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Abstract

An approach to recognise 10 elementary gestures is pro@ogkd can be
applied to sign language recognition. In this work, a motipadient ori-

entation image is extracted directly from a raw video inpud &ansformed
to a motion feature vector. This feature vector is then diaslsinto one of

the 10 elementary gestures by a sparse Bayesian classifieainig set of
628 samples and a testing set of over 1000 samples have btgneobto

evaluate the proposed method. A real-time system was Indgltrained with

the training set. From the experiment, the reported classifin accuracy is
90% and the system can run in around 25 frames per second.aedpith

other recently proposed methods that involve the use of hao#ting, the
system can work reliably in real-time without relying on agate tracking,
and give a probabilistic output that is useful in complex ioanalysis.

1 Introduction

Sign language systems are well known for their structurés giegestures and they can
provide a test bed for gesture recognition algorithms. Reein sign language recogni-
tion is therefore useful in building an interface betweeafdad hearing people, and also
in developing novel human-computer interfaces.

Sign language recognition is a complex problem, which meguadivide-and-conquer
approach. Complex sign recognition can be considered agméon of a sequence of
primitive movements. It is, however, usually difficult tacognise primitive movements
from raw images. This is mainly because getting motion miation from raw images
usually involvestarget detectiorandvisual trackingthat are also complex problems in
computer vision. Recent works such as [4, 6] rely heavily mmaecurate tracking result
and thus they may fail if the tracking result is not reliabfe perform accurate track-
ing, assumptionghat are usuallyiolated in real world situation are often used, e.g.,
assuming non-skin colour background when a colour-baset#tdr is used, or assuming
non-cluttered background if an edge-based tracker is w$eace, thepplicability of the
system is often compromised.



In this paper, an approach to recognise 10 elementary gestures wdoies notrely
ontrackingis proposed. Gesture recognition is done by exploitirgtion gradient ori-
entation (MGO) image$o form motion features and usingsparse Bayesian classifier
to map the features into their corresponding classes. Tdsept research has three main
contributions. Firstly, by using the motion feature, whigklerived from the MGO image,
the key motion information can be encodedhout any accurate visual trackingThis
motion information can be used directly in motion classtfa and can yield a fairly
high classification result. Secondly, due to the use of theeBian classifier, the final out-
come is gprobabilistic valueinstead of a simple true or false answer. The implication is
that the final probabilistic results can be used in othigh-level inference processtsat
need to maintain multiple hypotheses. Thirdly, the classsifiaintains aparse model
which facilitates an efficient use of computational resesrand aeal-time performance

1.1 Previous work

Sign language recognition problem was first tackled by lwairrg techniques from speech
recognition. One of these techniques, Hidden Markov Mog#ldMs), have been widely
used in this problem in the past decade. In [7], HMMs wereatliyeapplied to solve the
problem and their extensions such as parallel HMMs [10] a&tfidasganizing HMMs [2]
were also proposed to improve the performance. Recendyisie of HMMs has been
criticised. One major criticism is that HMMs requilarge training setge.g. [4]) and
this will inhibit the growth of the vocabulary. In additiorecent HMMs designs analyse
each sign as a wholeithout breaking it down into corresponding componentg.(i&]),
making the model more complicated and reducing its extditgib

A few suggestions have been proposed to address the mahti@adnesses of HMMs.
Bowden et al. [4] proposed the use of a “two stage classificathat does not involve the
use of HMMs. In their work, motion data was firstly transfohieto a linguistic feature
vectorwhich encodes a relative position, a relative motion angehat hands (Stage |
Classification), and the feature vector was then classifigits corresponding sign by
a bank of Markov chaingStage Il Classification). As one may expect, the overafisita
fication result is determined by the accuracy of the Stagas#ification. In their work,
hard-coded prototypical motion patterns are used in thgeSt&lassification to perform
hand motion classification and this may reduce the religtofithe system. In [6], Derpa-
nis et al. did not use HMMs in their work and they mainly foatisa the classification of
relative motion of hands from motion data (similar to Stagddssification in [4]). They
exploited manually defined functions to mamtion data in time series formatto the
correspondingnotion typerobustly. Their work, however, relied heavily on the accyra
of the tracking result as shown in their experiments (97%all/accuracy with manually
segmented output vs. 86% overall accuracy with automataking output).

This paper extends their work to allow reliable hand motitassification without
relying on tracking. In the following sections, the destidp of the proposed method and
the implementation details will be presented.

2 Overview

In [6], Derpanis et al. introduced the idea of breaking dowgms intoconstituent primi-
tive movementwith the aid oflinguistic information They generalised a set of 14 prim-



itive movements and also a set of basic hand shapes usinge8igthonemic analysis
of American Sign Language (ASL) [8]. Any sign in ASL can benegented by a com-
bination of the primitive movements and the correspondiagchshape. On the other
hand, sign language recognition can be done by recogniselgand shape, the primitive
movements and the corresponding sequence. This recagpitizess can be considered
as the Stage Il Classification in [4]. Since the overall rexitign accuracy is determined
by the accuracy of recognising hand shape and hand motismwitrth investigating how
we could obtain an accurate result in the Stage | Classificatt is especially important
to study hand motion recognition, which involves largelingad intra-personal variation.

2.1 Problem Definition

In this paper, we will focus on how to obtain an accurtaémd motion classificatiore-
sult without assumingaccurate tracking Instead of having 1érimitive movementas

in Derpanis et al.'s work, we only have 10: (1) upward, (2) deward, (3) rightward,
(4) leftward, (5) toward signer, (6) away signer, (7) nod, ¢8pinate, (9) pronate, and
(10) circular. In other words, the primitive movements taet a combination of two or
more constituent primitives (e.g. ‘up and down’ equals f@¥ard’ plus 'downward’) are
removed. Figure 1 illustrates the 10 primitives, togethé@huhe hand shapes that are
used in the experiment. The research problem in this pagerdkssify a given video
sequence of hand motion into one of the ten primitives.

2.2 Proposed Algorithm

The input of the system isddeo sequencef a single gesturesigned by a signer. The
output of the system is eassification result The tasks involved can be categorised into
3 main stages as shown below (the implementation detailbavdescribed in Section 3):

Feature Extraction Stage:

1. Obtain amotion gradient orientation (MGO) imag®) from the givenimage se-
quenceV ={log, I1, ..., It }.

2. Obtain new basis functions by applying Principal Commisdnalysis (PCA) on
the MGO imagesQ@) obtained from all training examples (givBlimage sequences
{V1, V2, ..., WW}). Once the new basis functions are obtained, the MGO imaye (
can be transformed intoreew motion feature vectdk) of a lower dimension.

Learning Stage:

1. Convert all exampled\(image sequencf/y, Vo, ...,V }) into their corresponding
motion feature vectorgks, X2, ..., XN }) using the above feature extraction scheme.

2. Train asparse Bayesian classifigiven the feature vectorgXy, x2, ..., xn}) and
their corresponding class labelgy to, ...,tn}).

Testing Stage:

1. Convert the given testing datutd)(into its corresponding motion feature vector
(X) using the above feature extraction scheme.



2. Obtain a classification resut)) from the Bayesian classifier given the motion fea-
ture vector X).

Rightward Toward signer

Away signer Nod Supinate Pronate Circular
B

E Bs5 K L

Figure 1: This figure illustrates the 10 primitive movemetfiat are classified by the
proposed system and the 5 basic hand shapes tested in thigreqe

3 Technical Detalls

3.1 Extraction of Motion Gradient Orientation Images

Motion gradient orientation (MGO) was proposed by Bradsid ®avis [5] to explicitly
encode changes in an image introduced by motion events. T8@ M computed from
a motion history image (MHI) and a motion energy image (M&¥ile a MHI encodes
how the motion occurred, a MEI encodes where the motion oeduthe MGO therefore
is a concatenation representation of motishére and how it occurred

Given a video sequenc¥, ={lo, I1, ..., It} wherel; is an image captured at tinte
(and the precise form igx,y,t)), a binary maskD(x,y,t) can be obtained frorrmage
differencing and this mask can be used to indicatgions of motiorat timet.

The motion history image (MHI) can be defined as [3]:

BE: if D(xyt)=1
Hr(x,y,t) = { max0,H;(x,y,t —1) —1) otherwise &

In our system7 is set to 255, which is the highest intensity of a greyscakegien and the
mostrecent motiorwill generate thérightestMHI pixels. Thus, the intensity in a MHI
encodesiow the motion has occurred

In addition to the MHI, the MEI is obtained by thresholding thMHI above zero [3]
to represent where the motion has occurred. By performingphudogical openings on
the MEI to remove any noise introduced by irrelevant motibwe, refined MEI encodes
the location of the motion regian By finding the largest rectangle that covers all the
motion pixels in the refined MEI, we can define a region of ias¢i(ROI) that contains
the relevant motion.

Within the ROI, motion gradient orientation (MGO) can be ded as [5]:

P(x,y) = arctan Y (2)

Fx(X,Y)

1The threshold is set to 30 in this system.



whereFy(x,y) andFy(x,y) are the spatial derivatives alomgndy direction of the MHI.

To obtain the final MGO image valu®©(x,y)), @(x,y) is rescaleé so that the range
of intensity values is between 0 and 255. The intensity valdieates therientation of
the motion changesFurthermore, since the size of the ROIs may vary from onewid
to the other, the final MGO images are resized to the correipgnefined images with
standard size (which is 200200 pixels in the proposed system). Typical MGO images
corresponding to the 10 primitive movements used are ifitestl in Figure 2.

: ; L%
Away signer Nod Supinate

Pronate Circular

Figure 2: This figure illustrates the MGO images correspoagitth the 10 primitive move-
ments classified by the proposed system.

3.2 Dimension Reduction by PCA

In order to reduce the number of training samples, dimensdaction is done on the
MGO images that potentially can be very large in size (2&DO0 in the proposed sys-
tem). Principal Component Analysis (PCA) is used in the pegg system to reduce the
dimension of the MGO images. By performing PCA on all thentiregg MGO images,
the eigenvalues indicate that the first 17 components peatidadequate summary of all
the images, which account for 90% of the variation. Thusfitis& 17 eigenvectors are
chosen as the new basis functions for converting any newnimgpMGO image Q) into

a new feature vector. Finally, normalization is done to gifimal feature vectofx) with
zero mearandstandard deviation of onia all dimensions.

3.3 Classification by a Sparse Bayesian Classifier

Variation in MGO images due tioter- and intra-personal variatioean be huge and thus
a powerful classifier is needed. Firstly, different signeitt sign the same gesture in
different ways and thus generating different MGO images (Sgure 3). Furthermore,
MGO images corresponding to the same gesture signed by the gerson can have a
significant variation due to difference in hand used (left kight) and hand shape (see
Figure 4(a)). This variation may cause a difficulty in cléisation of a gesture, and
thus a powerful classifier, a sparse Bayesian classifier elavance Vector Machine
(RVM) [9] for classification), is used in this system.

Compared with other state-of-the-art classifiers such pp&tiVector Machine (SVM),
the RVM classifier performs equally well (see Section 4.3 44). In addition, the final

2Qrientation value ‘0’ is adjusted to 255 in order to avoid tenfusion between pixels indicating this
orientation and pixels representing the static background



outcome of the RVM classifier is jprobabilistic valueinstead of a simple true or false
answer. Furthermorsparsity of the modedtored by the RVM classifier ensures fast and
efficient classification process, which also implies thagit be implemented in comput-
ing devices with limited memory storage such as Pocket PGrar®hone. With these
advantages, application of RVM techniquesregressionhas been exploited in various
vision-based applications such as face tracking [11] anly b@acking [1].

Although the RVM classifier is supposed to be a binary clasgsifi can also be ex-
tended to anulti-class classifierln the proposed system, the “one-versus-others” method
is used. Since we have a total of 10 classes of motion, 10 emtkemt RVM classifiers
are constructed and each of them is trained to separate as®e afl data from all others.
After all the classifiers are trained, the system can beddsyefeeding a sample to all
the classifiers. In practice, suppose this sample belongsssi, the classifier which is
trained to separate clasdata from the others will give the largest output.

Given a training se{xn,tn}ﬁzl, the problem oflearning a binary classifiecan be
expressed as that of learning a functibeo that the input featung, will map onto their
correct classification labe}, and the probability ok, is classified as the target class
(wheret, = 1) equals tag(yn) = 1/(1+ e ) wherey, = f(Xn).

Typically, the functionf can be written as a sparse model whée< N) [9]:

M
f(Xn) = Z Wnn(Xn) + @o 3)
m=1

wherew = (an,...con)" are the weights angin(xn) = K(xn,Xm) with K(-,-) a positive
definite kernel function (where Gaussian Kernel with widik @ised in the proposed sys-
tem) andx,, an example (or a relevance vector) from the training set. edtite RVM
framework where hyperparameters= { o, ...,am } are introduced, learnin§ from the
training data means inferring from the data = {ts, ...,tn} such that the posterior prob-
ability over the weightsp(w | t,a), is maximised. Due to space limitation, the learning
algorithm will not be addressed here. Readers may refer fof%nore details.

4 Experimental Results and Discussion

4.1 Experimental Setup

The proposed method wasplementedising unoptimised C++ code and the OpenCV
library. All the experiments described were executed on @.B&Hz computer with 1G
memory. Both training and testing data are vigepturedunder arbitrary room condi-
tions (with various backgrounds and lighting). The videswaptured by a webcam with
a resolution of 32& 240 pixels at 15 frames per second. In each video clip, thesigt-
tempts to sign one of the ten primitive movements as destiib8ection 2. On average,
each movement, which is manually segmented, lasts betwagd 2 seconds. Three sets
of video data together with the corresponding MGO imagedlastrated in Figure 3.

In the learning stage, video data on a single signer was wsédih the classifier.
The goal of the training stage is to train the classifier sbitttan correctly recognise the
primitive movemenisrrespective of thénand (left or right) being usednd theshape of
the hand Therefore, the signer was asked to generate the primifpregestures) using
different hand shapes with each hand. For hand shape, 5 hapdsthat correspond to
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Figure 3: Each row shows 4 sample images from a typical setstiing video together
with the corresponding MGO image. The enlarged hand shagbmisn in the left-bottom
corner of each image. In all 3 cases, the signers attempgncdtisé 'Supinate’ gesture.

characters ‘E’, ‘B’, ‘B5’, ‘K’ and ‘L’ in ASL were selected tde signed (see Figure 1
for these hand shapes). These 5 hand shapes were selecteddpeople can easily
tell them apart through visual observations (for examtéand ‘A’ differ slightly in the
position of the thumb and thus only ‘E’ was chosen). Thus tdit@ possible number of
training cases is 10 (number of primitive movememnts) (left or right hand)x 5 (number
of hand shapes} 100. The signer was also asked to sign the same combinatiai fo
least 5 times. In total, the training set consisted of 628uyes.

In the testing stage, video data from 5 different signerswessl to test the classifier.
Similar to the setup for capturing training data, the signeere asked to generate all
classes of gestures using different hand shape and diffeegrd. The hand shape used
was the same as those used in capturing of training data. ighers were also asked to
sign each combination at least twice. The testing set cusef 1025 gestures.

4.2 Evaluation of the proposed method

Given the size of the training set is 628 and using the “orrsusothers” classification
scheme, each RVM classifier maintainsp@arse modelith around 30 relevance vectors
eventually (and at most 40). Assuming static backgréutite classifier can recognise
primitive movements from the proposed motion featuresiately under avide range of
backgroundge.g. cluttered background, and background with skin adlothe overall
accuracyon 1025 test cases is 3%. Among these 1025 test cases, 73 of them cannot be
mapped into any class (i.e.1P6 of test cases). Thanfusion matrixs shown in Table 1.

In terms ofexecution speedhe extraction of the motion features (which includes the
generation of the MGO image from the captured images andehergtion of the final
feature vector through PCA projection) takes®ms on average while the RVM classi-
fication step takes.Z ms on average. The average frame rate i& #ames per second
(fps)). That is to say, the system can runeal-time

3This assumption is valid in most signing environments (e.gsétshown in television).



Q.
s [E | .o g |3 ° 3 |5 3
5 |8 |2 |® |& |3 g |3 |a |3
up 1.00| 0.00| 0.00| 0.00| 0.00| 0.00 | 0.00 | 0.00 | 0.00 | 0.00

down 0.00 | 0.96 | 0.00 | 0.00 | 0.00 | 0.01| 0.03 | 0.00 | 0.00 | 0.00
right 0.00 | 0.00 | 0.99 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00
left 0.00 | 0.00 | 0.01| 0.99 | 0.00| 0.00 | 0.00 | 0.00 | 0.00 | 0.00
toward | 0.03| 0.01 | 0.00 | 0.00 | 0.96 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
away 0.01| 0.00| 0.00 | 0.00 | 0.01| 0.98| 0.00| 0.00 | 0.00 | 0.00
nod 0.00 | 0.01| 0.00 | 0.00 | 0.00| 0.00 | 0.99 | 0.00 | 0.00 | 0.00
supinate| 0.04 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.89 | 0.01 | 0.01
pronate | 0.01 | 0.01 | 0.00 | 0.00 | 0.01| 0.00 | 0.00 | 0.00 | 0.97 | 0.00
circular | 0.00 | 0.02 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.90

Table 1: Confusion Matrix that shows the motion label (\eat) versus the classification
result (horizontal). Each cell,() in the table shows the percentage of classotion
being recognised as clagsThus, diagonal cells (i) show the percentage of the correctly
recognised gestures while the remaining cells show theepgage of misclassification.

4.3 Comparison with SVM Implementation

In order to compare the performance of the RVM classifier amliag the motion features
with that of the other state-of-the-art classifiers, a simjjesture recognition system was
implemented using a SVM classifier. To facilitate the conguar, the SVM classifier
was implemented using the same Kernel (Gaussian Kernelkgithel width 1) as the
RVM classifier. By training the SVM classifier with the samaitiing set of 628 samples
using “one-versus-others” classification scheme, each $\skifier maintain a model
with around 300 support vectors eventually (and at most 4@part vectors). By using
the same testing set of 1025 test cases, an overall accura®3%6 is achieved. The
percentage of test cases that cannot be mapped into anyixlaé8%. In terms of
execution speed, the SVM classification take®18s on average.

4.4 Discussion

The experimental result shows that ttassification accuracis fairly high and it is com-
parable to some recent works on recognition of primitive ements for sign language
such as [6], which achieves an accuracy af0886 (using colour-based tracking). In ad-
dition, as a result of the use of the proposed motion featheeproposed method does
not rely on accurate trackings most of the other works do. Since most of the tracking
algorithms may need to assume a background without skiucalwd non-cluttered back-
ground, this means the proposed method can be appli@aider range of environment
Furthermore, tracking may incur an extra computational tmthe sign recognition sys-
tem and this may cause the final system not to run in real-timgead of using visual
tracking, the proposed method needs only the motion featiraction module that con-
sumes relatively low computational resources (take8 B% on average to complete) and
thus the unoptimised code implementing the proposed meatiodin in real-time
Compared with SVM implementation, the proposed method¢clvhses RVM classi-
fier, performs relatively better in terms of generalisapiind sparsity. In the experiment,



SVM classifier achieves a lower accuracy mainly due to thgelatumber of primitive
movements (2@% of all test cases) that cannot be mapped into any class.alBygt
a closer look at these unrecognisable movements, it is ffatudi to observe that these
movements cannot be found directly in the training set ameg tire usually generated
with some side-effects (such as motion of head or other vackg motion). Typical
MGO images and images contain some commonly occurred etdedae illustrated in
Figure 4. Due to the problem of overfitting in SVM, the SVM der is relatively
weak in classifying these movements. In contrast, the @xjat shows that the RVM
classifier can still recognise most of these movements [lysomvements with minor
artefacts) because of itetter generalisability The relatively poor classification result of
SVM may also be due to the non-probabilistic nature of itgpott Under “one-versus-
others” scheme, if all SVM classifiers give ‘0’ response, sigatem will conclude that
the input is not recognisable. In contrast, RVM classifidve grobabilistic values as
an output and the final decision is made based on these values. Thuid,dRssifiers
seldom give unrecognisable results with the exceptionatharobabilistic values are too
low. Finally, the experiment shows SVM classifier maintaansomplex model consisted
of around 300 support vectors and thus gives a relatively plerformance. In contrast,
RVM classifier maintains aparse modetonsisted of around 30 relevance vectors and
thus gives a faster performance (7.2 ms in RVM classifier 89 fins in SVM classifier).

@ (b)

Figure 4: (a) shows typical MGO images of ‘Leftward’ gestuf@e 2 Leftmost images
show left hand motion while the rightmost images show rigiridimotion. (b) shows the
MGO images of the same gesture with minor artefacts (mainty td the head motion
and body motion). (c) shows the MGO image of the same gestitheserious artefacts
(mainly due to the wrong identification of the region of iretst).

One majorlimitation of using RVM classifier is théong training time In this ex-
periment, it took around 2 hours to train the classifier usiththe 628 training examples
while SVM training took less than 10 seconds. Theoreticétly training time for RVM is
proportional to the cube of the number of training samplesthas it may take extremely
long time in training the classifier. Nonetheless, the nunadf¢raining examples can be
limited to achieve shorter training time while compromgsihe classification accuracy.
A study was done to evaluate the drop in accuracy due to atiedun the size of the
training samples. The summary is illustrated in Table 2. htives that as long as the
number of training samples is larger than 400 which may té&kmihutes in training, the
accuracy will be higher than 80%.



Number of training examples 100 | 200 | 300 | 400 | 500 | 600
Classification accuracy 64% | 72% | 79% | 84% | 88% | 90%

Table 2: This table shows the relationship between the nuwhbigaining samples and
the classification accuracy

5 Conclusion

A new method is proposed tecognise primitive movemeritsthis paper and it can be
applied tosign language recognitionThe proposed method performs better than recently
used methods in three ways. Firstly, by extracting a moti@uignt orientation image
directly from images, a descriptive motion feature is fodméthout dependingpn any
trackingalgorithms. This meansomputational overheadtue to tracking can beduced
and theassumptiongracking algorithms usually make can tedaxed Secondly, by using
a sparse Bayesian classifier that has relatibditer generalisabilityand sparsity the
final classification result is comparable to other motiomggition methods and the result
can be obtained with minimum amount of online computational resourceémally, the
probabilistic natureof the Bayesian classifier implies that the proposed metlaodbe
applied incomplex motion analysthat must maintain multiple hypotheses.
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