00 0.01 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00
supinate 0.04 0.01 0.00 0.00 0.00 0.00 0.04 0.89 0.01 0.01
pronate 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.97 0.00
circular 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.07 0.00 0.90

Table 1: Confusion Matrix that shows the motion label (vertical) versus the classification
result (horizontal). Each cell (i, j) in the table shows the percentage of classi motion
being recognised as classj. Thus, diagonal cells (i, i) show the percentage of the correctly
recognised gestures while the remaining cells show the percentage of misclassification.

4.3 Comparison with SVM Implementation

In order to compare the performance of the RVM classifier on learning the motion features
with that of the other state-of-the-art classifiers, a similar gesture recognition system was
implemented using a SVM classifier. To facilitate the comparison, the SVM classifier
was implemented using the same Kernel (Gaussian Kernel withkernel width 1) as the
RVM classifier. By training the SVM classifier with the same training set of 628 samples
using “one-versus-others” classification scheme, each SVMclassifier maintain a model
with around 300 support vectors eventually (and at most 400 support vectors). By using
the same testing set of 1025 test cases, an overall accuracy of 79.3% is achieved. The
percentage of test cases that cannot be mapped into any classis 20.3%. In terms of
execution speed, the SVM classification takes 18.9 ms on average.

4.4 Discussion

The experimental result shows that theclassification accuracyis fairly high and it is com-
parable to some recent works on recognition of primitive movements for sign language
such as [6], which achieves an accuracy of 86.00% (using colour-based tracking). In ad-
dition, as a result of the use of the proposed motion feature,the proposed method does
not rely on accurate trackingas most of the other works do. Since most of the tracking
algorithms may need to assume a background without skin colour and non-cluttered back-
ground, this means the proposed method can be applied toa wider range of environment.
Furthermore, tracking may incur an extra computational cost to the sign recognition sys-
tem and this may cause the final system not to run in real-time.Instead of using visual
tracking, the proposed method needs only the motion featureextraction module that con-
sumes relatively low computational resources (takes 34.3 ms on average to complete) and
thus the unoptimised code implementing the proposed methodcanrun in real-time.

Compared with SVM implementation, the proposed method, which uses RVM classi-
fier, performs relatively better in terms of generalisability and sparsity. In the experiment,



SVM classifier achieves a lower accuracy mainly due to the large number of primitive
movements (20.3% of all test cases) that cannot be mapped into any class. By taking
a closer look at these unrecognisable movements, it is not difficult to observe that these
movements cannot be found directly in the training set and they are usually generated
with some side-effects (such as motion of head or other background motion). Typical
MGO images and images contain some commonly occurred artefacts are illustrated in
Figure 4. Due to the problem of overfitting in SVM, the SVM classifier is relatively
weak in classifying these movements. In contrast, the experiment shows that the RVM
classifier can still recognise most of these movements (usually movements with minor
artefacts) because of itsbetter generalisability. The relatively poor classification result of
SVM may also be due to the non-probabilistic nature of its output. Under “one-versus-
others” scheme, if all SVM classifiers give ‘0’ response, thesystem will conclude that
the input is not recognisable. In contrast, RVM classifiers give probabilistic values as
an output, and the final decision is made based on these values. Thus, RVM classifiers
seldom give unrecognisable results with the exception thatall probabilistic values are too
low. Finally, the experiment shows SVM classifier maintainsa complex model consisted
of around 300 support vectors and thus gives a relatively slow performance. In contrast,
RVM classifier maintains asparse modelconsisted of around 30 relevance vectors and
thus gives a faster performance (7.2 ms in RVM classifier vs. 18.9 ms in SVM classifier).

(a) (b) (c)

Figure 4: (a) shows typical MGO images of ‘Leftward’ gesture. The 2 Leftmost images
show left hand motion while the rightmost images show right hand motion. (b) shows the
MGO images of the same gesture with minor artefacts (mainly due to the head motion
and body motion). (c) shows the MGO image of the same gesture with serious artefacts
(mainly due to the wrong identification of the region of interest).

One majorlimitation of using RVM classifier is thelong training time. In this ex-
periment, it took around 2 hours to train the classifier usingall the 628 training examples
while SVM training took less than 10 seconds. Theoretically, the training time for RVM is
proportional to the cube of the number of training samples and thus it may take extremely
long time in training the classifier. Nonetheless, the number of training examples can be
limited to achieve shorter training time while compromising the classification accuracy.
A study was done to evaluate the drop in accuracy due to a reduction in the size of the
training samples. The summary is illustrated in Table 2. It shows that as long as the
number of training samples is larger than 400 which may take 40 minutes in training, the
accuracy will be higher than 80%.



Number of training examples 100 200 300 400 500 600
Classification accuracy 64% 72% 79% 84% 88% 90%

Table 2: This table shows the relationship between the number of training samples and
the classification accuracy

5 Conclusion

A new method is proposed torecognise primitive movementsin this paper and it can be
applied tosign language recognition. The proposed method performs better than recently
used methods in three ways. Firstly, by extracting a motion gradient orientation image
directly from images, a descriptive motion feature is formed without dependingon any
trackingalgorithms. This meanscomputational overheadsdue to tracking can bereduced
and theassumptionstracking algorithms usually make can berelaxed. Secondly, by using
a sparse Bayesian classifier that has relativelybetter generalisabilityand sparsity, the
final classification result is comparable to other motion recognition methods and the result
can be obtained with aminimum amount of online computational resources. Finally, the
probabilistic natureof the Bayesian classifier implies that the proposed method can be
applied incomplex motion analysisthat must maintain multiple hypotheses.
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